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Abstract

Various methods are available to perform feature extraction on satellite image. Among the available
alternatives, deep convolutional neural network (ConvNet) is the state of the art method. Although previous
studies have reported successful attempts on developing and implementing ConvNet on remote sensing
application, several issues are not well explored, such as the use of depthwise convolution, final pooling
layer size, and comparison between grayscale and Red Green Blue (RGB) settings. The objective of
this study is to perform analysis to address these issues. Two feature learning algorithms were proposed,
namely ConvNet which represents the current state of the art for satellite image classification and Gray
Level Co-occurence Matrix (GLCM) which represents a classic unsupervised feature extraction method.
The experiment demonstrated consistent result with previous studies that ConvNet is superior in most
cases compared to GLCM, especially with 3x3xn final pooling. The performance of the learning algorithms
are much higher on features from RGB channels, except for ConvNet with relatively small number of features.
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Abstrak

Banyak metode yang dapat digunakan untuk melakukan ekstraksi ciri pada citra satelit. Diantara banyaknya
alternatif, deep convolutional neural network (ConvNet) adalah metode terbaru yang paling efektif. Meskipun
telah banyak penelitian yang sukses dalam mengembangkan dan mengimplementasikan metode ConvNet
untuk citra satelit, banyak hal yang belum dieksplorasi seperti depthwise convolution, ukuran lapisan pooling
akhir, dan perbandingan aras keabuan dan Red Green Blue (RGB). Tujuan dari penelitian ini adalah untuk
melakukan analisis mengenai hal-hal tersebut. Dua metode yang digunakan dalam eksperimen adalah
ConvNet sebagai metode handal berdasarkan penelitian sebelumnya dan Gray Level Co-occurence Matrix
(GLCM) sebagai metode klasik ekstraksi fitur tanpa supervisi. Hasil penelitian menunjukkan konsistensi
dengan penelitian sebelumnya, bahwa ConvNet unggul dibandingkan GLCM pada banyak parameter, terutama
ConvNet dengan pooling berukuran 3x3xn. Peningkatan performa diperoleh cukup tinggi dengan RGB,
kecuali pada ConvNet dengan jumlah fitur yang relatif lebih kecil.

Kata Kunci: GLCM, Convolutional Neural Network, Citra Satelit

1. Introduction tions. For instance, in meteorology, satellite image
provide useful information for analyzing cloud cover

The use of earth surface photograph which ob-  [l]l. In oceanography, some examples are coastal
tained via satellite serves a wide range of applica-  hazard and sea surface temperature estimation [2].
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Among other examples are ship detection and land-
use recognition.

In land usage identification, many feature ex-
traction methods are available. The first example
is dictionary learning with mutual incoherence K-
Singular Value Decomposition [J3]. Secondly, texture
feature extractors serve as a useful predictor as
shown by several studies. An experiment to com-
pare Gray Level Co-ocurrence Matrix (GLCM) and
other texture feature extractions was performed on
inhabited region identification. The study shows that
GLCM is comparable to Gabor and wavelet with
compact feature vector [4]. GLCM combined with
object-based classification was proposed to analyze
TerraSAR-X satellite images and superior to the
texture followed by pixel based classification [3].

Several studies on satellite image ship detec-
tion also demonstrated that texture feature provides
useful information. Incorporation of gray level non-
uniformity as a result of feature selection was pro-
posed on the first stage of small ship classification
[6]. Texture based ship representation using GLCM
was used post fuzzy c-means based segmentation for
classification [7].

Although low level representation such as texture
is useful in practice, efforts have been carried to
lower the gap between low and high level represen-
tation. An example of successful attempt is object
detectors based on histogram of oriented gradient,
which succesfully outperformed other methods [8].

Besides object detectors, a method that system-
atically learn from low to high level representation
is deep convolutional neural network. In deep neu-
ral network, the first layer learn simple low level
representation of the image. The following layer
incorporate information from the previous layer to
learn higher level feature representation.

Deep convolutional neural networks (ConvNet)
have been studied for many applications on satel-
lite image analysis. Evaluated on two remote sens-
ing land use datasets, a study confirmed that fine-
tuned GoogLeNet outperformed CaffeNet and other
learning algorithms [9]. Other study also confirmed
that ConvNet outperformed other methods such as
Spatial Pyramid Matching Kernel (SPMK) , Sparse
Coding, and Bag of Visual Words (BoVW) [10].
ConvNet was proposed to identify terrains and struc-
tures which is useful for poverty mapping [11]. In
synthetic aperture radar (SAR) based maritime target
detection, ConvNet is useful for land masking [12]
and object detection (such as cargo, harbor, and
tanker) [[13].

Most previous studies presented convolutional
neural network as a robust methods for segment-
ing and classifying satellite image. Despite of the

success, certain issues have not been addressed.

Firstly, there are many methods which perfor-
mance have not been reported. For example, despite
[14]] and [9]] discussed popular architecture such
as Xception, DenseNet, and ResNet, other network
has not been studied. One example is MobilNet,
an architecture which utilized depthwise separable
convolution to improve computation efficiency [15].
Other example is Gray Level Co-occurence Matrix,
which performance has not been discussed such as
in [9] and [10].

Secondly, although reducing the feature into
Ix1xn-channels before classification layer is an op-
tion for ConvNet implementation, the impact of
maintaining some spatial resolution before classifi-
cation layer is still unknown.

Finally, learning on multiband / multichannel
image resulted on better model performance in most
cases. However, previous studies have not been
specifically discussed how learning on multichannel
image affect model performance compared to single
grayscale image.

The objective of this study is to perform exper-
iments and analysis to address these issues. This
paper is organized as follows. Section |I| presented
background and objective. The methodology is ex-
plained in Section 2] Next, the experiment results
are presented and discussed in Section [3] Finally,
the conclusion is mentioned in Section [

2. Methodology

2.1. Dataset

Two datasets were used for evaluation. The prob-
lem proposed by the first dataset is about recognizing
an object, while the second dataset address a more
general image classification of earth surface photo-
graph.

2.1.1. Ship Detection. The task on ship detection
is to detect the presence of ship on an image patch.
The photos were taken from Planet Open California
satellite imagery, depicting area of San Fransisco
Bay and San Pedro Bay. The dataset is available via
Kaggle dataset repository. With PlanetScope visual
scene, the image spatial resolution is 3 meters [[16]
[LL7].

The images are classified into positive and neg-
ative samples. The first 1000 images, identified by
its ID, are ship images. The rest 3000 samples are
negative class images which divided equivalently
into (1) landcover (such as building and water), (2)
partially captured ship, and (3) previously misclassi-
fied instance by machine learning algorithms. A few
samples are shown in Figure [I]
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ID:1244 (Non-ship)

1D:131 (Ship)

TD:889 (Ship)
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ID:3866 (Non-ship)

ID:1953 (Non-ship) ~ ID:2434 (Non-ship)

Fig. 1: Several samples from Ship Detection Dataset

2.1.2. EuroSAT Land Cover Recognition. The
second task is to classify land cover given its pho-
tograph. The images were taken by Sentinel-2A
satellite from EU Copernicus Programme with spa-
tial resolution up to 10 meters. Two versions are
available, RGB and multispectral. In this study we
only utilized the RGB version. The ten categories of
area are summarized in Table[I} Figure 2] shows
one sample for each class.

TABLE 1
EUROSAT DATASET SUMMARY

Index  Label Quantity
0 Permanent crop 2500
1 Sea lake 3000
2 Highway 2500
3 Residential 3000
4 Annual crop 3000
5 Industrial 2500
6 River 2500
7 Herbaceous vegetation 3000
8 Forest 3000
9 Pasture 2000

2.2. Experiment

2.2.1. Research flow. The experiment began with
randomly sampling the dataset into three subsets:
training, validation, and testing. The distribution of
sample for both dataset are summarized in Table 2]
After splitting the dataset, the process is continued
with feature extraction and image classification. The
images were evaluated in grayscale and RGB.

TABLE 2
INSTANCE DISTRIBUTION

Dataset Training  Validation  Testing
Ship 1333 1333 1334
EuroSAT 9000 9000 9000

The feaures from each image were extracted with
three methods. The first two are convolutional neural
networks (ConvNet-1 and ConvNet-2). The last is
GLCM.

The ConvNets used the training subset for train-
ing and the validation subset to validate the model.
The weights were obtained by learning only from the
datasets without any pre-training process. Models
with the lowest validation error were selected for
feature extraction purpose. No data augmentation
performed on the training and validation process. In
case of GLCM, the training, validation, and testing
subsets were directly processed because GLCM does
not require any supervised training process.

After the features had been extracted, classifiers
were trained to evaluate each feature extractor. The
features were first normalized with mean normal-
ization before applying learning algorithm as shown
in Equation [T} The normalization was performed
feature-wise. The ¢ = 1073% was added to avoid
division by zero.

x;,; — mean(x;)
Ty = stdev(z;) + € M

The training and validation subsets were joined
to train a linear support vector machine (SVM)
model. Then, the SVM model was evaluated on the
testing subset.

Several metrics were evaluated, namely acuracy,
precision, recall, and F1-score. Besides performance
evaluation, principal component analysis (PCA) one
the feature was also performed to visualize the test
results. Besides that, the principal component his-
tograms were observed.

Both ConvNet-1 and ConvNet-2 used the same
architecture. Their difference is on the final pooling
layer. The input image batch is first processed by
four convolutional blocks. After convolution, the
process continued with adaptive pooling and flat-
tening to obtain feature vector. The feature then
used to predict class label by the fully connected
layer. The architecture is illustrated in Figure [3
The networks were implemented using PyTorch deep
learning library [19].

Among the four convolutional blocks, only
Block 1 is different, as shown in Figure F_fl Block
1 begin with convolution layer followed by ReLU
activation and max-pooling layer. Block 2, 3, and 4
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Fig. 3: Convolutional Network Architecture

are identical. These blocks consists of two convo-
Iutional layers followed by ReLU activation, max-
pooling, and dropout layer. The first convolution is
a grouped convolution, which also called depthwise
convolution. The number of group is equal to the
number of input channel. The second convolution is
a 1x1 convolution which applied to the entire chan-
nel (non-grouped). The scheme utilized in Block
2, 3, and 4 is inspired by MobileNet []'lj]] The
difference among Block 2, 3, and 4 is merely the
number of convolutional filter.

The parameter used for adaptive maximum pool-
ing is the only factor that contrasts ConvNet-1 and
ConvNet-2. Adaptive pooling on ConvNet-1 reduces
the n-channel output from Block 4 into 3 x 3 x
n tensor. In contrast to the first, adaptive pooling
on ConvNet-2 is computed entirely per channel,
which resulted into 1 x 1 x n tensor. Consequently,
ConvNet-1 still retains some spatial location infor-
mation of the feature (in 3x3 size) while ConvNet-2
does not. Besides, the former has nine times more
features than the later.

Different parameter settings were applied for
Ship recognition and EuroSAT dataset. Neverthe-
less, some parameters are identical accross accross
networks in this experiment. Dropout probability is
set to 10 %. The maximum pooling size is set to 2
x 2. The detail of the parameters are shown in Table

The third feature extraction method is gray level
co-occurence matrix (GLCM). GLCM was selected
because according to previously discussed stud-
ies, texture is a reliable predictor and GLCM was
one among the presented texture extractors. GLCM
works by constructing co-occurence matrix which
values represent spatial relationship among pixel
values. Several features could be obtained from the
co-occurence matrix [20].

For this experiment, six features were selected,
namely contrast, dissimilarity, homogeneity (inverse
difference moment), energy, correlation, and ho-
mogenity (angular second moment).

GLCM has several parameters that must be set
on the algorithm. The parameter of GLCM was set
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Fig. 4: Convolutional Network Block Detail

TABLE 3
PARAMETER DETAILS

Block  Layer Parameter Ship Ddté;ergs AT
. input 3 3
1 Convolution oulzput 12 16
filter size ~ 3x3 3x3
input 12 16
Depthwise Convolution  output 72 96
group 12 16
2 filter size 3x3 3x3
input 72 96
Convolution output 24 32
filter size 1x1 1x1
input 24 32
Depthwise Convolution  output 144 192
group 24 32
3 filter size ~ 3x3 3x3
input 144 192
Convolution output 36 48
filter size 1x1 1x1
input 36 48
Depthwise Convolution  output 216 288
group 36 48
4 filter size ~ 3x3 3x3
input 216 288
Convolution output 48 64
filter size 1x1 1x1
Fully Connected (ConvNet-1) giﬁ;: " 42‘32 ig6
Fully Connected (ConvNet-2) g:ﬁ;:n 38 ?g

to be identical accross datasets. First, the image
pixels were converted from 256 levels into 4 levels
of intensity per channels. The co-occurence were
computed for pixels with distance of 1, 2, 4, and 8.
The angles which considered for co-occurence are

R g %’r and 7. The order of value pair was ignored
(resulted in symmetric matrix) and the matrix was
normalized before feature computation.

With four values of pixel distance, four values of
angles, and six types of features, there are 96 fea-
tures extracted for a single channel. For experiment
with RGB image, the number of evaluated feature
is 96 x 3 = 288. GLCM library from scikit-learn

library to implement the method [21]].
3. Result and Discussion

3.1. Results

Both Ship and EuroSAT dataset were evaluated
in grayscale and RGB. In each case, three feature ex-
traction methods were tested. Thus, there are twelve
models in total. The accuracy of each model is
summarized in Table [4l

Principal component visualization for EuroSAT
dataset is provided in Figure [5] The figure depicts
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TABLE 4
SUMMARY OF MODEL ACCURACY

Dataset
Feature from Ship EuroSAT
Gray RGB Gray RGB
ConvNet-1 0.9640  0.9708 0.7162  0.786
ConvNet-2 09190 09258 0.7124  0.7268
GLCM 0.8950 0.9250 0.5014 0.6318

16 samples per class on the first two principal com-
ponents. The principal component histograms are
shown in Figure [6]and [7) for Ship and EuroSAT RGB
dataset respectively. PCO denotes the first principal
component while PC1 the second.

Besides accuracy, other model performance indi-
cator were also evaluated, namely precision, recall,
and F1-score. Table E] shows model recall, precision,
and Fl-score on grayscale samples of Ship Dataset.
The results on RGB samples are shown in Table [¢]

TABLE 5
SHIP DATASET (GRAYSCALE)

Class  Precision Recall Fl-score
T I
ComNe2 g4 om0
oM | Gs o om

TABLE 6

SHIP DATASET (RGB)

Class  Precision Recall  Fl-score
Gt 0080
ComNe2 g5 om o8
I

Table 7] and Table [§] summarize recall, precision,
and Fl-score on grayscale and RGB version of
EuroSAT dataset respectively. On the table, C1, C2,
GM denotes ConvNet-1, ConvNet-2, and GLCM.

3.2. Discussion

3.2.1. Model Performance. The experiment results
indicate consistency accross datasets. First of all,
features extracted from the ConvNets are roughly
more predictive than GLCM as indicated by ac-
curacy, precision, recall, and Fl-score shown from
Table [] to Table [§] The only case where GLCM

performed nearly as good as convolutional neural
network is on Ship recognition dataset, where the
resulting accuracy is approximately equal to Conv-
Net2. Although the performance is similar, ConvNet-
2 utilized much smaller number of feature (48)
compared to GLCM (96).

Besides measuring performance, principal com-
ponent analysis was also performed for both vi-
sualization and observing feature value. Because
the model performance are relatively high on Ship
dataset, there is no interesting pattern to be pre-
sented and discussed. Figure [5] depicts the first two
principal components of the feature learned on Eu-
roSAT dataset. The visualization provided in the
figure clearly shows that a more separable pattern is
created by convolutional neural network compared to
GLCM. The separability is consistent with the per-
formance measure, where convolutional neural net-
work based methods performed better than GLCM.

The distribution of feature principal components
is shown by histograms on Figure [6] and [7] for
Ship and EuroSAT dataset respectively. There is an
interesting pattern visualized by the histograms. A
very high zero frequency is shown by principal com-
ponent of ConvNet features. On the other hand, there
is no clear distribution shape in GLCM. Possible
cause of the distribution shape could be the use of
ReLU activation (which set negative values to zero)
or the ability convolutional neural network to learn
features efficiently (represent the pattern with mini-
mum number of non-zero component). Nonetheless,
these possibilities needs verification by further study
with more datasets and network architectures.

3.2.2. The effect of Adaptive Pooling Output.
Compared to ConvNet-2, ConvNet-1 achieved better
performance as indicated by higher score on a lot
of cases. For example, the precision and recall of
ConvNet-1 is higher in Table [5] and [§] ConvNet-
2 only outperformed ConvNet-1 slightly at some
metrics of some classes on EuroSAT dataset, as
indicated by Table

Specifically on both grayscale and RGB Ship
Dataset, ConvNet-1 outperformed other method sig-
nificantly. In relation to spatial information, this
result is rational because the positive sample must
be a full ship object, as shown in Figure |1| with ID
131 and 889. A partial ship object, such as ID 2434,
is classified as negative sample. Therefore, spatial
information is useful to detect ship boundary.

The reason for difference in performance is dif-
ficult to be explained given the limited number of
experiment. However, by considering the model and
the case, there are several possibilities. First, spatial
resolution does matter. This implies removing spatial
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Fig. 6: Principal Component Value Histogram (Ship RGB Dataset)

information completely with global maximum pool-
ing (adaptive pooling with 1x1xn output) resulted
in less performance compared to retaining spatial
information with 3x3xn adaptive pooling. Second,
with 3x3 pooling output, ConvNet-1 has nine times
more feature than ConvNet-2. Therefore, a more
complex pattern could be learned.

3.2.3. RGB and Grayscale Performance. Models
trained on RGB version of the dataset performed

better than the grayscale counterparts. The difference
is on the gain of performance.

For example, on Ship dataset, the improve-
ment gained from training on RGB with respect to
grayscale is small for convolutional neural network
(0.964 to 0.971 for ConvNet-1 and 0.919 to 0.925 for
ConvNet-2) compared to GLCM (0.89 to 0.92). On
grayscale alone, the smallest accuracy of all methods
is 0.89. This indicates that a single channel texture
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Fig. 7: Principal Component Value Histogram (EuroSAT RGB Dataset)

TABLE 7
EUROSAT DATASET (GRAYSCALE)

Class Index Precision Recall Fl1-score

Cl C2 GM Cl C2 GM Cl C2 GM
0 0.59 058 045 043 051 041 0.5 0.54 043
1 093 094 071 098 096 069 095 0.95 0.7
2 0.54 056 031 047 031 0.09 0.5 0.4 0.14
3 092 085 0.63 092 09 076 092 0.9 0.69
4 0.74 0.72 048 0.78 0.8 069 076 076 0.57
5 0.81 0.79 0.72 086 0.9 0.88 0.84 084 0.79
6 0.58 056 036 054 054 017 056 055 023
7 0.5 052 037 044 045 0.19 047 048 0.25
8 091 087 039 093 095 082 092 0.9 0.53
9 047 047 0.19 0.71 0.6 0.09 056 053 0.12

feature already provide useful information for this
task. Because ConvNets already learned the texture
optimally, there is not much improvement by adding
color (RGB) information.

In EuroSAT dataset, the result is rather different.
ConvNet-2 gained small improvement, which likely
caused by the use of identical network architecture
for both grayscale and RGB. With identical archi-
tecture, the number of extracted feature is equal.
As shown in Table {] only a very small improve-
ment was gained (from 0.712 to 0.726) because
ConvNet-2 provides only 64 number of features for
both grayscale and RGB. ConvNet-1 improves quite
significantly (from 0.716 to 0.786) possibly because
ConvNet-1 has significantly more feature (9x64).
GLCM features also gained significant improvement
on RGB dataset likely with the same reason as
ConvNet-1. For the GLCM experiment, as feature is
extracted per channel, RGB has three times features
than grayscale.

4. Conclusion

The study presented performance evaluation of
models which learned features produced by Conv-
Nets and GLCM. In contrast to previous study, the
proposed network utilized depthwise separable con-
volution and was trained with no transfer learning.
The result is consistent with previous studies that
convolutional neural network is superior to classic
method such as GLCM in terms of most of the
metrics (accuracy, recall, precision, and F1-score)
for both of the evaluated datasets.

Two similar ConvNets are evaluated. The differ-
ence between both networks is on the final adaptive
pooling layer. The result shows that the network
with 3x3xn pooling output demonstrated better per-
formance compared to the network with 1x1xn.

Training on RGB image improved model per-
formance on most of the evaluated cases. However,
the amount of improvement is varied accross all
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TABLE 8
EUROSAT DATASET (RGB)

111

Class Index Precision Recall Fl-score

Cl Cc2 GM Cl C2 GM Cl C2 GM
0 0.6 0.62 0.55 063 055 034 061 058 042
1 095 0.94 0.7 097 094 088 096 094 0.78
2 0.6 053 034 05 029 047 055 037 0.4
3 0.9 0.82 0.82 097 095 093 093 0.88 0.87
4 0.83 0.77 0.65 079 079 073 081 0.78 0.69
5 0.89 0.83 092 091 087 0.85 0.9 0.85 0.88
6 072 0.61 054 062 061 033 067 061 041
7 064 054 049 063 057 036 064 055 042
8 092 083 081 095 09 077 094 0.89 0.79
9 0.68 055 043 082 061 055 075 058 048

models. The ConvNet with 1xIxn polling, which
consequently has the smallest number of features,
exhibited the smallest improvement on both datasets.
The improvement also depends on the complexity
of the pattern. In our experiment on Ship Dataset,
for example, ConvNets gained small improvement as
the method learned the pattern from single channel
texture optimally.
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