
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)

13/1 (2020), 35-45. DOI: http://dx:doi:org/10:21609/jiki:v13i1:845

35

VISUAL RECOGNITION OF GRAPHICAL USER INTERFACE COMPONENTS

USING DEEP LEARNING TECHNIQUE

Agyl A. Rahmadi* and Aris Sudaryanto

Informatics Department, Faculty of Engineering, Universitas 17 Agustus 1945 Surabaya,

Jl. Semolowaru No. 45, Surabaya, 60118, Indonesia

*E-mail: agyl.rahmadi@untag-sby.ac.id

Abstract

Graphical User Interface (GUI) building in software development is a process which ideally

need to go through several steps. Those steps in the process start from idea or rough sketch

of the GUI, then refined into visual design, implemented in coding or prototype, and finally

evaluated for its function and usability to discover design problem and to get feedback from

users. Those steps repeated until the GUI considered satisfactory. Computer vision

technique has been researched and developed to make the process faster and easier; for

example generating code for implementation, or automatic GUI testing using component

images. But among those techniques, there are still few for usability testing purpose. This

preliminary research attempted to make the foundation for usability testing using computer

vision technique by built dataset which has images of various GUI components, and used

the dataset in deep learning experiment for GUI components visual recognition. The

experiment results showed deep learning technique suitable for the intended task using

transfer learning as preferable method, with accuracy achieved at 95% for recognition of

two different types of component, between 80 – 94% for two similar types of component,

and above 70% for six different types of GUI components.

Keywords: User Interface, Usability Testing, GUI, Computer Vision, Deep Learning

Abstrak

Pembuatan antarmuka grafis (GUI) dalam perangkat lunak adalah sebuah proses yang

idealnya perlu melewati beberapa tahapan. Tahapan-tahapan tersebut dimulai dari ide atau

sketsa kasar dari GUI, dikembangkan menjadi desain visual, diimplementasikan dengan

pengodean atau purwarupa, hingga akhirnya dilakukan evaluasi fungsi dan kebergunaan

untuk mencari tahu masalah desain dan mendapatkan umpan balik dari pengguna. Tahapan-

tahapan tersebut dilakukan berulang kali sampai GUI dianggap memuaskan. Teknik visi

komputer telah diteliti dan dikembangkan untuk mempercepat dan mempermudah proses

tersebut; seperti menghasilkan kode program implementasi dari desain visual, atau

pengujian GUI secara otomatis berdasarkan citra komponen. Tapi dari teknik-teknik yang

ada, belum banyak yang terkait uji kebergunaan. Penelitian awal ini mencoba meletakkan

fondasi untuk melakukan uji kebergunaan menggunakan teknik penglihatan komputer

dengan membangun dataset dari berbagai komponen-komponen GUI, dan menggunakan

dataset tersebut untuk eksperimen pengenalan visual dari komponen GUI menggunakan

teknik deep learning. Hasil eksperimen menunjukkan teknik deep learning cocok untuk

tujuan yang diinginkan menggunakan metode transfer lerning, dengan tingkat akurasi yang

dicapai 95% untuk pengenalan dua jenis komponen yang berbeda, antara 80-94% untuk dua

jenis komponen yang serupa, dan di atas 70% untuk enam jenis komponen GUI yang

berbeda.

Kata Kunci: Antarmuka Pengguna, Uji Kebergunaan, GUI, Computer Vision, Deep Learning

http://dx:doi:org/10:21609/jiki:v13i1:845
mailto:agyl.rahmadi@untag-sby.ac.id

36 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

 volume 13, issue 1, February 2020

1. Introduction

In an interactive software, there are user

interfaces (UIs) which used by user to interact

with the system. The most common form of UI is

graphical user interface (GUI) because of its

visual nature which allows direct manipulation of

the software. In many software, GUI plays

important role to ease the use of it by utilizing

visual design and human cognitive aspects such as

correct use of colors, or how human comfortable

with visual structure when reading contents.

Development of GUI which does not pay attention

to those two aspects, could lead to human errors,

business loss, and even death of a patient [1]. One

of the important factors which define whether a

GUI could easily use by user is called usability.

Usability is a quality attribute which measure

how easy to learn, how efficient to use, or how

pleasant a UI are [2]. In a UI design, one of

principles commonly used is Eight Golden Rules

of Interface Design [3]. One of the rule from the

principle is “seek universal usability” where a

system should have plasticity. In related to visual

aspect, it means facilitating transformation of

contents or the view medium. It is already

implemented in a web design technique called

responsive web design [4]. It helps a website to be

able to be viewed from various screen devices,

and its contents should be realigned according to

the screen –so it improves the usability of the

website.

Figure 1. Simplified stages of GUI development, fidelity
levels, and its deliverable

With the importance of it, User-Centered

Design (UCD) method [5] is now commonly

employed in UI design and development which

could ensure good usability of it and does not lead

to fatal problem. UCD dictate itself as iterative

design process where a UI should not be

developed once and for all, but in a phased and

iterative process. In related to GUI, iterative UI

design could lead to better quality even in

redesign process [6]. In practice, visual aspect of a

GUI develops in stages of increasing fidelity [7]–

[9] which could be simplified and summarized as

seen in figure 1. Iteratively, steps 2 until 4 from

the figure above repeated until the GUI is

considered satisfactory, which means satisfy, or at

the minimum it should be acceptable by the users

or business requirements, and does not have

serious problem whether in functionality or

usability.

While GUI with good usability is very

important, developing it still consume

development resources, especially time, with all

of those steps. Even though the ideal process of

the development is repeating the mockup to

evaluation stage until the result is acceptable, it is

often neglected because of limited resources,

management interests, and communication

process [10]. Furthermore, integrating GUI and

functionality process often limits how it can be

wholly redesigned and reimplemented.

2. Literature Review

To address those problems, previous works

that utilized computer vision, or A.I in general

had done in order to sped up or to aid the process

of GUI development. The works tried to improve

the steps from figure 1 which either sketch,

mockup, implementation, or evaluation.

Computational Vision Approaches

One of earlier works that utilized computer

vision technique was done by Riedl & Amant [11]

and Gibss et al [12] where they made system

called SegMan and Lens respectively. SegMan

was an attempt to make an automatic exploration

of a GUI using pixel groups segmentation based

on cognitive model. While Lens was an

improvement from SegMan where it added higher

level of user interface abstraction such as

interfaces or units, and capable ran on multiple

OSes. Both system was for evaluation purpose

even though addressed different problem; where

SegMan towards automatic exploration of UI,

while Lens more on understanding of UI

(structure and classification) and was part of

bigger system called Visual Total Access System

(VisualTAS) that aims to help blind user in using

GUI. Another works for evaluation purposes done

by Chang et al. [13]. They made a system for

helping tester to automate GUI testing process

(evaluation step). The system called Sikuli Test

enabled testers to write script test based on images

of GUI components, or even generate the visual

A.A. Rahmadi, et. al., Visual Recognition of GUI Components using Deep Learning Technique 37

script test after manually run the test once. It was

platform agnostic and could be used to test

desktop, web, or mobile applications.

Usability Factors Evaluation

For usability evaluation where the UI

evaluated as a whole, Koch & Oulasvirta [14] did

a work for evaluating layout perception of a UI

based on algorithmic representation of gestalt

psychology principles –which closely tied to

human visual perception such as proximity [15].

Oulasvirta et al. [16] also made an online service

called Aalto Interface Metrics (AIM) where it

provides 17 different metrics evaluation using a

page of UI. Those metrics based on many

different researches which has validated result on

user perception and attention towards GUI (e.g

color blindness, white space). Works by Liu et al.

[17] similarly built a system that generates

semantic information of UIs from mobile apps

screenshots. From the images, view hierarchy is

defined, then it is segmented by colors, and finally

annotated semantically based on GUI components

classification. The system utilized Rico dataset

[18] and focused on method development.

Deep Learning & CNN

Some of the recent works use deep learning

technique in their researches. Deep learning [19]

itself is a class of machine learning technique that

allows raw data with multiple level of abstraction

to be processed without any feature engineering

such as done in conventional machine learning

technique. For example of multilevel abstractions

is an image of object which has edges, motif of

edges, edges’ motifs that form shapes, and shapes

that from objects. Those layer of features can be

learned using deep learning by the machine using

a streamlined learning process using only the

images as input data. In the conventional method,

those layers need to be processed one by one

which is very challenging.

In its implementation, deep learning

technique commonly use one type of deep neural

network which proven success in many practical

computer vision applications called convolutional

neural networks (CNN) or ConvNets [19]. CNN

differ itself with traditional neural networks (NN)

by able to accept input data that come in form of

multiple arrays; in term of images, they are mostly

2-dimensional array of pixels with three channels

of colors. CNN enable deep learning to accept raw

input data and process it in its deep multilayer

architecture which is a series of stages. Each of

the stages composed of different types of layers.

Type of layers in CNN has its own function.

The commonly used layers in CNN are:

convolutional (conv), pooling (pool), and fully

connected (dense). In computer vision

applications, conv layer producing feature maps

of an image from a convolution operation. That

feature maps goes through additional operation

called rectified linear units (ReLu) to introduce

non-linearity operation to conform with real world

data which often is non-linear. Concretely, ReLu

make the feature maps with negative values zero

by applying max(0,x) function [20]. The feature

maps then goes through pool layer to downsize it

but still retains the most important feature

information. The last layer is dense layer where its

act is similar to multi layer perceptron (MLP) in

traditional NN, to calculate the classification

based on feature maps and usually using softmax

function. In practice, CNN architecture could

consist of multiple sequence of conv, pool, ReLu,

and dense layer which repeated many times before

producing final output.

Deep Learning Technique

A system that used deep learning done by

Fernandez & Deja [21] where they did a work in

usability evaluation for automatic websites

heuristic evaluation using CNN. They built the

dataset based on heuristic score provided by

participants for various websites screenshots. Lu

et al. [22] also did similar work where they collect

dataset of software GUI and classified them into

positive (good) or negative (bad) categories based

on its page layout, comfort, and brightness.

Another utilization of deep convolutional network

done by Hassan et al. [23] where they made GUI

components detection system from an image of UI

mockup, so it could enhance GUI development.

Nguyen et al. [24] also did similar work in

utilizing deep learning where they proposed

DeepUI system that use recurrent neural networks

(RNN) to learn UI design pattern, and generative

adversarial network (GAN) to generate visual

design from a wireframe. Both later works

developed for mobile apps development, and

supports step 1 until 3 of process from Fig. 1.

In related to those steps, the mentioned Rico

dataset done by Deka et al. [18] were aimed at

supporting data-driven design including UI layout

and code generation. Previously Nguyen &

Csallner [25] made REMAUI that capable in

generating mobile apps UI based on its mockup.

The system processes the mockup image using

computer vision technique, generates source code,

and deploy it to mobile phone. Next work by

Beltramelli [26] also support GUI generation for

three platforms: iOS, Android, and Web-based. In

tune with other works, pix2code system also use

image of UI mockup for generating UI code. It

was capable of 77% accuracy in generating GUI.

Another work in mobile GUI development called

38 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

 volume 13, issue 1, February 2020

ReDraw by Moran et al [27] was built in order to

help the process of mockup to prototype. It was

able to reach 91% of component classification and

generate acceptable code while maintain visual

affinity with the mockup. Similar system also

built by Chen et al. [28] where their work was

able to generate GUI skeleton code from a

mockup design. While most works in aiding GUI

development start from mockup, there are works

by Robinson [29] and Kim et al. [30] where they

made system capable in generating web UI from

sketch or wireframe stage.

Uncharted Map in Usability Evaluation

In all those mentioned works, almost half of

them deal with first to third step in GUI

development: sketching – mockup –

implementation. It is understandable as those

steps take major portion of GUI development

time. While the rest deal with evaluation process

of GUI, it is still divided into two problems: GUI

Testing and Usability Testing. Research related to

GUI testing in general proposed method for

automatic functional testing, whereas works

related to usability testing attempted to automate

usability factors evaluation which usually done by

experts. Even though many works already done

for automatic usability evaluation, it still leaves

rooms for exploration in that topic such as

typography and readability, forms usability, or

even autonomous user for usability testing.

Hence, this paper attempted to also explore the

possibilities in the topic.

The most common way to evaluate usability

automatically is by using computer vision

technique as done by many mentioned researches.

One of common method is by detecting GUI

components inside a UI, classify them, and

process them further such as segment the

components by colors and annotate them

semantically [17], segment the layout based on

gestalt perception [14], or even generate GUI

code implementation [24] [25] [26] [27] [28] [30].

Dataset from Previous Works

Some of those results achieved by train the

system using UIs dataset in deep learning process.

The dataset required in the process to teach the

system for learning and understanding about GUI.

That is why some of previous works was for

specific platforms because it depends on the

dataset. Some of dataset openly available such as

REMAUI [25], pix2code [26], ReDraw [27], and

Rico [18]. REMAUI, ReDraw, and Rico dataset

mainly consist of mobile apps screenshots mined

from official apps marketplace such as Google

Play Store or Apple App Store; while pix2code

has synthesized GUI screenshots for different

kind of app platforms. In ReDraw dataset, there

are images data of various GUI components

which are similar to this study intended dataset –

but not satisfy all of planned classification. The

dataset designed to have various standard GUI

components such as text field, button, etc. In

ReDraw, the dataset classification is based on

Android system UI building term where it need to

be reclassified to conform our needs. Many of

them are also from mobile specific UI whereas

this research wanted to build general GUI

componets dataset. Therefore ReDraw dataset

does not included in our dataset

This preliminary research attempted to

layout foundation for a computer vision system

which able to evaluate usability of a UI

automatically. From previous works’ dataset, all

of them consists of many whole apps screenshot;

which utilized by detecting the GUI components

first, then followed by other step; in other words

their dataset approaches started from bigger

picture and processed to get detail of the UI (top-

down approach). This work tried different

approach by building GUI components images,

and start building system to bigger picture in

future works (bottom-up). The dataset itself is

used to make basic computer vision application

which is recognition –where the machine could

classify various GUI components correctly.

At least there are two contributions in this

research: 1) Initial GUI Component Images

Dataset, and 2) Proof of Concept of GUI

Recognition system using the dataset and deep

learning technique. The technique [19] was

chosen because of its capability in computer

vision technique used in previous works.

3. Methods

In general, there were three steps that are

done in this research: Dataset Building, Deep

Learning Experiment, and Result Analysis which

each respective step contains several processes.

Dataset building consist of four processes:

defining dataset sources, building from the

sources, cleaning dataset, prepare data for

experiment. After that, the dataset is used as input

in the experiment in which there were four

important phases: data preparation, data

augmentation, setting CNN models, and training

& validation. For the result, there were

visualization of training and validation data from

the experiment, and the analysis of the

visualization for drawing conclusions. The

diagram in figure 2 shows the steps done in this

research.

A.A. Rahmadi, et. al., Visual Recognition of GUI Components using Deep Learning Technique 39

Defining Dataset Sources

The first step in this research was building

the dataset required to be used in deep learning

process. The purpose is to make a system that able

to discern differences between GUI components,

so it is important to define which platform of UI

that become the target of the system. In the long

run, it is expected the system could be applied to

any platform, but in this work images of GUI

components from some CSS framework and

design systems that is available online was used.

Web-based UI is chosen because in recent years it

became more prominent in software development

that some non-web platforms use web-based

technology such HTML, CSS, and Javascript to

be used in apps development (e.g. Universal

Windows Platform/UWP, Electron.js).

Figure 2. Steps in the research method

The dataset in this research taken from the

following CSS framework: Bootstrap,

Foundation, Pure CSS, Semantic UI, UI Kit,

Bulma, Tailwind CSS, Materialize CSS, Picnic

CSS, Paper CSS, Primer CSS; and for the design

system, it was utilized the images from the

following: Carbon Design System, United States

Web Design System, Ant Design System, Mozilla

Protocol, Blueprint, and Material UI.

Those frameworks and design systems

chosen by considering the following conditions:

1) Popularly used such as Bootstrap, Foundation,

and Semantic UI; 2) There is a kitchen sink page

[31] which contains usage example of frameworks

or design system –where most of the dataset is

taken from; 3) Easily found in search engine

results; 4) Recommended in many online articles

related to web design and development. The

conditions considered with long term purpose that

the system should be able to recognize most of

GUI components implemented in the wild/real

world websites. With that purposes, if the dataset

is taken from widely used or known GUI

framework or design system, than the system

should have minimal problem in recognizing them

in the wild.

Building Dataset from Sources

The images was taken by manually

screenshotting GUI components examples from

the kitchen sink page from respective CSS

frameworks and design systems, or from each

example page of GUI component from their

websites. Those images then classified into

specific categories; but with a condition where not

all of those images of GUI components evenly

taken –especially for button component. For

example while from Bootstrap there are 29 image

of buttons that could be extracted, there were none

taken from Paper CSS because of it lacks of

button state variations such as primary, danger, or

disabled. Therefore, buttons data was only taken

from Bootstrap, Foundation, and Semantic UI

where those three frameworks have similar

variations for button. Another consideration was if

all button data is taken from mentioned sources,

the amount will be outnumber all other

component as button is the most common element

in UI. Even with limited button data, the numbers

of the button images already bigger than the other.

Crawling technique for automatic images

mining was also considered. Previous works done

the implementation by got the screenshot of web

or apps, using object detection to segment the

image and classify them. The technique, as

explained before, was using top-down approach

where they started from the whole page;

meanwhile approach in this research was bottom-

up where the dataset building started from the

GUI components itself, not the whole page. For

mining them directly from a web page using

crawler, it needs novel implementation which can

be considered as focus in another research.

Cleaning Dataset

For classification, at first there were defined

eight class of GUI components which are: button,

textfield, textarea, checkbox, radio button, select,

40 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

 volume 13, issue 1, February 2020

breadcrumbs, and pagination. As preliminary

research, the categories are reduced to six with

breadcrumbs and pagination being omitted to

make the recognition effort easier. Also, the rest of

six are common elements of UI which usually

used in a digital form. Similar visual nature of

those elements is considered such as textfield with

textarea, and checkbox with radio button. Those

similarities were tested for recognition in the

experiment.

Figure 3. Example of button images in the dataset

Dataset for Experiment

The finished dataset contains images of 85

buttons, 70 textfields, 24 textarea, 49 checkboxes,

62 radio buttons, and 40 selects with example of

the dataset can be seen at figure 3. Uneven

numbers of images is caused by different

characteristic of GUI components. For example

buttons could have ten variations of states such as

primary, secondary, success, warning, or disabled,

while textarea usually only have three states:

disabled, read only, and resizable. The ideal

dataset should have even number across

categories, and the number of data in a category

should have sufficient amount to avoid under

fitting problem in learning process. Images of

GUI components are inserted into their respective

classification folder, and they are inside a folder

called gui-core-alpha where GUI CORE is the

name of the dataset (from GUI COmponents

REcognition), and alpha is the version of the

dataset. The dataset is openly available online at

https://github.com/agylardi/guicore-alpha.

Because of limited resources, the experiment

still used the limited (alpha version) dataset to

answer the main question in this research: whether

deep learning technique can be used to recognize

GUI components or not. The lack of data was

tackled using data augmentation.

Data Input Preparations

For setting up the experiment, the dataset

was splitted into two parts: 70% for training

process, and 30% for validation. There were no

test data because of limited numbers of the dataset

itself. The dataset divided into training and

validation folders, where each of them contains

six categories of data. Figure 4 shows the

structure of the dataset. For the deep learning

experiment, it is implemented using Google Colab

tools (Colab) which has cloud GPU that is

available to use for deep learning process. The

dataset uploaded to Google Drive (Drive) so it can

be used through import and mount command in

Colab.

Figure 4. Structure of the dataset in the experiment

Colab is chosen because of limited hardware

resources where the technique needs capable GPU

for processing the calculation –usually from

NVIDIA vendor which leads in deep learning

infrastructure product. Colab allows access to

NVIDIA Tesla K80 GPU by cloud connection but

limited to 12 hours per day. For this preliminary

research, that is more than sufficient. In

implementation using Colab, jupyter notebook file

which allows real-time python code processing

was initiated.

For implementation, Keras framework and

Tensorflow Library was chosen as it is suitable to

be used in Colab environment. First process was

importing data from Drive, and checked if the

data loaded correctly by displaying some of the

data using matplotlib library. Next step was

setting basic parameter of the input with height

and width 224 for resizing all of the input data to

224 x 224 px. The number was chosen to make

input in chosen approaches has the same size.

Data Augmentation

Because of the lack of data, in this

experiment the dataset was augmented using data

augmentation process. This was done before the

data processed by the models. In this research,

training data was augmented with rescale 1./255

value for normalizing the input data. Training data

also applied shear, zoom, and horizontal flip

https://github.com/agylardi/guicore-alpha

A.A. Rahmadi, et. al., Visual Recognition of GUI Components using Deep Learning Technique 41

transformation for the augmentation. For

validation data, it was only applied with rescale

for normalization purpose.

Setting CNN Models

After the data is ready, next is preparing the

models. In this study, there were two approaches

used: custom CNN, and transfer learning. For

custom CNN it was a custom made architecture

that defined before ran the model. The

architecture can be seen in the following table 1,

with the initial input was set at 224 x 224 x 3, and

stride for every Conv layer is 3.

TABLE 1

CUSTOM CNN ARCHITECTURE

Layer Type Output Shape

Conv + ReLu 224 x 224 x 32

Max Pool (stride 2) 112 x 112 x 32

Conv + ReLu 112 x 112 x 64

Max Pool (stride 2) 56 x 56 x 64

Conv + ReLu 56 x 56 x 128

Max Pool (stride 2) 28 x 28 x 128

Conv + ReLu 28 x 28 x 256

Max Pool (stride 2) 14 x 14 x 256

Dropout (rate 0.5) 14 x 14 x 256

Flatten 50176

Dense + ReLu 256

Dense (Softmax) Classifier

For this approach, loss function was set to

sparse categorical cross entropy, implemented in

mentioned library with Adam optimizer, to make

sure the classification output is exactly for each

GUI component.

In second approach, transfer learning method

was used. The method use existing trained model

of CNN and improve upon it by trained it again

using our dataset so it can do the proposed task. In

this case, MobileNet [33] was used because its

efficiency in deep learning implementation while

still maintains acceptable accuracy performance.

Architecture of MobileNet itself utilize what was

called Depthwise Separable Convolution layer

(Conv dw) which differ from normal convolution

layer and helped in achieving efficiency.

MobileNet architecture can be seen in table 2 with

initial input, loss function and its optimizer were

the same as custom CNN settings.

Both using batch valued at 32 implemented

in Colab, and the experiment was conducted

based on following conditions: 1) classification of

two types of GUI; 2) classification of two similar

type of GUI (textfield and textarea); 3)

classification of six types of GUI.

TABLE 2

MOBILENET CNN ARCHITECTURE

Layer Type Output Shape

Conv (stride 2) 112 x 112 x 32

Conv dw (stride 1) 112 x 112 x 32

Conv (stride 1) 112 x 112 x 64

Conv dw (stride 2) 56 x 56 x 64

Conv (stride 1) 56 x 56 x 128

Conv dw (stride 1) 56 x 56 x 128

Conv (stride 1) 56 x 56 x 128

Conv dw (stride 2) 28 x 28 x 128

Conv (stride 1) 28 x 28 x 256

Conv dw (stride 1) 28 x 28 x 256

Conv (stride 1) 28 x 28 x 256

Conv dw (stride 2) 14 x 14 x 256

Conv (stride 1) 14 x 14 x 512

5 x Conv dw (stride 1)

Conv (stride 1)
14 x 14 x 512

Conv dw (stride 2) 7 x 7 x 512

Conv (stride 1) 7 x 7 x 1024

Conv dw 2 (stride 2) 7 x 7 x 1024

Conv (stride 1) 7 x 7 x 1024

Avg. Pool (7 x 7) 1 x 1 x 1024

Dense 1 x 1 x 1000

Dense (Softmax) Classifier

4. Results and Analysis

Classification of Two Types of GUI

In this experiment scenario, only button and

textfield categories were chosen, and epoch set at

50. Figure 5 at the right side shows the achieved

accuracy in training and validation process with

red line indicates training accuracy, and green line

indicates validation accuracy; the left side shows

the value from loss function.

It can be seen that the process experience

under fitting because of insufficient dataset with

accuracy of validation is below training; but with

the accuracy of recognition (validation) could

reach between 80 – 90%, the machine already

capable discerning between button and textfield

components.

For transfer learning approach, the result can

be seen at Figure 6 below. It can be seen the result

still under fitting but with boost on faster accuracy

achievement. While custom CNN achieved

accuracy of 90% above epoch 40, transfer

42 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

 volume 13, issue 1, February 2020

learning approach could reach it in 10 epochs.

This shows how transfer learning could help

greatly in recognition process of GUI

components.

Figure 5. Result of custom CNN for two types of GUI

Figure 6. Result of MobileNet for two types of GUI

Classification of Two Similar Types of GUI

For this scenario, only textfield and textarea

categories were used with the epoch set at 100.

Figure 7 shows the result. While it seems did not

experience under fitting, the accuracy of training

and validation was both very fluctuated and could

not stable until 100 epochs. It can be inferred that

similar visual characteristic could leads to false

classification of GUI components; because one

component type can be identified as another type

which showed in the fluctuation of accuracy.

By using transfer learning approach, the

result was also similar as seen on Figure 8. Even

though it was able to reach higher accuracy, but

the fluctuation of accuracy is still happened

between 80% and around 94% which was very

wide. Still, transfer learning still considered better

for the result.

Classification of Six Types of GUI

In this scenario, all of six mentioned

categories of GUI components were included.

With more categories and files to be processed,

the result of custom CNN approach can be seen in

Figure 8. It can be seen the validation accuracy

suffered heavily and could not even reach stable

70% of accuracy while training accuracy still

could reach 90% -an under fitting. It is expected

as more categories need sufficient number of data,

and current one is far from ideal. At the least, the

classification of six types of GUI components is

still shown possible to do using this technique.

Figure 7. Result of custom CNN for two similar types

Figure 8. Result of MobileNet for two similar types

For transfer learning approach, recognition

result of six types of GUI components can be seen

in Figure 9. Using this approach gave better result

with validation accuracy is higher (~70%) and

more stable than custom CNN, but still suffered

from under fitting. Once again, it is expected with

the current dataset

A.A. Rahmadi, et. al., Visual Recognition of GUI Components using Deep Learning Technique 43

5. Conclusion

This study proposes a foundation for

building computer vision system using deep

learning technique, with the final purpose for

usabilty evaluation of UIs. This study contributes

by 1) built GUI component images dataset, and 2)

did deep learning experiment to validate whether

it is suitable for basic recognition task of GUI

components. From the results, it can be concluded

that deep learning technique is suitable for visual

recognition task of different types of GUI

components.

Figure 9. Result of custom CNN for six types of GUI

Figure 10. Result of MobileNet for six types of GUI
.

For future work it is suggested to build the

dataset further so it is sufficient for the intended

task, and to avoid under fitting in training process.

For the method, it is preferable to use transfer

learning approach in building computer vision

application as it eliminates the trial and error of

setting CNN architecture of the model –It is also

could reach better result in shorter time. If

possible, optimizations of parameters also done to

explore which setting are best for the task. Other

things that could be considered is availability of

resources in doing deep learning technique as it

requires expensive equipment if original

architecture of CNN wanted to be freely explored.

Acknowledgement

Thank you for Universitas 17 Agustus 1945

Surabaya (Untag Surabaya) that funded this

research in a form of internal research grant for

the lecturers, and also for Institute of Research

and Community Service (LPPM) of Untag

Surabaya that was managing the whole grant

process and being really helpful to grantees.

References

[1] J. Shariat and C. S. Saucier, Tragic

Design : The Impact of Bad Product

Design and How to Fix It, First.

Sebastopol: O’Reilly Media, 2017.

[2] D. Norman and J. Nielsen, “Usability 101:

Introduction to Usability,” 2012. [Online].

Available:

https://www.nngroup.com/articles/usabilit

y-101-introduction-to-usability/.

[Accessed: 11-Dec-2019].

[3] B. Shneiderman, “The Eight Golden

Rules of Interface Design,” in

Shneiderman, B. and Plaisant, C.,

Designing the User Interface: Strategies

for Effective Human-Computer

Interaction: Fifth Edition, 2010.

[4] E. Marcotte, Responsive Web Design, 2nd

Edition. New York: A Book Apart, 2014.

[5] D. A. Norman, The Design of Everyday

Things. USA: Basic Books, Inc., 2002.

[6] J. Nielsen, “Iterative User-Interface

Design,” Computer (Long. Beach. Calif).,

vol. 26, no. 11, 1993, doi:

doi.org/10.1109/2.241424.

[7] J. Cao, K. Zieba, and M. Ellis, The

Ultimate Guide to Prototyping. Mountain

View: UXPin Studio, 2015.

[8] S. Minhas, “User Experience Design

Process,” 2018. [Online]. Available:

https://uxplanet.org/user-experience-

design-process-d91df1a45916. [Accessed:

01-Dec-2019].

[9] C. Murphy, “A Comprehensive Guide To

Wireframing And Prototyping,” 2018.

[Online]. Available:

https://www.smashingmagazine.com/2018

/03/guide-wireframing-prototyping/#top.

[Accessed: 11-Dec-2019].

[10] G. Venturi and J. Troost, “Survey on the

UCD integration in the industry,” 2004.

[11] M. O. Riedl and R. St Amant, “Toward

Automated Exploration of Interactive

44 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

 volume 13, issue 1, February 2020

Systems,” 2002.

[12] K. Gibbs, T. Winograd, and N. Scott,

“Lens: A System for Visual Interpretation

of Graphical User Interfaces,” 2002.

[13] T.-H. Chang, T. Yeh, and R. C. Miller,

“GUI Testing Using Computer Vision,” in

Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems,

2010.

[14] J. Koch and A. Oulasvirta,

“Computational layout perception using

Gestalt laws,” in Conference on Human

Factors in Computing Systems -

Proceedings, 2016, vol. 07-12-May-2016,

pp. 1423–1429, doi:

10.1145/2851581.2892537.

[15] M. Soegaard, “Laws of Proximity,

Uniform Connectedness, and

Continuation – Gestalt Principles (2),”

Interaction Design Foundation, 2020.

[Online]. Available:

https://www.interaction-

design.org/literature/article/laws-of-

proximity-uniform-connectedness-and-

continuation-gestalt-principles-2.

[Accessed: 11-Dec-2019].

[16] A. Oulasvirta et al., “Aalto Interface

Metrics (AIM): A service and codebase

for computational GUI evaluation,” in

UIST 2018 Adjunct - Adjunct Publication

of the 31st Annual ACM Symposium on

User Interface Software and Technology,

2018, pp. 16–19, doi:

10.1145/3266037.3266087.

[17] T. F. Liu, M. Craft, J. Situ, E. Yumer, R.

Mech, and R. Kumar, “Learning design

semantics for mobile apps,” in UIST 2018

- Proceedings of the 31st Annual ACM

Symposium on User Interface Software

and Technology, 2018, pp. 569–579, doi:

10.1145/3242587.3242650.

[18] B. Deka et al., “Rico: A mobile app

dataset for building data-driven design

applications,” in UIST 2017 - Proceedings

of the 30th Annual ACM Symposium on

User Interface Software and Technology,

2017, pp. 845–854, doi:

10.1145/3126594.3126651.

[19] Y. Lecun, Y. Bengio, and G. Hinton,

“Deep learning,” Nature, vol. 521, no.

7553. Nature Publishing Group, pp. 436–

444, 27-May-2015, doi:

10.1038/nature14539.

[20] U. Karn, “An Intuitive Explanation of

Convolutional Neural Networks,” The

Data Science Blog, 2016. [Online].

Available:

https://ujjwalkarn.me/2016/08/11/intuitive

-explanation-convnets/. [Accessed: 11-

Dec-2019].

[21] R. A. Fernandez, J. A. Deja, and B. P. V.

Samson, “Automating heuristic evaluation

of websites using convolutional neural

networks,” in Conference on Human

Factors in Computing Systems -

Proceedings, 2018, pp. 9–12, doi:

10.1145/3205851.3205854.

[22] H. Lu, L. Wang, M. Ye, K. Yan, and Q.

Jin, “DNN-based Image Classification for

Software GUI Testing,” in 2018 IEEE

SmartWorld, Ubiquitous Intelligence &

Computing, Advanced & Trusted

Computing, Scalable Computing &

Communications, Cloud & Big Data

Computing, Internet of People and Smart

City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDC

om/IOP/SCI), 2018, pp. 1818–1823.

[23] S. Hassan, M. Arya, U. Bhardwaj, and S.

Kole, “Extraction and Classification of

User Interface Components from an

Image,” Int. J. Pure Appl. Math., vol. 118,

no. 24, 2018.

[24] T. T. Nguyen, P. M. Vu, H. V. Pham, and

T. T. Nguyen, “Deep learning UI design

patterns of mobile apps,” in Proceedings -

International Conference on Software

Engineering, 2018, pp. 65–68, doi:

10.1145/3183399.3183422.

[25] T. A. Nguyen and C. Csallner, “Reverse

Engineering Mobile Application User

Interfaces With REMAUI,” in ASE ’15:

Proceedings of the 30th IEEE/ACM

International Conference on Automated

Software Engineering, 2015, pp. 248–259,

doi: 10.1109/ASE.2015.32.

[26] T. Beltramelli, “pix2code: Generating

Code from a Graphical User Interface

Screenshot,” Comput. Researcy Repos.,

vol. abs/1705.07962, May 2017.

[27] K. Moran, C. Bernal-Cárdenas, M.

Curcio, R. Bonett, and D. Poshyvanyk,

“Machine Learning-Based Prototyping of

Graphical User Interfaces for Mobile

Apps,” Feb. 2018.

[28] C. Chen, T. Su, G. Meng, Z. Xing, and Y.

Liu, “From UI Design Image to GUI

Skeleton: A Neural Machine Translator to

Bootstrap Mobile GUI Implementation,”

in Proceedings of ICSE ’18: 40th

International Conference on Software

Engineering, 2018, pp. 665–676, doi:

10.1145/3180155.3180240.

[29] A. Robinson, “Sketch2code: Generating a

A.A. Rahmadi, et. al., Visual Recognition of GUI Components using Deep Learning Technique 45

website from a paper mockup,” Comput.

Res. Repos., vol. abs/1905.13750, May

2019.

[30] B. Kim, S. Park, T. Won, J. Heo, and B.

Kim, “Deep-learning based web UI

automatic programming,” in Proceedings

of the 2018 Research in Adaptive and

Convergent Systems, RACS 2018, 2018,

pp. 64–65, doi:

10.1145/3264746.3264807.

[31] J. Win, “Libraries, Components,

Boilerplates, Frameworks, and Kitchen

Sink: How Do They Differ?,” 2017.

[Online]. Available:

https://medium.com/@justinewin/libraries

-components-boilerplates-frameworks-

and-kitchen-sink-whats-their-difference-

a0fa20128f11. [Accessed: 11-Dec-2019].

[32] A. Krizhevsky, I. Sutskever, and G. E.

Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks.”

[33] M. Tan and Q. V. Le, “EfficientNet:

Rethinking Model Scaling for

Convolutional Neural Networks,” May

2019.

