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Abstract 

 

Graphical User Interface (GUI) building in software development is a process which ideally 

need to go through several steps. Those steps in the process start from idea or rough sketch 

of the GUI, then refined into visual design, implemented in coding or prototype, and finally 

evaluated for its function and usability to discover design problem and to get feedback from 

users. Those steps repeated until the GUI considered satisfactory. Computer vision 

technique has been researched and developed to make the process faster and easier; for 

example generating code for implementation, or automatic GUI testing using component 

images. But among those techniques, there are still few for usability testing purpose. This 

preliminary research attempted to make the foundation for usability testing using computer 

vision technique by built dataset which has images of various GUI components, and used 

the dataset in deep learning experiment for GUI components visual recognition. The 

experiment results showed deep learning technique suitable for the intended task using 

transfer learning as preferable method, with accuracy achieved at 95% for recognition of 

two different types of component, between 80 – 94% for two similar types of component, 

and above 70% for six different types of GUI components. 
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Abstrak 

 

Pembuatan antarmuka grafis (GUI) dalam perangkat lunak adalah sebuah proses yang 

idealnya perlu melewati beberapa tahapan. Tahapan-tahapan tersebut dimulai dari ide atau 

sketsa kasar dari GUI, dikembangkan menjadi desain visual, diimplementasikan dengan 

pengodean atau purwarupa, hingga akhirnya dilakukan evaluasi fungsi dan kebergunaan 

untuk mencari tahu masalah desain dan mendapatkan umpan balik dari pengguna. Tahapan-

tahapan tersebut dilakukan berulang kali sampai GUI dianggap memuaskan. Teknik visi 

komputer telah diteliti dan dikembangkan untuk mempercepat dan mempermudah proses 

tersebut; seperti menghasilkan kode program implementasi dari desain visual, atau 

pengujian GUI secara otomatis berdasarkan citra komponen. Tapi dari teknik-teknik yang 

ada, belum banyak yang terkait uji kebergunaan. Penelitian awal ini mencoba meletakkan 

fondasi untuk melakukan uji kebergunaan menggunakan teknik penglihatan komputer 

dengan membangun dataset dari berbagai komponen-komponen GUI, dan menggunakan 

dataset tersebut untuk eksperimen pengenalan visual dari komponen GUI menggunakan 

teknik deep learning. Hasil eksperimen menunjukkan teknik deep learning cocok untuk 

tujuan yang diinginkan menggunakan metode transfer lerning, dengan tingkat akurasi yang 

dicapai 95% untuk pengenalan dua jenis komponen yang berbeda, antara 80-94% untuk dua 

jenis komponen yang serupa, dan di atas 70% untuk enam jenis komponen GUI yang 

berbeda. 

 
Kata Kunci: Antarmuka Pengguna, Uji Kebergunaan, GUI, Computer Vision, Deep Learning 
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1. Introduction  

 

In an interactive software, there are user 

interfaces (UIs) which used by user to interact 

with the system. The most common form of UI is 

graphical user interface (GUI) because of its 

visual nature which allows direct manipulation of 

the software. In many software, GUI plays 

important role to ease the use of it by utilizing 

visual design and human cognitive aspects such as 

correct use of colors, or how human comfortable 

with visual structure when reading contents. 

Development of GUI which does not pay attention 

to those two aspects, could lead to human errors, 

business loss, and even death of a patient [1]. One 

of the important factors which define whether a 

GUI could easily use by user is called usability. 

Usability is a quality attribute which measure 

how easy to learn, how efficient to use, or how 

pleasant a UI are [2]. In a UI design, one of 

principles commonly used is Eight Golden Rules 

of Interface Design [3]. One of the rule from the 

principle is “seek universal usability” where a 

system should have plasticity. In related to visual 

aspect, it means facilitating transformation of 

contents or the view medium. It is already 

implemented in a web design technique called 

responsive web design [4]. It helps a website to be 

able to be viewed from various screen devices, 

and its contents should be realigned according to 

the screen –so it improves the usability of the 

website. 

 

 
 

Figure 1. Simplified stages of GUI development, fidelity 
levels, and its deliverable 

 

With the importance of it, User-Centered 

Design (UCD) method [5] is now commonly 

employed in UI design and development which 

could ensure good usability of it and does not lead 

to fatal problem. UCD dictate itself as iterative 

design process where a UI should not be 

developed once and for all, but in a phased and 

iterative process. In related to GUI, iterative UI 

design could lead to better quality even in 

redesign process [6]. In practice, visual aspect of a 

GUI develops in stages of increasing fidelity [7]–

[9] which could be simplified and summarized as 

seen in figure 1. Iteratively, steps 2 until 4 from 

the figure above repeated until the GUI is 

considered satisfactory, which means satisfy, or at 

the minimum it should be acceptable by the users 

or business requirements, and does not have 

serious problem whether in functionality or 

usability.  

While GUI with good usability is very 

important, developing it still consume 

development resources, especially time, with all 

of those steps. Even though the ideal process of 

the development is repeating the mockup to 

evaluation stage until the result is acceptable, it is 

often neglected because of limited resources, 

management interests, and communication 

process [10]. Furthermore, integrating GUI and 

functionality process often limits how it can be 

wholly redesigned and reimplemented. 

 

2. Literature Review 

 

To address those problems, previous works 

that utilized computer vision, or A.I in general 

had done in order to sped up or to aid the process 

of GUI development. The works tried to improve 

the steps from figure 1 which either sketch, 

mockup, implementation, or evaluation. 

 

Computational Vision Approaches 

One of earlier works that utilized computer 

vision technique was done by Riedl & Amant [11] 

and Gibss et al [12] where they made system 

called SegMan and Lens respectively. SegMan 

was an attempt to make an automatic exploration 

of a GUI using pixel groups segmentation based 

on cognitive model. While Lens was an 

improvement from SegMan where it added higher 

level of user interface abstraction such as 

interfaces or units, and capable ran on multiple 

OSes. Both system was for evaluation purpose 

even though addressed different problem; where 

SegMan towards automatic exploration of UI, 

while Lens more on understanding of UI 

(structure and classification) and was part of 

bigger system called Visual Total Access System 

(VisualTAS) that aims to help blind user in using 

GUI. Another works for evaluation purposes done 

by Chang et al. [13]. They made a system for 

helping tester to automate GUI testing process 

(evaluation step). The system called Sikuli Test 

enabled testers to write script test based on images 

of GUI components, or even generate the visual 
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script test after manually run the test once. It was 

platform agnostic and could be used to test 

desktop, web, or mobile applications. 

Usability Factors Evaluation 

For usability evaluation where the UI 

evaluated as a whole, Koch & Oulasvirta [14] did 

a work for evaluating layout perception of a UI 

based on algorithmic representation of gestalt 

psychology principles –which closely tied to 

human visual perception such as proximity [15]. 

Oulasvirta et al. [16] also made an online service 

called Aalto Interface Metrics (AIM) where it 

provides 17 different metrics evaluation using a 

page of UI. Those metrics based on many 

different researches which has validated result on 

user perception and attention towards GUI (e.g 

color blindness, white space). Works by Liu et al. 

[17] similarly built a system that generates 

semantic information of UIs from mobile apps 

screenshots. From the images, view hierarchy is 

defined, then it is segmented by colors, and finally 

annotated semantically based on GUI components 

classification. The system utilized Rico dataset 

[18] and focused on method development. 

 

Deep Learning & CNN 

Some of the recent works use deep learning 

technique in their researches. Deep learning [19] 

itself is a class of machine learning technique that 

allows raw data with multiple level of abstraction 

to be processed without any feature engineering 

such as done in conventional machine learning 

technique. For example of multilevel abstractions 

is an image of object which has edges, motif of 

edges, edges’ motifs that form shapes, and shapes 

that from objects. Those layer of features can be 

learned using deep learning by the machine using 

a streamlined learning process using only the 

images as input data. In the conventional method, 

those layers need to be processed one by one 

which is very challenging. 

In its implementation, deep learning 

technique commonly use one type of deep neural 

network which proven success in many practical  

computer vision applications called convolutional 

neural networks (CNN) or ConvNets [19]. CNN 

differ itself with traditional neural networks (NN) 

by able to accept input data that come in form of 

multiple arrays; in term of images, they are mostly 

2-dimensional array of pixels with three channels 

of colors. CNN enable deep learning to accept raw 

input data and process it in its deep multilayer 

architecture which is a series of stages. Each of 

the stages composed of different types of layers. 

Type of layers in CNN has its own function. 

The commonly used layers in CNN are: 

convolutional (conv), pooling (pool), and fully 

connected (dense). In computer vision 

applications, conv layer producing feature maps 

of an image from a convolution operation. That 

feature maps goes through additional operation 

called rectified linear units (ReLu) to introduce 

non-linearity operation to conform with real world 

data which often is non-linear. Concretely, ReLu 

make the feature maps with negative values zero 

by applying max(0,x)  function [20]. The feature 

maps then goes through pool layer to downsize it 

but still retains the most important feature 

information. The last layer is dense layer where its 

act is similar to multi layer perceptron (MLP) in 

traditional NN, to calculate the classification 

based on feature maps and usually using softmax 

function. In practice, CNN architecture could 

consist of multiple sequence of conv, pool, ReLu, 

and dense layer which repeated many times before 

producing final output. 

 

Deep Learning Technique 

A system that used deep learning done by 

Fernandez & Deja [21]  where they did a work in 

usability evaluation for automatic websites 

heuristic evaluation using CNN. They built the 

dataset based on heuristic score provided by 

participants for various websites screenshots. Lu 

et al. [22] also did similar work where they collect 

dataset of software GUI and classified them into 

positive (good) or negative (bad) categories based 

on its page layout, comfort, and brightness. 

Another utilization of deep convolutional network 

done by Hassan et al. [23] where they made GUI 

components detection system from an image of UI 

mockup, so it could enhance GUI development. 

Nguyen et al. [24] also did similar work in 

utilizing deep learning where they proposed 

DeepUI system that use recurrent neural networks 

(RNN) to learn UI design pattern, and generative 

adversarial network (GAN) to generate  visual 

design from a wireframe. Both later works 

developed for mobile apps development, and 

supports step 1 until 3 of process from Fig. 1. 

In related to those steps, the mentioned Rico 

dataset done by Deka et al. [18] were aimed at 

supporting data-driven design including UI layout 

and code generation. Previously Nguyen & 

Csallner [25] made REMAUI that capable in 

generating mobile apps UI based on its mockup. 

The system processes the mockup image using 

computer vision technique, generates source code, 

and deploy it to mobile phone. Next work by 

Beltramelli [26] also support GUI generation for 

three platforms: iOS, Android, and Web-based. In 

tune with other works, pix2code system also use 

image of UI mockup for generating UI code. It 

was capable of 77% accuracy in generating GUI. 

Another work in mobile GUI development called 
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ReDraw by Moran et al [27] was built in order to 

help the process of mockup to prototype. It was 

able to reach 91% of component classification and 

generate acceptable code while maintain visual 

affinity with the mockup. Similar system also 

built by Chen et al. [28] where their work was 

able to generate GUI skeleton code from a 

mockup design. While most works in aiding GUI 

development start from mockup, there are works 

by Robinson [29] and Kim et al. [30] where they 

made system capable in generating web UI from 

sketch or wireframe stage. 

 

Uncharted Map in Usability Evaluation 

In all those mentioned works, almost half of 

them deal with first to third step in GUI 

development: sketching – mockup – 

implementation. It is understandable as those 

steps take major portion of GUI development 

time. While the rest deal with evaluation process 

of GUI, it is still divided into two problems: GUI 

Testing and Usability Testing. Research related to 

GUI testing in general proposed method for 

automatic functional testing, whereas works 

related to usability testing attempted to automate 

usability factors evaluation which usually done by 

experts. Even though many works already done 

for automatic usability evaluation, it still leaves 

rooms for exploration in that topic such as 

typography and readability, forms usability, or 

even autonomous user for usability testing. 

Hence, this paper attempted to also explore the 

possibilities in the topic. 

The most common way to evaluate usability 

automatically is by using computer vision 

technique as done by many mentioned researches. 

One of common method is by detecting GUI 

components inside a UI, classify them, and 

process them further such as segment the 

components by colors and annotate them 

semantically [17],  segment the layout based on 

gestalt perception [14], or even generate GUI 

code implementation [24] [25] [26] [27] [28] [30]. 

  

Dataset from Previous Works 

Some of those results achieved by train the 

system using UIs dataset in deep learning process. 

The dataset required in the process to teach the 

system for learning and understanding about GUI. 

That is why some of previous works was for 

specific platforms because it depends on the 

dataset. Some of dataset openly available such as 

REMAUI [25], pix2code [26], ReDraw [27], and 

Rico [18]. REMAUI, ReDraw, and Rico dataset 

mainly consist of mobile apps screenshots mined 

from official apps marketplace such as Google 

Play Store or Apple App Store; while pix2code 

has synthesized GUI screenshots for different 

kind of app platforms. In ReDraw dataset, there 

are images data of various GUI components 

which are similar to this study intended dataset –

but not satisfy all of planned classification. The 

dataset designed to have  various standard GUI 

components such as text field, button, etc. In 

ReDraw, the dataset classification is based on 

Android system UI building term where it need to 

be reclassified to conform our needs. Many of 

them are also from mobile specific UI whereas 

this research wanted to build general GUI 

componets dataset. Therefore ReDraw dataset 

does not included in our dataset 

This preliminary research  attempted to 

layout foundation for a computer vision system 

which able to evaluate usability of a UI 

automatically. From previous works’ dataset, all 

of them consists of many whole apps screenshot; 

which utilized by detecting the GUI components 

first, then followed by other step; in other words 

their dataset approaches started from bigger 

picture and processed to get detail of the UI (top-

down approach). This work tried different 

approach by building GUI components images, 

and start building system to bigger picture in 

future works (bottom-up). The dataset itself is 

used to make basic computer vision application 

which is recognition –where the machine could 

classify various GUI components correctly.  

At least there are two contributions in this 

research: 1) Initial GUI Component Images 

Dataset, and 2) Proof of Concept of GUI 

Recognition system using the dataset and deep 

learning technique. The technique [19] was 

chosen because of its capability in computer 

vision technique used in previous works. 

 

3. Methods 

 

In general, there were three steps that are 

done in this research: Dataset Building, Deep 

Learning Experiment, and Result Analysis which 

each respective step contains several processes. 

Dataset building consist of four processes: 

defining dataset sources, building from the 

sources, cleaning dataset, prepare data for 

experiment. After that, the dataset is used as input 

in the experiment in which there were four 

important phases: data preparation, data 

augmentation, setting CNN models, and training 

& validation. For the result, there were 

visualization of training and validation data from 

the experiment, and the analysis of the 

visualization for drawing conclusions. The 

diagram in figure 2 shows the steps done in this 

research. 
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Defining Dataset Sources 

The first step in this research was building 

the dataset required to be used in deep learning 

process. The purpose is to make a system that able 

to discern differences between GUI components, 

so it is important to define which platform of UI 

that become the target of the system. In the long 

run, it is expected the system could be applied to 

any platform, but in this work images of GUI 

components from some CSS framework and 

design systems that is available online was used. 

Web-based UI is chosen because in recent years it 

became more prominent in software development 

that some non-web platforms use web-based 

technology such HTML, CSS, and Javascript to 

be used in apps development (e.g. Universal 

Windows Platform/UWP,  Electron.js). 

 

 
 

Figure 2. Steps in the research method 
 

The dataset in this research taken from the 

following CSS framework: Bootstrap, 

Foundation, Pure CSS, Semantic UI, UI Kit, 

Bulma, Tailwind CSS, Materialize CSS, Picnic 

CSS, Paper CSS, Primer CSS; and for the design 

system, it was utilized the images from the 

following: Carbon Design System, United States 

Web Design System, Ant Design System, Mozilla 

Protocol, Blueprint, and Material UI.  

Those frameworks and design systems 

chosen by considering the following conditions: 

1) Popularly used such as Bootstrap, Foundation, 

and Semantic UI; 2) There is a kitchen sink page 

[31] which contains usage example of frameworks 

or design system –where most of the dataset is 

taken from; 3) Easily found in search engine 

results; 4) Recommended in many online articles 

related to web design and development. The 

conditions considered with long term purpose that 

the system should be able to recognize most of 

GUI components implemented in the wild/real 

world websites. With that purposes, if the dataset 

is taken from widely used or known GUI 

framework or design system, than the system 

should have minimal problem in recognizing them 

in the wild. 

 

Building Dataset from Sources 

The images was taken by manually 

screenshotting GUI components examples from 

the kitchen sink page from respective CSS 

frameworks and design systems, or from each 

example page of GUI component from their 

websites. Those images then classified into 

specific categories; but with a condition where not 

all of those images of GUI components evenly 

taken –especially for button component. For 

example while from Bootstrap there are 29 image 

of buttons that could be extracted, there were none 

taken from Paper CSS because of it lacks of 

button state variations such as primary, danger, or 

disabled. Therefore, buttons data was only taken 

from Bootstrap, Foundation, and Semantic UI 

where those three frameworks have similar 

variations for button. Another consideration was if 

all button data is taken from mentioned sources, 

the amount will be outnumber all other 

component as button is the most common element 

in UI. Even with limited button data, the numbers 

of the button images already bigger than the other. 

Crawling technique for automatic images 

mining was also considered. Previous works done 

the implementation by got the screenshot of web 

or apps, using object detection to segment the 

image and classify them. The technique, as 

explained before, was using top-down approach 

where they started from the whole page; 

meanwhile approach in this research was bottom-

up where the dataset building started from the 

GUI components itself, not the whole page. For 

mining them directly from a web page using 

crawler, it needs novel implementation which can 

be considered as focus in another research. 

 

Cleaning Dataset 

For classification, at first there were defined 

eight class of GUI components which are: button, 

textfield, textarea, checkbox, radio button, select, 
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breadcrumbs, and pagination. As preliminary 

research, the categories are reduced to six with 

breadcrumbs and pagination being omitted to 

make the recognition effort easier. Also, the rest of 

six are common elements of UI which usually 

used in a digital form. Similar visual nature of 

those elements is considered such as textfield with 

textarea, and checkbox with radio button. Those 

similarities were tested for recognition in the 

experiment. 

 

 
 

Figure 3. Example of button images in the dataset 
 

Dataset for Experiment 

The finished dataset contains images of 85 

buttons, 70 textfields, 24 textarea, 49 checkboxes, 

62 radio buttons, and 40 selects with example of 

the dataset can be seen at figure 3. Uneven 

numbers of images is caused by different 

characteristic of GUI components. For example 

buttons could have ten variations of states such as 

primary, secondary, success, warning, or disabled, 

while textarea usually only have three states: 

disabled, read only, and resizable. The ideal 

dataset should have even number across 

categories, and the number of data in a category 

should have sufficient amount to avoid under 

fitting problem in learning process. Images of 

GUI components are inserted into their respective 

classification folder, and they are inside a folder 

called gui-core-alpha where GUI CORE is the 

name of the dataset (from GUI COmponents 

REcognition), and alpha is the version of the 

dataset.  The dataset is openly available online at 

https://github.com/agylardi/guicore-alpha.  

Because of limited resources, the experiment 

still used the limited (alpha version) dataset to 

answer the main question in this research: whether 

deep learning technique can be used to recognize 

GUI components or not. The lack of data was 

tackled using data augmentation. 

 

Data Input Preparations 

For setting up the experiment, the dataset 

was splitted into two parts: 70% for training 

process, and 30% for validation. There were no 

test data because of limited numbers of the dataset 

itself. The dataset divided into training and 

validation folders, where each of them contains 

six categories of data. Figure 4 shows the 

structure of the dataset. For the deep learning 

experiment, it is implemented using Google Colab  

tools (Colab) which has cloud GPU that is 

available to use for deep learning process. The 

dataset uploaded to Google Drive (Drive) so it can 

be used through import and mount command in 

Colab. 

 
 

Figure 4. Structure of the dataset in the experiment 
 

Colab is chosen because of limited hardware 

resources where the technique needs capable GPU 

for processing the calculation –usually from 

NVIDIA vendor which leads in deep learning 

infrastructure product. Colab allows access to 

NVIDIA Tesla K80 GPU by cloud connection but 

limited to 12 hours per day. For this preliminary 

research, that is more than sufficient. In 

implementation using Colab, jupyter notebook file 

which allows real-time python code processing 

was initiated.  

For implementation, Keras framework and 

Tensorflow Library was chosen as it is suitable to 

be used in Colab environment. First process was 

importing data from Drive, and checked if the 

data loaded correctly by displaying some of the 

data using matplotlib library. Next step was 

setting basic parameter of the input with height 

and width 224 for resizing all of the input data to 

224 x 224 px. The number was chosen to make 

input in chosen approaches has the same size. 

 

Data Augmentation 

Because of the lack of data, in this 

experiment the dataset was augmented using data 

augmentation process. This was done before the 

data processed by the models. In this research, 

training data was augmented with rescale 1./255 

value for normalizing the input data. Training data 

also applied shear, zoom, and horizontal flip 

https://github.com/agylardi/guicore-alpha
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transformation for the augmentation. For 

validation data, it was only applied with rescale 

for normalization purpose.  

 

 

Setting CNN Models 

After the data is ready, next is preparing the 

models. In this study, there were two approaches 

used: custom CNN, and transfer learning. For 

custom CNN it was a custom made architecture 

that defined before ran the model. The 

architecture can be seen in the following table 1, 

with the initial input was set at 224 x 224 x 3, and 

stride for every Conv layer is 3. 

 
TABLE 1 

CUSTOM CNN ARCHITECTURE  

Layer Type Output Shape 

Conv + ReLu 224 x 224 x 32 

Max Pool (stride 2) 112 x 112 x 32 

Conv + ReLu 112 x 112 x 64 

Max Pool (stride 2) 56 x 56 x 64 

Conv + ReLu 56 x 56 x 128 

Max Pool (stride 2) 28 x 28 x 128 

Conv + ReLu 28 x 28 x 256 

Max Pool (stride 2) 14 x 14 x 256 

Dropout (rate 0.5) 14 x 14 x 256 

Flatten 50176 

Dense + ReLu 256 

Dense (Softmax) Classifier 

 

For this approach, loss function was set to 

sparse categorical cross entropy, implemented in 

mentioned library with Adam optimizer, to make 

sure the classification output is exactly for each 

GUI component. 

In second approach, transfer learning method 

was used. The method use existing trained model 

of CNN and improve upon it by trained it again 

using our dataset so it can do the proposed task. In 

this case, MobileNet [33] was used because its 

efficiency in deep learning implementation while 

still maintains acceptable accuracy performance. 

Architecture of MobileNet itself utilize what was 

called Depthwise Separable Convolution layer 

(Conv dw) which differ from normal convolution 

layer and helped in achieving efficiency. 

MobileNet architecture can be seen in table 2 with 

initial input, loss function and its optimizer were 

the same as custom CNN settings.  

Both using batch valued at 32 implemented 

in Colab, and the experiment was conducted 

based on following conditions: 1) classification of 

two types of GUI; 2) classification of two similar 

type of GUI (textfield and textarea); 3) 

classification of six types of GUI. 

 

 
 

TABLE 2 

MOBILENET CNN ARCHITECTURE 

Layer Type Output Shape 

Conv (stride 2) 112 x 112 x 32 

Conv dw (stride 1) 112 x 112 x 32 

Conv (stride 1) 112 x 112 x 64 

Conv dw (stride 2) 56 x 56 x 64 

Conv (stride 1) 56 x 56 x 128 

Conv dw (stride 1) 56 x 56 x 128 

Conv (stride 1) 56 x 56 x 128 

Conv dw (stride 2) 28 x 28 x 128 

Conv (stride 1) 28 x 28 x 256 

Conv dw (stride 1) 28 x 28 x 256 

Conv (stride 1) 28 x 28 x 256 

Conv dw (stride 2) 14 x 14 x 256 

Conv (stride 1) 14 x 14 x 512 

5 x Conv dw (stride 1) 

Conv (stride 1) 
14 x 14 x 512 

Conv dw (stride 2) 7 x 7 x 512 

Conv (stride 1) 7 x 7 x 1024 

Conv dw 2 (stride 2) 7 x 7 x 1024 

Conv (stride 1) 7 x 7 x 1024 

Avg. Pool (7 x 7) 1 x 1 x 1024 

Dense 1 x 1 x 1000 

Dense (Softmax) Classifier 

 

4. Results and Analysis 

 

Classification of Two Types of GUI 

In this experiment scenario, only button and 

textfield categories were chosen, and epoch set at 

50. Figure 5 at the right side shows the achieved 

accuracy in training and validation process with 

red line indicates training accuracy, and green line 

indicates validation accuracy; the left side shows 

the value from loss function.  

It can be seen that the process experience 

under fitting because of insufficient dataset with 

accuracy of validation is below training;  but with 

the accuracy of recognition (validation) could 

reach between 80 – 90%, the machine already 

capable discerning between button and textfield 

components.  

For transfer learning approach, the result can 

be seen at Figure 6 below. It can be seen the result 

still under fitting but with boost on faster accuracy 

achievement. While custom CNN achieved 

accuracy of 90% above epoch 40, transfer 
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learning approach could reach it in 10 epochs. 

This shows how transfer learning could help 

greatly in recognition process of GUI 

components. 

 
 

Figure 5. Result of custom CNN for two types of GUI 
 

 
 

Figure 6. Result of MobileNet for two types of GUI 
 

Classification of Two Similar Types of GUI 

For this scenario, only textfield and textarea 

categories were used with the epoch set at 100. 

Figure 7 shows the result. While it seems did not 

experience under fitting, the accuracy of training 

and validation was both very fluctuated and could 

not stable until 100 epochs. It can be inferred that 

similar visual characteristic could leads to false 

classification of GUI components; because one 

component type can be identified as another type 

which showed in the fluctuation of accuracy. 

By using transfer learning approach, the 

result was also similar as seen on Figure 8. Even 

though it was able to reach higher accuracy, but 

the fluctuation of accuracy is still happened 

between 80% and around 94% which was very 

wide. Still, transfer learning still considered better 

for the result. 

 

Classification of Six Types of GUI 

In this scenario, all of six mentioned 

categories of GUI components were included. 

With more categories and files to be processed, 

the result of custom CNN approach can be seen in 

Figure 8. It can be seen the validation accuracy 

suffered heavily and could not even reach stable 

70% of accuracy while training accuracy still 

could reach 90% -an under fitting. It is expected 

as more categories need sufficient number of data, 

and current one  is far from ideal. At the least, the 

classification of six types of GUI components is 

still shown possible to do using this technique. 

 

 
 

Figure 7. Result of custom CNN for two similar types 
 

 
 

Figure 8. Result of MobileNet for two similar types 

 

For transfer learning approach, recognition 

result of six types of GUI components can be seen 

in Figure 9. Using this approach gave better result 

with validation accuracy is higher (~70%) and 

more stable than custom CNN, but still suffered 

from under fitting. Once again, it is expected with 

the current dataset 
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5. Conclusion 

 

This study proposes a foundation for 

building computer vision system using deep 

learning technique, with the final purpose for 

usabilty evaluation of UIs. This study contributes 

by 1) built GUI component images dataset, and 2) 

did deep learning experiment to validate whether 

it is suitable for basic recognition task of GUI 

components. From the results, it can be concluded 

that deep learning technique is suitable for visual 

recognition task of different types of GUI 

components. 

 

 
 

Figure 9. Result of custom CNN for six types of GUI 

 

 
 

Figure 10. Result of MobileNet for six types of GUI 
. 

For future work it is suggested to build the 

dataset further so it is sufficient for the intended 

task, and to avoid under fitting in training process. 

For the method, it is preferable to use transfer 

learning approach in building computer vision 

application as it eliminates the trial and error of 

setting CNN architecture of the model –It is also 

could reach better result in shorter time. If 

possible, optimizations of parameters also done to 

explore which setting are best for the task. Other 

things that could be considered is availability of 

resources in doing deep learning technique as it 

requires expensive equipment if original 

architecture of CNN wanted to be freely explored. 
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