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Abstract 

 

The Digital Center (DC) building at UNNES is a new building on the campus that currently 

lacks evacuation routes. Therefore, it is necessary to create an evacuation route plan in 

accordance with the Minister of Health Regulation Number 48 of 2016. Creating a manual 

evacuation route plan can be inefficient and prone to errors, especially for large buildings 

with complex interiors. To address this issue, learning techniques such as reinforcement 

learning (RL) are being used. In this study, Q-learning will be utilized to find the shortest 

path to the exit doors from 11 rooms on the first floor of the DC building. The study makes 

use of the floor plan data of the DC building, information about the location of the exit 

doors, and the distance required to reach them. The results of the study demonstrate that Q-

learning successfully identifies the shortest evacuation routes for the first-floor DC 

building. The routes generated by Q-learning are identical to the manually created shortest 

paths. Even when additional obstacles are introduced into the environment, Q-learning is 

still able to find the shortest routes. On average, the number of episodes required for 

convergence in both environments is less than 1000 episodes, and the average computation 

time needed for both environments is 0.54 seconds and 0.76 seconds, respectively. 
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1. Introduction 

 

The challenge of evacuation within a building, 

aside from the condition of the building's 

extensive and complex layout, lies in the lack of 

knowledge about internal connectivity within the 

structure. In such situations, individuals inside the 

building may not be aware of suitable evacuation 

routes, especially when facing unexpected events 

such as fires, tsunamis, or hurricanes. It is crucial 

to swiftly move occupants to safe areas to 

minimize potential damage and effectively 

manage emergency situations [1]. Therefore, 

planning navigation for optimal evacuation routes 

can reduce the likelihood of property damage, 

control congestion during emergencies, and 

shorten evacuation times to ensure that inhabitants 

can be safely and efficiently evacuated, ultimately 

saving more lives [2]–[4]. 

According to the Minister of Health 

Regulation (Permenkes) Number 48 of 2016 

regarding Occupational Safety and Health 

Standards in Offices, every building is mandated 

to have a designated area used as an assembly 

point and an evacuation route diagram. The 

evacuation route diagram is intended to show 

where occupants should gather in case of an 

emergency and are instructed to evacuate [5]. The 

Digital Center (DC) building at UNNES is a 

building that can be categorized as an office 

building, constructed in 2019 and completed in 

2021. The DC building is located on the west 

campus of Semarang State University, Sekaran, 

Gunungpati, Semarang City. Based on 

observations, the DC building has dimensions of 

50x20 meters and consists of 4 floors, with a total 

of 44 rooms. As it is a relatively new building on 

the campus area, the DC building does not 
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currently have evacuation routes. Therefore, it is 

necessary to create an evacuation route map for 

the DC building to comply with the regulations 

stated in the Minister of Health Regulation 

Number 48 of 2016. 

Planning evacuation routes within a building 

can be done manually by calculating the shortest 

distance from the starting point to the endpoint. 

However, this method is less efficient, involves a 

high workload, and has a high potential for errors 

[6]. Therefore, automatic pathfinding algorithms 

like A-star and Dijkstra are employed. With the 

advancement of technology, automatic 

pathfinding is not limited to A-star and Dijkstra 

algorithms [7]. Many other algorithms are 

utilized, including genetic algorithms (GA), ant 

colony optimization, neural networks, and 

machine learning techniques such as 

reinforcement learning [2], [3], [7]. 

Several studies demonstrate evacuation route 

planning using various methods. A study 

conducted by Wu, Kang, and Wang aims to 

identify methods for simulating the evacuation 

process indoors. The study proposes a Cellular 

Automaton Crowd Route Choice (CACR) model 

under different conditions such as fire or sound 

warning systems. Experiments were conducted in 

a gymnasium with four exit doors for the stadium 

evacuation scenario. The results indicate that the 

CACR model achieved a total evacuation time of 

3 minutes and 54 seconds [8]. 

In 2019, Peng et al. conducted research on 

evacuation route planning for a building by 

implementing a neural network, specifically the 

Back-propagation Neural Network. The study 

aimed to plan dynamic evacuation routes for a 

public building with 15 floors. The model was 

tested under four different conditions: during 

office hours with 36 people in the main building 

and 1045 people in the additional building, during 

business hours with 9 people in the main building 

and 1420 people in the additional building, during 

nighttime with 272 people in the main building 

and 30 people in the additional building, and 

during holidays with 105 people in the main 

building and 750 people in the additional 

building. The test results indicated that during 

office hours, the average evacuation time was 

53.50 seconds, during business hours it was 49.47 

seconds, during nighttime it was 121.24 seconds, 

and during holidays it was 57.63 seconds [3]. 

In 2021, Xue et al. conducted a study to 

develop an automatic evacuation guidance system 

in buildings by proposing the Combined Action 

Space Deep Q-Network (CA-DQN) method. 

Experimental results demonstrated that the 

proposed method achieved the fastest evacuation 

time, which was 31.65 seconds. In comparison, 

the Dynamic Shortest Path method required 32.18 

seconds, and evacuation using static signs took 

41.35 seconds [6]. 

The research conducted by Wu et al. in 2022, 

titled 'Evacuation Optimization of a Typical 

Multi-exit Subway Station: Overall partition and 

local railing, focuses on optimizing the evacuation 

of a subway station with multiple exit points by 

utilizing room partitions and local railings. The 

evacuation was simulated using Pathfinder, an 

emergency exit simulator based on an agent-based 

model (ABM). The study's results indicate that the 

use of local railings can balance the density 

distribution at different exit points, enabling 

evacuation to be completed in less than 200 

seconds [9]. 

In 2022, Xu et al. utilized Q-learning for 

indoor emergency route planning. The research 

results indicated that the enhanced Q-learning 

approach could achieve the goal in 42 steps, 

converge after 500 iterations, and had a 

computational time of 13,738 seconds. These 

outcomes were superior to the State-Action-

Reward-State-Action (SARSA) algorithm, which 

reached the goal in 102 steps, showed no 

convergence after 5000 iterations, and had a 

computational time of 164.86 seconds. 

Additionally, the classical Q-learning, when 

tested, achieved the goal in 42 steps, converged 

after approximately 2500 iterations, and had a 

computational time of 68,692 seconds [4]. 

Based on the research above, evacuation route 

planning has been conducted using various 

methods, some of which have employed 

reinforcement learning such as Q-learning and 

DQN. In the study by Xu et al, it has been 

demonstrated that Q-learning yields favorable 

results for designing evacuation routes within a 

building. Therefore, this method has the potential 

to be applied in designing evacuation routes for 

the DC UNNES building, which currently lacks 

an evacuation route layout. 

 

2. Related Works 

 

 In addition to being used for pathfinding, Q-

learning has also been applied in various other 

fields, as demonstrated in several studies. In the 

research conducted by Ardiansyah in 2017, Q-

learning, combined with backpropagation, was 

employed to play the game Flappy Bird. The Q-

learning with backpropagation required an 

average training time of 9 minutes and 1 second, 

while classical Q-learning took 120 minutes. 

Therefore, Q-learning with backpropagation was 

92% faster than classical Q-learning with similar 

performance [14]. 

 Furthermore, in a study by Low, Ong, and 
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Cheah in 2019, improved Q-learning was utilized 

to create optimal routes for a mobile robot. The 

research results indicated that Q-learning in 

simulation covered 22 units, and in real-world 

experiments, it covered 22.37 units with a 

deviation percentage of 1.68%. Additionally, the 

Improved Q-learning-Flower Pollination 

Algorithm (IQ-FPA) in simulation covered 24 

units, and in the real world, it covered 23.57 units, 

with a deviation percentage of 1.79%. Improved 

Decentralized Q-learning (IDQ) in simulation 

covered a distance of 26 units, and in the real 

world, it covered a distance of 26.23 units, with a 

deviation percentage of 0.88% [10]. 

 Li & Li conducted research using enhanced Q-

learning, namely adaptive exploration Q-learning 

(AEQ), to solve path planning problems in an 

unknown environment. In scenario 1, both AEQ 

and Q-learning achieved the goal in 22 units, with 

an average computation time of 13.98 seconds for 

Q-learning and 13.08 seconds for AEQ. 

Meanwhile, SARSA reached the goal in 24 units, 

with a computation time of 13.86 seconds. In 

scenario 2, AEQ, Q-learning, and SARSA all 

required 23 units to reach the goal. The 

computation time for Q-learning in scenario 2 was 

14.20 seconds, SARSA was 13.72 seconds, and 

AEQ was 12.53 seconds [11]. 

 In a study conducted by Maoudj and Hentout 

in 2020, Q-learning was used for path planning in 

a mobile robot in various environments. In an 

environment with 8 obstacles, Q-learning covered 

28.93 units with a computation time of 4.06 

seconds. In an environment with 9 obstacles, Q-

learning covered 30.67 units with a computation 

time of 4.04 seconds. In an environment with 10 

obstacles, Q-learning covered a distance of 30 

units with a computation time of 3.64 seconds 

[12]. 

 The study by Zhang et al tested classical Q-

learning and modified Q-learning methods, 

namely self-adaptive reinforcement-exploration 

Q-Learning (SARE-Q) and self-adaptive Q-

Learning (SA-Q), on the OpenAI Gym grid 

environment. In a 20x20 grid environment, Q-

learning required an average operation time of 

2.047 seconds and an average number of steps of 

23.38. SA-Q method required an average 

computation time of 1.739 seconds and an 

average number of steps of 24.44. Meanwhile, the 

SARE-Q method required an average computation 

time of 1.995 seconds and an average number of 

steps of 23.16. In a 10x10 grid environment, Q-

learning required an average operation time of 

1.43 seconds and an average number of steps of 

24.24. SA-Q method required an average 

computation time of 1.034 seconds and an 

average number of steps of 24.16. The SARE-Q 

method required an average computation time of 

1.147 seconds and an average number of steps of 

24.04 seconds [13]. 

 These studies collectively demonstrate the 

performance of Q-learning in solving various 

cases. Reinforcement learning is suitable for 

scenarios that lack a dataset or have limited data, 

such as evacuation simulation and pathfinding in 

unknown environments [15]. Therefore, Q-

learning is suitable for designing disaster 

evacuation routes in the DC building. In this 

study, classical Q-learning was used, and its 

learning rate and reward system parameters were 

experimentally modified with reference to the 

research by [4]. 

Another consideration for using Q-learning is 

the current limitations of computational resources. 

Therefore, this research will be conducted in 

stages, starting with methods that require low 

computational resources and then proceeding to 

methods that require higher computational 

resources such as DQN. This way, we can make 

computation more efficient if more conventional 

methods can be optimal in handling pathfinding 

from an environment. The gradual implementation 

of Q-learning is also adopted by a number of 

studies [4], [10]–[13]. This is an advantage for 

several users who have limited computing 

machines. 

 

3. Methodology 
 

3.1. Environment Modelling 

The environment used is the first floor of the 

UNNES Digital Center (DC) building, which was 

first represented in a floor plan with a scale of 

1:100. This study only utilizes the first floor of the 

DC building because floors 2 to 4 have similar 

room placements and furniture arrangements as 

the first floor, both in terms of the number of 

rooms and layout. Thus, the mapping results on 

the first floor can be easily duplicated on floors 2 

to 4. The first floor is prioritized for simulation in 

this research because it has the highest pedestrian 

traffic density and direct access to the building's 

entrance and exit doors. Figure 1 shows the floor 

plan of the DC building's first floor, and Table 1 

presents the names and sizes of the rooms. 

 

 
 

Figure 1. First floor plan 
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Table 1. Name and room size of DC building first floor 

No. Room Names Size 

1 Room 1A 12x10 meters 

2 Room 1B 12x10 meters 
3 Room 1C 12x10 meters 

4 Power room 6x4 meters 

5 Meeting room 1 12x5 meters 
6 Meeting room 2 9x5 meters 

7 Disabled toilet 2x2 meters 

8 Cleansing room 2x2 meters 
9 Toilet 6x3 meters 

10 Pantry 5x2 meters 

 

Next, the grid version of the environment is 

created using the Python programming language, 

utilizing the Tkinter library. The grid version of 

the environment is shown in Figure 2. 

 

 
Figure 2. Grid version environment 

 

The grid environment has dimensions of 

50x20 grids. In the grid environment, the elevator 

is ignored as the agent will not pass through it. 

Each grid in the environment represents 1 meter 

in the real-world condition. This grid unit is also 

used as a unit of measurement for the number of 

steps the agent takes on the reference path as in 

Table 5, and the Q-learning path as in Table 6, etc. 

The total number of grids represents the number 

of states that the agent can traverse, which is 1000 

states. The agent is depicted as a blue circle that 

can move within each room. The initial 

coordinates of the agent in each room can be seen 

in Table 5. The agent has 4 actions, namely 

moving up, right, down, and left. The goal is 

represented by a green square located at 

coordinates (12,0), which is the exit door of the 

building that the agent must reach, and it provides 

a reward of +10. White squares represent areas 

that the agent can pass through and have a reward 

of -1. On the other hand, black squares represent 

obstacles, and if the agent passes through them, it 

will receive a reward of -10. 

 

3.2. Q-learning Implementation 

 

Q-learning [16] is a model in RL 

(Reinforcement Learning). Q-learning belongs to 

the model-free and off-policy RL category. In off-

policy RL, the agent attempts to build an optimal 

policy by directly interacting with the 

environment. In Q-learning, the agent uses a trial 

and error approach, wherein it repeatedly solves 

the problem using various approaches and 

continuously updates the policy as it learns about 

the environment [17]. 

In Q-learning, there is a Q-value that estimates 

how much additional reward can be obtained 

through all the remaining steps in the current 

episode if the agent is in state (s) and takes action 

(a). To calculate the Q-value, Formulation 1 is 

used. 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾
𝑚𝑎𝑥

𝑎
𝑄(𝑆𝑡+1, 𝑎)

− 𝑄(𝑆𝑡, 𝐴𝑡)] 

(1) 

In Equation 1, there is a learning rate (α) that 

usually takes values between 0 and 1. The 

learning rate parameter (α) signifies the rate of 

change from the old Q-value to be replaced by the 

new Q-value [14], [18]. A smaller learning rate 

implies a slower change in Q-value, indicating 

that the agent is cautious in updating Q-values. A 

low learning rate value (approaching 0) will slow 

down convergence, but in certain cases, it can 

prevent algorithm instability due to rapid Q-value 

changes. Conversely, if the learning rate is too 

large (approaching 1), the learning process will be 

faster, and convergence will occur more rapidly. 

However, this may lead to instability due to 

excessively fast Q-value changes [19].  

The discount factor parameter (γ) is used to 

ensure that the rewards received by the agent 

remain bounded [14], [17]. The discount factor 

also influences the rewards obtained by the agent. 

If the discount factor is small (approaching 0), the 

agent will prioritize short-term rewards, whereas 

if the discount factor is high (approaching 1), the 

agent will prioritize long-term rewards [20]. 

The learning rate, discount factor, epsilon, and 

reward parameters are obtained as in the study by 

[4]. The determination of the values for learning 

rate, discount factor, epsilon, and reward is the 

result of experimental customization, ensuring 

that the Q-learning used is optimal for automatic 

pathfinding in the DC building. The parameter 

comparison can be seen in tables 2 to 4. The 

experimentation to determine the parameter 

values for learning rate, epsilon, and reward was 

conducted only in one room, namely room 1A or 

at coordinates (34,1). 

 
Table 2. Experimental study of learning rate (α) 

No. 
Learning rate 

(α) 

CPU Time 

(s) 

Step 

(grid) 
Episode 

1 0.01 - - - 

2 0.05 - - - 

3 0.1 1.53 63 1042 

 
Table 3. Experimental study of epsilon (ε) 

No. Epsilon (ε) 
CPU Time 

(s) 

Step 

(grid) 
Episode 

1 0.1 1.53 63 1042 
2 0.5 7.9 63 - 
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No. Epsilon (ε) 
CPU Time 

(s) 

Step 

(grid) 
Episode 

3 0.9 8.6 63 - 

 
Table 4. Experimental study of reward 

No. Reward 
CPU 

Time (s) 

Step 

(grid) 
Episode 

1 +1, reach target 

location. 
-1, reach obstacle 

position. 

0, reach other 
position 

- - - 

2 +10, reach target 

location. 
-10, reach obstacle 

location. 

-1, reach other 
location 

1.53 63 1042 

 

The Q-value calculated using Equation 1 is 

stored in the Q-table. The Q-table contains rows 

for each possible state and columns for each 

possible action. The optimal Q-table contains 

values that allow the agent to choose the best 

action in each possible state, thus providing an 

optimal path for the agent to achieve the highest 

reward. The Q-table represents the agent's policy 

for acting in the current environment. The Q-

learning flowchart used in this case can be seen in 

Figure 3. 

 

 
Figure 3. Q-learning flow chart 

 

3.3. Performance Testing 

 

The performance testing aims to analyze the 

ability of the Q-learning algorithm in planning 

evacuation routes. The system will be tested using 

a grid environment that resembles the first floor of 

the DC building, which consists of 11 rooms. The 

agent will be placed in each room with 

predetermined coordinates, as shown in Figure 4, 

where the agent is placed in room 1A with 

coordinates (40,1), and then training is conducted. 

After each training session is completed, the agent 

will be moved to the next room for a new training 

session, and so on until the agent occupies all the 

rooms. Table 5 shows the names of the rooms, 

their initial coordinate points, and the reference 

path lengths. The reference path is a route 

obtained through observation in the DC building 

and manually annotated which will be used as a 

comparison for the paths created by the Q-

learning agent. The agent is required to reach the 

goal without colliding with any obstacles present. 

 
Figure 4. Example of agent placement 

 

Table 5. Room names, initial coordinates, and references path 

lengths 

No Room Names 
Initial 

Coordinates 

References 

Path Length 

(grid) 

1 1A (34,1) 63 
2 1B (22,1) 49 

3 1C (10,1) 20 

4 Power room (34,17) 41 

5 Meeting room 1 (27,19) 32 

6 Meeting room 2 (6,19) 24 

7 Disabled toilet (7,9) 9 
8 Cleansing room (7,7) 13 

9 Women’s 

restroom 

(7,1) 17 

10 Men’s restroom (0,0) 18 

11 Pantry (0,6) 12 

 

After the initial position of the agent is 

determined, the training process is conducted for a 

maximum of 3000 episodes using the following 

parameters: learning rate α = 0.1, discount factor γ 

= 0.9, and exploration probability (ε) = 0.1, based 

on the experimental results presented in Tables 2, 

3, and 4. The use of ε = 0.1 is intended to make 

the agent more inclined towards exploitation, 

meaning the agent is more likely to choose actions 

with the highest Q values. 

After the training process is completed, the 

evacuation routes created by the agent will be 

evaluated to assess the performance of the Q-

learning algorithm in generating evacuation paths 

in the UNNES DC building. The paths created by 

the agent, will be measured in terms of the 

number of steps taken and then compared with the 
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reference path lengths in Table 5. If the number of 

steps generated by the agent is the same as than 

the number of steps in Table 5, the results are 

considered acceptable. Furthermore, the path 

results generated by Q-learning will also be 

compared with another method, namely SARSA. 

SARSA is chosen as it represents a basic 

reinforcement learning method, similar to Q-

learning, but they belong to different types – Q-

learning is categorized as off-policy RL, while 

SARSA is considered on-policy RL. SARSA is 

frequently employed as a benchmark in prior 

research studies. To calculate the accuray of the 

paths generated by the Q-learning and SARSA 

agents, formula (2) is used. The reference used to 

calculate accuracy in this study is the reference 

path. 

1 − (
|𝑎𝑔𝑒𝑛𝑡 𝑝𝑎𝑡ℎ − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑝𝑎𝑡ℎ|

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ
) × 100% (2) 

  

4. Result  

4.1. Comparison Q-learning with the 

reference path 

The simulation is conducted by placing the 

agent at the initial coordinates as listed in Table 5, 

in each room alternately. The simulation is 

implemented using Python with the help of the 

libraries tkinter, matplotlib, and numpy. The 

simulation is run on a laptop with the following 

specifications: Core i5 8250U 1.6 GHz processor, 

12 GB RAM, and Windows 11 64-bit operating 

system. The shortest path generated by the Q-

learning agent in the obstacle-free environment 

can be seen in Figure 5 a until k. The Q-learning 

agent successfully constructs a path from the 

predetermined initial coordinates to the goal 

without traversing the existing obstacles. 

 

 
a. Room 1A 

 
b. Room 1B 

 
c. Room 1C 

 
d. Power room 

 
e. Meeting room 1 

 
f. Meeting room 2 

 
g. Disabled toilet 

 
h. Cleansing room 

 
i. Women restroom 
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j. Men restroom 

 
k. Pantry 

Figure 5. Shortest route Q-learning agent 

 

The comparison of the path lengths generated 

by the Q-learning agent with the reference path 

lengths in each room can be seen in Table 6. The 

Q-learning agent succeeded in matching the 

length of the reference path or with a 100% 

accuracy rate. This demonstrates that the Q-

learning agent has successfully built an optimal 

policy, allowing it to find the shortest path from 

the starting point to the destination. 

 
Table 6. Path length comparison 

No. Room 

Names 

References 

Path (grid) 

Q-

learning 

Path 

(grid) 

Q-learning 

Accuracy 

(%) 

1 1A 63 63 100 
2 1B 49 49 100 

3 1C 20 20 100 

4 Power 
room 

41 41 100 

5 Meeting 

room 1 

34 34 100 

6 Meeting 

room 2 

27 27 100 

7 Disabled 
toilet 

9 9 100 

8 Cleansing 

room 

13 13 100 

9 Women’s 

restroom 

18 18 100 

10 Men’s 
restroom 

18 18 100 

11 Pantry 12 12 100 

Average Q-learning Accuracy 100 

 

During the training process, the agent will 

accumulate knowledge from the DC building 

environment. The number of steps required by the 

agent to reach the goal gradually decreases as the 

number of episodes increases. Figure 6 a until k 

shows the number of steps taken by the agent to 

reach the goal from the starting point in the 

obstacle-free environment. The longer the 

distance from the agent's starting point to the 

destination, as in space 1A, the more episodes the 

agent needs to converge, while in room that are 

close to the goal, the fewer episodes it needs to 

converge. 

 

 
a. Room 1A 

 
b. Room 1B 

 
c. Room 1C 
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d. Power room 

 
e. Meeting room 1 

 
f. Meeting room 2 

 
g. Disabled toilet 

 
h. Cleansing room 

 
i. Women’s restroom 

 
j. Men’s restroom 

 
k. Pantry 

Figure 6. Q-learning convergence graph 

 

Table 7 shows at which episode the Q-learning 

agent begins to converge and the computation 

time required by the agent to complete 3000 

episodes in the scenario of the obstacle-free 

environment. The average computational time 

required for the agent to complete one training 

iteration in an obstacle-free environment is 0.54 

seconds. 
 

Table 7. Episode and CPU time Q-learning 

No. Room Names Episode 
CPU 

Time (s) 

1 1A 1042 1.53 

2 1B 258 0.69 

3 1C 152 0.22 
4 Power room 641 1.28 

5 Meeting room 1 238 0.84 
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No. Room Names Episode 
CPU 

Time (s) 

6 Meeting room 2 231 0.53 

7 Disabled toilet 24 0.14 
8 Cleansing room 77 0.20 

9 Women’s restroom 153 0.19 

10 Men’s restroom 165 0.22 
11 Pantry 83 0.16 

Average CPU Time 0.54 

 

Testing was also conducted in an environment 

that has additional obstacles. The additional 

obstacles are placed in rooms 1A, 1B, 1C, and 

meeting rooms 1 and 2, representing furniture 

inside the rooms. The starting coordinate points 

used are the same as those in the obstacle-free 

environment. The resulting paths created by the 

Q-learning agent can be seen in Figure 7.  

 
a. Room 1A 

 
b. Room 1B 

 
c. Room 1C 

 
d. Meeting room 1 

 
e. Meeting room 2 

Figure 7. Q-learning paths in the environment with additional 

obstacles 

 

Table 8 shows the path lengths generated by 

the agent to reach the goal. The agent can reach 

the goal even with additional obstacles and still 

obtain the shortest path. 

 
Table 8. Path length of environment with additional obstacles 
and without additional obstacle 

No. 
Room 

Names 

Q-learning Path 

length with 

additional 

obstacles 

Q-learningPath 

length without 

additional obstacles 

1 1A 65 63 
2 1B 49 49 

3 1C 34 20 

4 Meeting 
room 1 

34 34 

5 Meeting 

room 2 

27 27 

Table 9 shows the episodes required by the 

agent to begin converging and the computation 

time required to complete 3000 episodes in 

environment with additional obstacles. Q-learning 

successfully reached the goal in less than 3000 

episodes with an average computation time of 

0.76 seconds. 

 
Table 9. Episode and CPU time Q-learning in an environment 

with additional obstacles 

No. Room Names Episode CPU Time 

(s) 

1 1A 742 1.14 

2 1B 342 0.95 
3 1C 130 0.53 

4 Meeting room 1 260 0.81 

5 Meeting room 2 440 0.39 

Average CPU Time 0.76 

 

4.2. Comparison Q-learning with SARSA 

The Q-learning method used is also compared 

with SARSA using the same parameters and 

environment. A comparison of the paths created 

by Q-learning (left side) and SARSA (right side) 

can be seen in Figure 8 a to k.. There is a 

difference in the grid environment in the SARSA 

testing, specifically in room 1A, 1B, and the 

power room, where the room doors are made 

larger with a size of 3 grids. Meanwhile, in the Q-

learning environment, the doors in room 1A and 

1B are 2 grids in size, and the power room is 1 

grid in size. This is because the SARSA agent 

cannot find a path if the room doors are made the 

same as the environment for Q-learning testing. 

Additionally, the SARSA agent maneuvers 

through obstacles to reach the exit door. 
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a. Room 1A 

  
b. Room 1B 

  
c. Room 1C 

  
d.Power room 

  
e. Meeting room 1 

  
f. Meeting room 2 
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g. Disabled toilet 

  
h. Cleansing room 

  
i.Women’s restroom 

  
j. Men’s restroom 

  
k. Pantry 

Figure 8. Comparison of paths created by Q-learning (left) and SARSA (right) agents in each room 

 

Table 10 provides a comparison of the path 

lengths created by the SARSA agent with those of 

the Q-learning agent. The path lengths generated 

by SARSA are generally longer than those of Q-

learning, except for the disabled toilet where the 

path lengths are the same. Additionally, the path 

from the pantry is shorter for Q-learning, but the 

SARSA agent maneuvers through obstacles to 

achieve the shortest path, as seen in Figure 8 k. 

The average accuracy of the paths generated by 

the SARSA agent, when compared to the paths 

created by the Q-learning agent, is 75.05%.  The 

longer path lengths produced by SARSA are 

attributed to the difference in approach in 

selecting policies. SARSA consistently adopts the 

same policy throughout the training process, even 

if there is a more advantageous policy available. 

Consequently, if the chosen policy is suboptimal, 

it can lead to longer path lengths. On the other 

hand, Q-learning always selects the policy with 

the maximum value for the next action, resulting 

in a more optimal policy. 

 
Table 10. Comparison of SARSA and Q-learning path lengths 

No. 
Room 

Names 

Q-learning 

Path 

Length 

(grid) 

SARSA 

Path 

Length 

(grid) 

SARSA 

Accuracy 

(%) 

1 1A 63 77 77.77 

2 1B 49 55 87.75 
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No. 
Room 

Names 

Q-learning 

Path 

Length 

(grid) 

SARSA 

Path 

Length 

(grid) 

SARSA 

Accuracy 

(%) 

3 1C 20 30 50 

4 Power 

room 

41 45 90.24 

5 Meeting 

room 1 

34 60 23.53 

6 Meeting 
room 2 

27 31 85.19 

7 Disabled 

toilet 

9 9 100 

8 Cleansing 

room 

13 13 100 

9 Women’s 
restroom 

18 22 77.77 

10 Men’s 

restroom 

18 21 83.33 

11 Pantry 12 6 50 

Average SARSA Accuracy 75.05 

 

Table 11 presents a comparison of the episodes 

required to initiate convergence and the 

computational time needed to complete the 

training for both SARSA and Q-learning. Both 

methods can converge in fewer than 3000 

episodes. In some rooms, SARSA may require 

fewer episodes than Q-learning. However, on 

average, the computational time for Q-learning is 

superior to SARSA, with 0.54 seconds for Q-

learning compared to 0.94 seconds for SARSA. 

Table 11 also shows that several rooms trained 

using Q-learning have a higher number of 

episodes but with shorter CPU time compared to 

training using SARSA, as seen in rooms 1A, 

Power room, Women's restroom, and Men's 

restroom. This indicates that Q-learning generally 

has a more efficient computation time per episode 

because it requires less computational time per 

episode than SARSA. This makes Q-learning 

advantageous in cases where many episodes are 

required, such as in environments with many 

obstacles, as many episodes can be completed in a 

shorter time. 

 
Table 11. Comparison SARSA and Q-learning episode and 

CPU time 

No. 
Room 

Names 

Q-learning SARSA 

Episode 

CPU 

Time 

(s) 

Episode 

CPU 

Time 

(s) 

1 1A 1042 1.53 554 1.56 

2 1B 258 0.69 397 1.70 
3 1C 152 0.22 153 0.70 

4 Power 

room 

641 1.28 639 1.44 

5 Meeting 

room 1 

238 0.84 380 2.11 

6 Meeting 

room 2 

231 0.53 280 0.83 

7 Disabled 
toilet 

24 0.14 47 0.30 

8 Cleansing 

room 

77 0.20 77 0.36 

9 Women’s 153 0.19 104 0.69 

No. 
Room 

Names 

Q-learning SARSA 

Episode 

CPU 

Time 

(s) 

Episode 

CPU 

Time 

(s) 

restroom 
10 Men’s 

restroom 

165 0.22 72 0.38 

11 Pantry 83 0.16 108 0.23 

Average CPU Time 0.54  0.94 

 

SARSA was also tested in an environment 

with additional obstacles. However, SARSA did 

not perform well in that environment. The SARSA 

agent could only create paths in meeting rooms 1 

and 2, while in rooms 1A, 1B, and 1C, SARSA 

failed to find a path. The illustration of the paths 

created by the SARSA agent can be seen in 

Figures 9 a and b. The comparison of path lengths 

created by SARSA and Q-learning in an 

environment with additional obstacles can be 

observed in Table 11. 

 
a. Meeting room 1 

 
b. Meeting room 2 

Figure 9. SARSA paths in the environment with additional 

obstacles 

 

Table 12. Length of Q-learning and SARSA paths in 

environments with additional obstacles 

No. Room Names Q-learning SARSA 

1 1A 65 - 

2 1B 49 - 

3 1C 34 - 
4 Meeting room 1 34 44 

5 Meeting room 2 27 87 

 

The comparison of episodes required to 

initiate convergence and computational time to 

complete one training iteration in an environment 

with additional obstacles can be observed in Table 

13. In Meeting Room 1, SARSA requires more 

episodes to start converging, specifically 487 

episodes, and also has a longer computational 

time of 10.17 seconds. Meanwhile, in Meeting 

Room 2, SARSA requires fewer episodes, 

specifically 158 episodes, but has a longer 

computation time of 1.17 seconds. 
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Table 13. Comparison of episodes and computational time for 

Q-learning and SARSA in environment with additional 

obstacles. 

No. Room 

Names 
Q-learning SARSA 

Episode CPU 

Time 

(s) 

Episode CPU 

Time 

(s) 

1 1A 742 1.14 - - 
2 1B 342 0.95 - - 

3 1C 130 0.53 - - 

4 Meeting 
room 1 

260 0.81 487 10.17 

5 Meeting 
room 2 

440 0.39 158 1.17 

Average CPU Time 0.76   

 

5. Conclusion 

 

The Q-learning method has been successfully 

applied to design evacuation routes in the DC 

UNNES building on the 1st floor. The Q-learning 

method was tested in an environment without 

additional obstacles, comprising 11 rooms. The 

path created by the Q-learning agent can be 

observed in Figure 5. In terms of performance, the 

Q-learning agent successfully generated the 

shortest path, with a length equal to the reference 

path or having 100% accuracy, with the number of 

episodes below 3000 and an average computation 

time of 0.54 seconds. In this environment, as the 

distance from the agent's starting point to the goal 

increases, it requires more episodes and longer 

computation time. Then, in an environment with 

additional obstacles, Q-learning was tested in 5 

rooms and still managed to find the shortest path 

with episodes below 3000 and an average 

computation time of 0.76 seconds. 

The Q-learning method was also compared 

with SARSA in the same environment. The path 

length created by SARSA in an environment 

without additional obstacles has an accuracy rate 

of 75.05% and requires longer computation time, 

namely 0.94 seconds compared to Q-learning. 

However, the required episodes can still be below 

3000. The paths created by SARSA in the pantry 

are indeed shorter than those created by Q-

learning, but they are made by maneuvering 

through obstacles. In an environment with 

additional obstacles, SARSA performs less 

effectively. Out of 5 rooms, SARSA can only find 

paths in 2 rooms, namely meeting rooms 1 and 2. 

Based on the experiments conducted, Q-

learning works very well in the DC building 

environment. Q-learning can be an alternative 

method for evacuation route planning due to its 

excellent flexibility, applicable to various 

environments. Moreover, if there are changes in 

the environment, the Q-learning method can adapt 

quickly. Moving forward, we will continue to 

develop methods for evacuation route planning, 

especially using reinforcement learning, to make 

it more effective and efficient, such as using 

multi-agents, Deep Q-Networks, and developing 

methods for optimizing parameters like dynamic 

discount factors, reward systems, epsilon, and 

learning rates. 
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