
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
17/2 (2024), 109-120. DOI: http://dx.doi.org/10.21609/jiki.v17i2.1178

Code Generator Development to Transform IFML (Interaction Flow
Modelling Language) into a React-based User Interface

Ilma Ainur Rohma∗ and Ade Azurat†
Faculty of Computer Science, Universitas Indonesia

Depok, Indonesia
Email : ∗ilma.ainur21@ui.ac.id, †ade@cs.ui.ac.id

Abstract

Model-Driven Software Engineering (MDSE) is a software development approach that uses the Model to
be the main actor of the development. MDSE can be applied to User Interface (UI) Development so that a
model for the UI can be built, and then a transformation can be made to turn it into a running application.
In this research, we develop UI Generator to support UI Development with the MDSE approach. This UI
Generator can also support UI Development in Software Product Line Engineering (SPLE) paradigm. The
UI is modeled with Interaction Flow Modeling Language (IFML) diagram. Then The IFML diagram is
transformed into React-Based UI by the UI Generator. The UI Generator is developed with Acceleo on
Eclipse IDE to transform IFML into React Code with the transformation rules defined in this research. The
UI generator is also enriched with display settings and static page management to address user customization
needs. The experimental results show that the UI Generator can generate a functional website. Besides
evaluating the working product, UI Generator is evaluated qualitatively well based on six quality criteria as
an SPLE supporting tool.

Keywords: Model-Driven Software Engineering (MDSE); User Interface (UI) Development; Code
Generator; Interaction Flow Modeling Language

1. Introduction

One of the software development approaches
is model-driven software engineering (MDSE). The
basic idea of MDSE is that human thinking naturally
starts from making an abstraction that includes gen-
eralization, classification, and aggregation [1]. In the
Software Engineering area, making the abstraction is
known as modeling.

Models have a vital role in MDSE, but the model
is still an abstraction. The transformation in MDSE
makes this abstraction a concrete application [1]. A
code generator, a model-to-text (M2T) transforma-
tion tool, can be used to automatically transform the
model into running code [2].

MDSE can be applied to User Interface (UI)
development as part of software development. UI
provides a graphical or textual form that the user
can use to interact with the system [3]. To develop
UI with the MDSE approach, we must make an
abstraction of the UI [4, 5].

Interaction Flow Modelling Language (IFML)
can be used to represent the UI as an abstract UI
Model [3, 6–9]. IFML consists of elements rep-

resenting the UI elements and UI behaviour [2].
Each element of IFML has a notation that can be
combined to construct the abstraction on the UI.
Based on Model-Driven Architecture, an MDSE in
practice, IFML is in Platform-Independent Model
(PIM) level [1]. Design and analysis of UI require-
ments happen at the PIM level so that the behavior
and structure can be described at this level. [1].

This research proposes an MDSE approach to
develop the user interface for a website. Sboui et
al.[8] and Bernaschina et al. [9] develop UI Gener-
ators to transform a UI model into UI code. Sboui
et al. [8] using Concrete User Interface (CUI) to
model the UI and then transforms it into a UI code
based on standard HTML and CSS. Bernaschina et
al. [9] develops UI-Generator to transform IFML
into Nodejs-based UI, but only a few IFML notations
can be transformed in this research, and they do not
consider how to customize the UI.

This research focuses on User Interface Devel-
opment, so we developed a code generator called UI
Generator that transforms IFML into User Interface
code based on React. React is Javascript Library for

109

http://dx.doi.org/10.21609/jiki.v17i2.1178


110 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 2, June 2024

building web or native user interfaces 1. We can
build a more flexible and faster user interface with
React than basic javascript [10].

This research starts with the process of mod-
eling the UI with IFML. IFML must be properly
constructed to represent a UI based on the standard
IFML rules [11]. Then this research defines the
transformation rules to specify the transformation
of an element into a react code. Transformation
rules are defined by using the various properties that
IFML provides. The transformation rules are a cru-
cial part of this research because we cannot develop
a proper UI from IFML if the rules have an error. UI
Generator is developed based on the transformation
rules as a tool to prove that the transformation rules
can be implemented.

After that, the evaluation phase is conducted to
evaluate the research proposal. Quantitative evalua-
tion is done by doing a functional test to get the
percentage of features that are running well. This
evaluation will prove the correctness of the transfor-
mation rules. Besides the functional test, Six quality
criteria from Apel et al. [12] are used to evaluate the
quality of the UI Generator qualitatively.

This UI Generator is also used in Software Prod-
uct Line Engineering [4]. In SPLE, developing UI
must be adaptable to match the application variation
[3]. So with IFML, we can build models for all
features and choose which feature will be chosen
in a specific web. Then a user interface can be
automatically generated using a UI generator.

This research is used to build a website for a
charity organization with SPLE. After we have all
possible features, IFML is created for each feature.
Then the transformation rules are defined for each
element in IFML into React Code. With those trans-
formation rules, The UI Generator with Acceleo in
Eclipse can be developed. After that, the UI Gener-
ator is evaluated by running it to generate a website
from the IFML that was created before.

The following sections of this article are orga-
nized as follows: Section II presents the running
example to give an overview of the tools. In Sec-
tion III, UI Modelling with IFML is explained in
detail. Section IV presents the transformation rules
that we proposed for the UI generator. In Section
V, we explain the development process of the UI
generator. Section VI presents the evaluation of the
UI generator and future works. Last, This article
is concluded with the presentation of our works in
section VII.

1https://react.dev/

2. Running example

In this reasearch, UI Generator used for de-
veloping a website for Charity Organization. The
website has several feature like Program, Income and
Expense record, donation, etc. In this paper, we show
how UI Generator works to build Program Feature.
Program feature is a Create Read Update and Delete
(CRUD) feature that contains four pages.

The snippet of IFML Diagram that we use in this
research is shown in Fig. 1. Fig. 1 is IFML Diagram
for Activity Feature. Some of the components details
are explained in the next section. This IFML is the
input for our UI Generator and the output is UI code
based on React. UI Generator produce four page
based on in figure 1.

Fig 2 is a page for list of programs
from Daftar Program page ViewContainer. This
ViewComponent contains List ViewComponent in
this example we show you a List as a Card Grid
not Table. The detail button in Fig. 2 navigate us to
Detail Page that show in Fig. 3. This detail page is
from Detail Program Page ViewContainer.

The other two pages are the page that contains a
form. The first is Fig. 4 is an Add Program Page
from Tambah Program Page ViewContainer that
contains a blank form. Different with Fig. 5, the
form in this page have an intial value. Fig. 5 is from
Ubah Program Page ViewContainer and it have a
different form model with Tambah Program Page
ViewContainer.

Activity IFML diagram in Fig. 1 is combined
with various IFMLs for other features in a model.
The model is in one .core file containing an XML
representation of the diagram. The UI generator
reads this file to produce a complete website.

3. UI Modelling

As we explain in the Introduction, an abstraction
of UI is built by IFML Diagram. IFML Diagram
has some notations representing the UI elements and
website behaviour. Table 1 shows the list of IFML
notations we use to construct the UI abstraction. The
following sections explain how we construct IFML
diagrams for making a UI in detail.

Website Page

A Website Page is represented by a
ViewContainer. In ViewContainer, we can
compose various elements that represent website
content [11]. Three types of ViewContainer exist:
XOR, Default, and Landmark.



Rohma and Azurat, Code Generator Development to Transform IFML into a React-based UI 111

Figure 1. IFML Diagram for Program Feature

Figure 2. List of Programs Page

In the Running Example above, we use
XOR, Default, and Standard ViewContainer. XOR
ViewContainer contains all the website pages re-
lated to a feature. One XOR ViewContainer rep-
resents a program feature. In XOR ViewContainer,
we must compose Default ViewContainer. This
Default ViewContainer represents the first page of

a feature. The other ViewContainer is just a stan-
dard page interacting with other ViewContainer.
So, from the IFML Digaram in Fig. 1, we can have
four website pages that we can access.

ViewContainer is also have extension called
Menu ViewContainer. This Menu ViewContainer
is used to create a submenu on a web page. In Fig.
1, we use Menu ViewContainer in ”List Program
Page” ViewContainer to make an additional button
”Add Program” in Fig. 2.

Each ViewContainer has ViewComponent to
represent the page’s content. In IFML meta-
model, both are subclasses of ViewElement [11].
ViewComponent has three extensions to represent
website content. There are List, Form, and Detail.

List and Table

The first ViewComponent extension is List. This
ViewComponent represents the page content pre-
sented in a List or Table. The displayed content
data comes from DataBinding. DataBinding have
a URI property that can store API endpoint to re-
trieve the data. Data from DataBinding is shown
by VisualizationAttributes element. The IFML
diagram for List can be shown in Fig. 6

Form

A form in a website page is represented by Form
ViewComponent. The form fields can be represented



112 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 2, June 2024

Figure 3. Detail of A Program Page

by composing the Field element inside the Form
ViewComponent. Field has two type: SimpleField
and SelectionField. SimpleField represents a
regular field and SelectionField represents drop-
down list. A form for Add Page does not need
initial data, so we can represent this just a Form in
ViewComponent as Fig. 7 shows.

The initial data from the service is needed for the
Update Page. In this case, all Fields are wrapped
in DataBinding. The data from DataBinding is
displayed using the Slot element inside the Field.
Fig. 8 shows all SimpleField in Fig. 7 are wrapped
in a DataBinding and each field has a Slot. Also,
DataBinding in Form can be used to retrieve data
for options in SelectionField.

Detail

Detail is one extension of ViewComponent that
used to display details of a data [11]. Same with
List, the displayed data is retrieved and shown by
DataBinding and VisualizationAttributes. In
this case, we use the two types of Parameter as

Figure 4. Form Add Program Page

Figure 5. Form Update Program Page



Rohma and Azurat, Code Generator Development to Transform IFML into a React-based UI 113

Figure 6. IFML Diagram for List ViewComponent

Figure 7. IFML Diagram for Form ViewComponent with-
out Initial Data

Figure 8. IFML Diagram for Form ViewComponent with
Initial Data

Fig. 9 shows. First, the Id Parameter with direction
INOUT is used to save the passed parameter from
an event. Second, the Object Detail Program
Parameter with direction OUT is used to retrieve data
from the service.

Service

Doing a communication service between UI
and database is important in website development.

Figure 9. IFML Diagram for Detail ViewComponent

This service is represented by Action element in
IFML Diagram [11]. In the running example, data
is fetched and sent using a REST API. So, infor-
mation on the HTTP method must be added in
every API call. The Annotation element is used
in Action to contain information about the HTTP
method. Action can also have an Event called
Action Event. This Action Event represents where
the page is redirected after the call is finished.

Button and Navigation

Figure 10. IFML Diagram for ViewElementEvent and
NavigationFlow

The website has some button to trigger some
event or redirect us to another page. This element
and behavior are represented by ViewElementEvent
and NavigationFlow. ViewElementEvent have a
NavigationFlow to specicify the behaviour of the
UI Event. When navigating, NavigationFlow can
have a ParameterBinding to represent all parame-
ters passed. Fig. 10 shows that if we trigger a button
from List, the page will be redirected to the Detail
Program Page by passing an id parameter as id.

4. Transformation Rules

Before developing UI Generator, each element
in IFML is defined by its transformation rules. In
this research, IFML is transformed into React based



114 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 2, June 2024

Table 1. List of IFML elements
Notation Name Description Notation

ViewContainer represents a website page

ViewComponent representa a website content

Action represents the API call

Event represents a Button

NavigationFlow
represents a transition on the web-
site

ParameterBinding
represents the parameters carried in
the navigation flow

Parameter
represents the value stored on the
web page

VisualizationAttributes
represents an element that displays
data

Field represents a field in the form

Annotation
represents a note on a particular
element

User Interface. This following items describe how
IFML Diagram in Running Example transformed
into React code.

ViewContainer

ViewContainer is an element which represents a
website page containing other UI elements. This el-
ement is transformed into a ReactJS component that

referenced by routing. Fig. 11 shows that we trans-
formed ViewContainer along with ViewComponent
by using its name property.

ViewComponent

ViewComponent represents the UI element that
displays website content or accepts input from a
user. ViewComponent generally is transformed into



Rohma and Azurat, Code Generator Development to Transform IFML into a React-based UI 115

Figure 11. Transformation Rules for ViewContainer

a React Component that are composed into com-
ponents from ViewContainer. ViewComponent has
three extensions: List, Details, and Form. Each
extension have a different component to store the
content based on its form.

Figure 12. Transformation Rules for List

First we have List ViewComponent, the dis-
played data is represented by Parameter and
DataBinding. The transformation rules of List is
shown in Fig. 12. The name from DataBinding is
used to call a service for retrieved data and save them
to state from Parameter. UI generator provide two
style of list, first is Card Grid View like we show in
Fig. 2 and second is Table View. If the name property
starts with ”Table” the return value of the component
is a table tag.

Figure 13. Transformation Rules for Form

The second extension of ViewComponent is
Form. The transformation rules of Form is shown
in Fig. 13. In form, some SimpleField or
SelectionField represent fields on the website.

SimpleField represents the common input field, and
SelectionField represents a dropdown list field.
Slot is used for the field that have a default value.
So, the name property of Slot fill the defaultField
of <input>

Figure 14. Transformation Rules for Detail

Fig. 14 shows the transformation rule of De-
tail. In Details, same with List the required data
is represented by Parameter and DataBinding.
Out Parameter is used for save the retrieved
data from API. Inout Parameter is used to store
parameters for service. The retrieved data from
DataBinding is shown by the transformation of
VisualizationAttributes.

Event

Figure 15. Transformation Rules for Event

Event represents an interaction by a user on
a website to trigger certain functionality. This el-
ement is transformed into a button with an event
handler as seen in Fig. 15. The main functional-
ity of ViewElementEvent is calling the service or
navigating to another page that may be passing a
particular data. Therefore, to represent this function-
ality, ViewElementEvent has a NavigationFlow El-
ement.

NavigationFlow

NavigationFlow represents the UI Changes
when a certain event is executed. NavigationFlow
can only target either ViewContainer or Ac-
tion. Fig. 16 shows us transformation rules of



116 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 2, June 2024

Figure 16. Transformation Rules for NavigationFlow Tar-
geted ViewContainer

Figure 17. Transformation Rules for NavigationFlow tar-
getted Action

NavigationFlow targeted ViewContainer. The
transformation rules for NavigationFlow targeted
Action shows in Fig. 17. Inside the NavigationFlow
we can put ParameterBindingGroup that con-
tains at least one of ParameterBinding. This
ParameterBinding becomes a parameter that is car-
ried over when navigating to another page or when
calling aservice. The other NavigationFlow target-
ing Action will call service by executing a call()
function in service generated from Action element.

Action

Figure 18. Transformation Rules for Action

Action describes the UI’s business process trig-
gered by an event. This element represents an HTTP
request to API to have data transactions from the
backend. In ReactJS, Action is transformed into a
service that has its directory. This service makes an
HTTP request using the Axios library like we show
in Fig. 18. The name property from Action is used
to find the HTTP method and backend endpoint. The
HTTP methods for API calling can we use text from
annotation in the Action element. The response
from API is returned in JSON format that UI can
read.

Figure 19. Transformation Rules for VisualizationAt-
tributes

VisualizationAttributes

VisualizationAttributes represents a UI
element that displays specific data. Usually,
VisualizationAttributes is used to display data
in List or Details. This element is transformed into
an HTML container that contains a label and the
particular data as seen in Fig. 19. The content label
comes from the Name property and the particular data
comes from FeatureConcept property.

DataBinding

Figure 20. Transformation Rules for DataBinding

IFML diagram has Domain Model to represents
instance of an element that can we bind to the
system with DataBinding [11]. DataBinding has
URI property to store API endpoint for retrieving
the data. This URI is called asyncronously by axios
with GET method to retrieved the data. The trans-
formation rule for DataBinding can be seen in Fig.
20

5. UI Generator Development

Based on those transformation rules, a UI gen-
erator to transform the IFML diagram to React
is developed using Acceleo. Acceleo is a model-
to-text transformation tool based on Eclipse IDE.
Acceleo uses a template-based approach to produce
code from a model with Model to Text Language
(MTL)[13] that is automatically executed by Java.
Acceleo is equipped with various Object Constraint
Language (OCL) functions that make it easy to
process the input models. In addition, Acceleo can
invoke Java code if we need some additional func-
tions in UI Generator.

Acceleo has some modules in .mtl files that can
contain templates and queries. A template defines
sets of statements to generate the code file, and a



Rohma and Azurat, Code Generator Development to Transform IFML into a React-based UI 117

query extracts specific information from the model.
Among these modules is the main module, the first
executed module, which describes the UI generator’s
generation workflow. Also, additional services can
be obtained by generating a query module from Java
code to retrieve specific information from a model.

Before we developed the UI generator with Ac-
celeo, A UI was developed using ReactJS to guide
us in creating a template. From that code artifact, we
trace where transformation rules are implemented
to that code and make an mtl file. First, all the
ViewContainer and Action elements are read by
the UI Generator. From ViewContainer, UI Gen-
erator can read the ViewComponent, and different
modules are done for each ViewComponent. Inside
the ViewComponent modules, all components in our
IFML Diagram can be read and transformed.

This UI Generator from Acceleo can produce a
basic React-based User Interface. Every IFML input
for this UI generator is transformed into the same
style website. In reality, each company or person
needs a unique personal website. So, we have to
add a tool to maintain a variety of website styles
and manage the website’s static page.

GrapesJS 2, a web builder framework, is used for
providing static page management. GrapesJS allows
users to customize the page using a drag-and-drop
visual editor. GrapeJS produce HTML and CSS files
from a visual editor. These files are combined in the
ReactJS template used for UI Generator.

Website product from UI Generator uses tail-
windCSS 3 for styling Framework. Users are pro-
vided with the ability to manage website style
through the creation of interface kits for display
settings. This interface kit allows the user to choose a
color theme and some competent style for a website.
The interface kit is developed using DaisyUI 4.
DaisyUI is a UI Library to define every UI com-
ponent in Tailwind. Just like GrapesJS, DaisyUI is
also combined in the ReactJS template.

6. Evaluation

This research is evaluated with two aspects; gen-
erated website and UI Generator. First, the generated
website is evaluated using Functional Testing. If the
generated website can satisfy all scenarios, the the
transformation rules are correct. Second, the UI Gen-
erator is evaluated qualitatively based on six quality
criteria [12]. The six quality criteria are constructed
to evaluate how well the tools can support SPLE.

2https://grapesjs.com/
3https://tailwindcss.com/
4https://daisyui.com/

Scenarios for all features based on website re-
quirements are constructed for Functional testing.
Researchers run all scenarios on the website; if the
expected results are met, the scenario is passed. This
following items are list of feature that we test on
Website.

• Authentication and Authorization : user can
Sign Up, user can Login via username and
password, user can Login via Google, user
can Logout.

• Activity or Program Feature : user can cre-
ate, edit and delete a program, user can read
list of programs, user can read detail of a
program.

• Income Feature : user can create, edit and
delete an income, user can read list of in-
comes, user can read detail of an income.

• Expense Feature : user can create, edit and
delete an expense, user can read list of ex-
penses, user can read detail of an expense.

• Static Page Management : user can view
about us static page, user can update the
information in static page.

• Display Settings : user can choose one of
color theme and display style, user can view
the preview.

From this Functional testing, 100% of tests are a
success. With this result, we can conclude that the
UI generator successfully produces a website.

In addition to the website product evaluation,
the UI Generator itself is evaluated qualitatively. As
explained in Section 1, this UI Generator can be used
for Software Product Line Engineering (SPLE). So,
this research use six quality criteria to evaluate UI
Generator as a tools for SPLE [12]. This following
items describe the evaluations of UI Generator based
on the criteria.

• Preplanning Effort
Sometimes, the user wants to change any
functionality in this feature, like adding some
input file, changing the button navigation,
or adding another page. In another case,
users want to add features to their website as
the organization grows. Users can deal with
those cases by updating or adding the IFML
diagram. They do not need to deal with the
code that must have technical knowledge.
We can conclude that UI Generator have
Low Preplanning Effort to develop a UI.

• Feature Traceability
Feature traceability can be fulfilled if the UI
Generator can be traced for every feature.
For Example, if user wants to edit the form
in a specific page, they can trace the IFML



118 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 2, June 2024

Diagram from the ViewContainer and they
can have the Table ViewComponent. We
produce code that conforms to the IFML di-
agrams, which makes separate folders based
on the feature in the diagram. With this
approach, a developer can trace the code
artifact easily to find which file wants to be
improved.

• Separation of Concerns
Similar to the analysis on feature traceability,
each feature has its folder, and each element
has its file. In other words, UI Generator will
generate a feature directory that can serve
its functionality independently from other
feature directories. Model and UI generator
development are done separately in the UI
development process, so they do not affect
each other. So this UI generator fulfill the
separation of concern criteria.

• Information Hiding
Information Hiding means that each feature
has its internal and external parts. One appli-
cation of this criteria is to develop features
for static page management and display set-
tings. Static page management uses a module
from GrapeJS, so it has an internal part to
compose the drag-and-drop visual editor and
pass the HTML and CSS code to an external
part. Like Static page management, display
settings have internal parts of developing the
interface kit and external parts of passing the
styling parameters. So another module can
use its external part without knowing how it
works in internal parts.

• Granularity
For granularity, the systems can be defined
as fine-grained and coarse-grained when they
have system changes. Fine-grained means
the changes are at the lower level, and
coarse-grained means the changes are at the
top level. In this UI Generator, when user
want to edit or add a new statement or
add a new variation of the interface kit for
UI, they can update the javascript file on
ReactJS Templates. Because the javascript
files are lower, It is classified as fine-grained.
But if there are changes in transformation
rules, they must add some files or edit some
modules in the UI Generator code. These
changes may affect other modules, so this
can be classified as coarse-grained.

• Uniformity
For UI development with UI Generator, de-
veloper have to start with making an IFML
diagram for the input of UI Generator. Sim-

ilarly, another developer can create an IFML
diagram for a new application or feature
because IFML has a standard rule. Another
example is when UI Generator transforms
IFML to ReactJS; all features have a uniform
file structure. So, this UI generator satisfies
the criteria because we have a similar manner
to developing a product.

From functional testing and six quality criteria
analysis, the UI Generator is good enough to develop
UI. UI Generator also supports Model-driven Soft-
ware engineering. We develop UI based on IFML
diagram as a model and automatically transform it
to Running UI code.

In this research, transformation rules for all com-
ponents in IFML have not been defined IFML has
58 elements in the core package and ten in the
extensions package based on IFML Meta Model.
We use some of those in our works to define the
transformation rules based on the used element.
Transformation rules are defined for 44.16% of all
elements in this research. If the user adds elements
that do not have transformation rules, UI Generator
cannot process them. For further work, we must
define all the IFML Meta Model elements.

Reliable software must have a method to handle
the failure [14]. So the UI Generator is still improv-
ing the ability to inform the user if there are failures
when the UI Generator is running. The most likely
failure is an error while modeling the UI that causes
UI Generator to keep processing it. If it happens, the
user needs to have the technical skill to fix it.

7. Related Works

In the previous research, Bernaschina et al.[9]
developed UI Generator (IFMLEdit.org) to gener-
ate UI for website and mobile application using
IFML and transform it to Nodejs-based UI using
ALMOsT.js Framework [15]. Bernaschina et al.[9]
mapped IFML elements to JSON representation and
transformed them into UI Code. Bernaschina et
al.[9] not transform all IFML element; they just
transform ViewContainer, ViewComponent, Event,
Action, and NavigationFlow. In our research, UI
Generator is developed to transform all elements in
standard IFML and directly transforms to the UI
without creating a new representation.

UI Generator for a website is also developed by
Yigitbas et al.[7]. Yigitbas et al.[7] combine IFML
with ContextML and AdaptML to produce a Self-
Adaptive User Interface (SAUI) that can adapt in the
runtime based on context-of-use. Yigitbas et al.[7]
focuses on integrating the IFML-UI generator with
the adaption service but does not specify how IFML



Rohma and Azurat, Code Generator Development to Transform IFML into a React-based UI 119

is transformed into a UI code. This research focuses
on transforming each element in IFML inti UI code
by constructing transformation rules and developing
UI Generator.

Sboui et al.[8] use the Software Product Line
(DSPL) approach to build Context-adaptable User
Interface. Sboui et al.[8] use Concrete User Interface
(CUI) Model to make an abstraction for the UI.
Unlike IFML, CUI Model cannot model specific
elements in UI. The difference between Sboui et
al.[8] and our work is the usage of SPLE concept and
the modelling language used. This research develops
a UI Generator that can support the SPLE to build
UI, and we use IFML to make an abstraction of a
UI.

8. Conclusion

Model-driven Software Engineering (MDSE) is
one of the UI development approaches. In the MDSE
model and transformation are essential to developing
the UI. Interaction Flow Modeling Language (IFML)
is one of the platforms that can model UI. IFML can
make an abstraction of the whole UI, like all page
content and interaction between content. UI Gen-
erator is developed to transform IFML into React
Code. The generated React Code is enriched with
display settings and static page management by UI
Generator. Then the React Code artifact can be run
as a Website User Interface.

The generated UI is evaluated by functional test-
ing, so we can conclude that the UI Generator can
produce the running website UI. Regarding qual-
ity, the UI Generator is evaluated with six quality
criteria, and we know that the UI Generator can
be an SPLE supporting tool. The UI Generator can
transform 44.16% of IFML elements to React Code,
so transformation rules have to be created for other
IFML Elements.

Acknowledgment

This research was supported by Cornelita, Asfi-
olitha, Alisha, and fellow members at the Reliable
Software Engineering (RSE) Laboratory, Faculty of
Computer Science, Universitas Indonesia.

References

[1] M. Brambilla, J. Cabot, and M. Wimmer,
Model-Driven Software Engineering in prac-
tice. San Rafael, United States: Morgan Clay-
pool, 2017.

[2] M. Brambilla and P. Fraternali, Interaction
Flow Modeling Language: Model-Driven UI

Engineering of Web and Mobile Apps with
IFML, 12 2014.

[3] H. S. Fadhlillah, D. Adianto, A. Azurat, and
S. I. Sakinah, “Generating adaptable user inter-
face in sple: Using delta-oriented programming
and interaction flow modeling language,” in
Proceedings of the 22nd International Systems
and Software Product Line Conference - Vol-
ume 2, ser. SPLC ’18. New York, NY, USA:
ACM, 2018, p. 52–55.

[4] A. Pleuss, B. Hauptmann, D. Dhungana, and
G. Botterweck, “User interface engineering for
software product lines: The dilemma between
automation and usability,” in Proceedings of
the 4th ACM SIGCHI Symposium on Engineer-
ing Interactive Computing Systems, ser. EICS
’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 25–34.

[5] A. Pleuss, S. Wollny, and G. Botterweck,
“Model-driven development and evolution of
customized user interfaces,” in Proceedings of
the 5th ACM SIGCHI Symposium on Engineer-
ing Interactive Computing Systems, ser. EICS
’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 13–22.

[6] A. Sajji, Y. Rhazali, and Y. Hadi, “An ap-
proach to automate generation of graphical user
interfaces through ifml,” vol. 201, 2022, p.
621–626.

[7] E. Yigitbas, I. Jovanovikj, K. Biermeier,
S. Sauer, and G. Engels, “Integrated model-
driven development of self-adaptive user inter-
faces,” vol. 19, no. 5, 2020, p. 1057–1081.

[8] T. Sboui, M. Ben Ayed, and A. M. Alimi,
“A ui-dspl approach for the development of
context-adaptable user interfaces,” vol. 6, 2018,
p. 7066–7081.

[9] C. Bernaschina, S. Comai, and P. Fraternali,
“Online model editing, simulation and code
generation for web and mobile applications,”
in Proceedings of the 9th International Work-
shop on Modelling in Software Engineering,
ser. MISE ’17. IEEE Press, 2017, p. 33–39.

[10] P. Hunt. React: Rethinking best prac-
tices. JSConf-Youtube. [Online]. Avail-
able: https://www.youtube.com/watch?v=
x7cQ3mrcKaY

[11] Interaction Flow Modeling Language, Object
Management Group, 2015. [Online]. Available:
http://www.omg.org/spec/IFML/1.0/

[12] S. Apel, D. Batory, C. Kästner, and G. Saake,
Feature-Oriented Software Product Lines.
Berlin: Springer-Verlag, 2013.

[13] “Acceleo: Overview,” 2021.
[Online]. Available: https:

https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://www.youtube.com/watch?v=x7cQ3mrcKaY
http://www.omg.org/spec/IFML/1.0/
https://www.eclipse.org/acceleo/overview.html
https://www.eclipse.org/acceleo/overview.html


120 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 2, June 2024

//www.eclipse.org/acceleo/overview.html
[14] I. Sommerville, Software engineering, Tenth

Edition. Pearson Education, 2019.
[15] C. Bernaschina, “Almost.js: An agile model

to model and model to text transformation
framework,” in Web Engineering, J. Cabot,
R. De Virgilio, and R. Torlone, Eds. Cham:
Springer International Publishing, 2017, pp.
79–97.

https://www.eclipse.org/acceleo/overview.html

	Introduction
	Running example
	UI Modelling
	Transformation Rules
	UI Generator Development
	Evaluation
	Related Works
	Conclusion

