ALGORITMA KOMPRESI FRAKTAL SEQUENTIAL DAN PARALEL UNTUK KOMPRESI CITRA

Lely Hiryanto, Satrya N. Ardhytia

Abstract


Kompresi citra adalah proses mengurangi ukuran dari citra dengan mengurangi kualitas dari citra tersebut. Metode Fraktal yang digunakan bekerja dengan mencari kemiripan pada piksel-piksel citra dan mengelompokkannya dalam beberapa cluster. Semakin tinggi tingkat kemiripan pada citra, rasio kompresi akan semakin baik. Pada citra berwarna (RGB) metode tersebut diulang sebanyak tiga kali, masing-masing untuk satu elemen warna. Hasil akhir dari proses kompresi adalah tiga virtual codebook, masing-masing untuk satu elemen warna, yang menyimpan nilai dari brightness, contrast, dan tipe transformasi affine yang digunakan untuk tiap cluster. Proses dekompresi dari metode ini adalah dengan membentuk citra kosong dengan resolusi yang sama dengan citra asli dan mengisikan nilai RGB pada tiap piksel yang bersangkutan dengan menghitung nilai yang tersimpan pada virtual codebook. Dengan menggunakan nilai Coefficient of Variation (CV) sebagai penyesuaian nilai standar deviasi dan 57 citra BMP24-bit, hasil pengujian menunjukkan rasio kompresi rata-rata sebesar 41.79%. Dengan metode paralel yang digunakan, proses kompresi citra berwarna menunjukkan rata-rata nilai speed-up sebesar 1.69 dan nilai efisiensi prosesor sebesar 56.34%.

Image compression is a process of reducing the size of the image by reducing the quality of the image. Fractal method is used to work by searching for similarities in the image pixels, and group them in clusters. The higher the degree of resemblance to the image, the better the compression ratio. In the color image (RGB) the method is repeated three times, each for one color element.The end result of the compression process is a three virtual codebook, each for one color element, which stores the value of the brightness, contrast, and the type of affine transformation are used for each cluster. Decompression process of this method is to form a blank image with the same resolution with the original image and fill in the RGB values at each pixel corresponding to the count value stored in the virtual codebook.By using the Coefficient of Variation (CV) as an adjustment value and standard deviation of 57 pieces of 24-bit BMP images, test results showed an average compression ratio of 41.79%. With the parallel method is used, the compression process of color image shows the average speed-up values of 1.69 and the processor efficiency of 56.34%.

Keywords


kompresi citra; kompresi fraktal paralel; kompresi fraktal sequential; image compression; parallel fractal compression; sequential fractal compression

Full Text:

PDF


DOI: http://dx.doi.org/10.21609/jiki.v3i2.148

Refbacks

  • There are currently no refbacks.


Copyright © Jurnal Ilmu Komputer dan Informasi. Faculty of Computer Science Universitas Indonesia.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View JIKI Statistic