
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)

17/2 (2024), 145-158. DOI: http://dx.doi.org/10.21609/jiki.v17i2.1236

145

Application of Q-learning Method for Disaster Evacuation Route Design

Case Study: Digital Center Building UNNES

Hanan Iqbal Alrahma, Anan Nugroho*, Ahmad Fashiha Hastawan3, Ulfah Mediaty Arief4

1,2,3,4Faculty of Engineering, Universitas Negeri Semarang, Gunungpati, Semarang, 50229, Indonesia

E-mail: 1hananiqbal99@students.unnes.ac.id, 2anannugroho@mail.unnes.ac.id,
3ahmad.fashiha@mail.unnes.ac.id, 4ulfahmediatyarief@mail.unnes.ac.id

Abstract

The Digital Center (DC) building at UNNES is a new building on the campus that currently

lacks evacuation routes. Therefore, it is necessary to create an evacuation route plan in

accordance with the Minister of Health Regulation Number 48 of 2016. Creating a manual

evacuation route plan can be inefficient and prone to errors, especially for large buildings

with complex interiors. To address this issue, learning techniques such as reinforcement

learning (RL) are being used. In this study, Q-learning will be utilized to find the shortest

path to the exit doors from 11 rooms on the first floor of the DC building. The study makes

use of the floor plan data of the DC building, information about the location of the exit

doors, and the distance required to reach them. The results of the study demonstrate that Q-

learning successfully identifies the shortest evacuation routes for the first-floor DC

building. The routes generated by Q-learning are identical to the manually created shortest

paths. Even when additional obstacles are introduced into the environment, Q-learning is

still able to find the shortest routes. On average, the number of episodes required for

convergence in both environments is less than 1000 episodes, and the average computation

time needed for both environments is 0.54 seconds and 0.76 seconds, respectively.

Keywords: evacuation route, reinforcement learning, Q-learning

1. Introduction

The challenge of evacuation within a building,

aside from the condition of the building's

extensive and complex layout, lies in the lack of

knowledge about internal connectivity within the

structure. In such situations, individuals inside the

building may not be aware of suitable evacuation

routes, especially when facing unexpected events

such as fires, tsunamis, or hurricanes. It is crucial

to swiftly move occupants to safe areas to

minimize potential damage and effectively

manage emergency situations [1]. Therefore,

planning navigation for optimal evacuation routes

can reduce the likelihood of property damage,

control congestion during emergencies, and

shorten evacuation times to ensure that inhabitants

can be safely and efficiently evacuated, ultimately

saving more lives [2]–[4].

According to the Minister of Health

Regulation (Permenkes) Number 48 of 2016

regarding Occupational Safety and Health

Standards in Offices, every building is mandated

to have a designated area used as an assembly

point and an evacuation route diagram. The

evacuation route diagram is intended to show

where occupants should gather in case of an

emergency and are instructed to evacuate [5]. The

Digital Center (DC) building at UNNES is a

building that can be categorized as an office

building, constructed in 2019 and completed in

2021. The DC building is located on the west

campus of Semarang State University, Sekaran,

Gunungpati, Semarang City. Based on

observations, the DC building has dimensions of

50x20 meters and consists of 4 floors, with a total

of 44 rooms. As it is a relatively new building on

the campus area, the DC building does not

http://dx.doi.org/10.21609/jiki.v17i2.1236
mailto:1hananiqbal99@students.unnes.ac.id
mailto:2anannugroho@mail.unnes.ac.id
mailto:3ahmad.fashiha@mail.unnes.ac.id
mailto:4ulfahmediatyarief@mail.unnes.ac.id

146 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,

 issue 2, June 2024

currently have evacuation routes. Therefore, it is

necessary to create an evacuation route map for

the DC building to comply with the regulations

stated in the Minister of Health Regulation

Number 48 of 2016.

Planning evacuation routes within a building

can be done manually by calculating the shortest

distance from the starting point to the endpoint.

However, this method is less efficient, involves a

high workload, and has a high potential for errors

[6]. Therefore, automatic pathfinding algorithms

like A-star and Dijkstra are employed. With the

advancement of technology, automatic

pathfinding is not limited to A-star and Dijkstra

algorithms [7]. Many other algorithms are

utilized, including genetic algorithms (GA), ant

colony optimization, neural networks, and

machine learning techniques such as

reinforcement learning [2], [3], [7].

Several studies demonstrate evacuation route

planning using various methods. A study

conducted by Wu, Kang, and Wang aims to

identify methods for simulating the evacuation

process indoors. The study proposes a Cellular

Automaton Crowd Route Choice (CACR) model

under different conditions such as fire or sound

warning systems. Experiments were conducted in

a gymnasium with four exit doors for the stadium

evacuation scenario. The results indicate that the

CACR model achieved a total evacuation time of

3 minutes and 54 seconds [8].

In 2019, Peng et al. conducted research on

evacuation route planning for a building by

implementing a neural network, specifically the

Back-propagation Neural Network. The study

aimed to plan dynamic evacuation routes for a

public building with 15 floors. The model was

tested under four different conditions: during

office hours with 36 people in the main building

and 1045 people in the additional building, during

business hours with 9 people in the main building

and 1420 people in the additional building, during

nighttime with 272 people in the main building

and 30 people in the additional building, and

during holidays with 105 people in the main

building and 750 people in the additional

building. The test results indicated that during

office hours, the average evacuation time was

53.50 seconds, during business hours it was 49.47

seconds, during nighttime it was 121.24 seconds,

and during holidays it was 57.63 seconds [3].

In 2021, Xue et al. conducted a study to

develop an automatic evacuation guidance system

in buildings by proposing the Combined Action

Space Deep Q-Network (CA-DQN) method.

Experimental results demonstrated that the

proposed method achieved the fastest evacuation

time, which was 31.65 seconds. In comparison,

the Dynamic Shortest Path method required 32.18

seconds, and evacuation using static signs took

41.35 seconds [6].

The research conducted by Wu et al. in 2022,

titled 'Evacuation Optimization of a Typical

Multi-exit Subway Station: Overall partition and

local railing, focuses on optimizing the evacuation

of a subway station with multiple exit points by

utilizing room partitions and local railings. The

evacuation was simulated using Pathfinder, an

emergency exit simulator based on an agent-based

model (ABM). The study's results indicate that the

use of local railings can balance the density

distribution at different exit points, enabling

evacuation to be completed in less than 200

seconds [9].

In 2022, Xu et al. utilized Q-learning for

indoor emergency route planning. The research

results indicated that the enhanced Q-learning

approach could achieve the goal in 42 steps,

converge after 500 iterations, and had a

computational time of 13,738 seconds. These

outcomes were superior to the State-Action-

Reward-State-Action (SARSA) algorithm, which

reached the goal in 102 steps, showed no

convergence after 5000 iterations, and had a

computational time of 164.86 seconds.

Additionally, the classical Q-learning, when

tested, achieved the goal in 42 steps, converged

after approximately 2500 iterations, and had a

computational time of 68,692 seconds [4].

Based on the research above, evacuation route

planning has been conducted using various

methods, some of which have employed

reinforcement learning such as Q-learning and

DQN. In the study by Xu et al, it has been

demonstrated that Q-learning yields favorable

results for designing evacuation routes within a

building. Therefore, this method has the potential

to be applied in designing evacuation routes for

the DC UNNES building, which currently lacks

an evacuation route layout.

2. Related Works

 In addition to being used for pathfinding, Q-

learning has also been applied in various other

fields, as demonstrated in several studies. In the

research conducted by Ardiansyah in 2017, Q-

learning, combined with backpropagation, was

employed to play the game Flappy Bird. The Q-

learning with backpropagation required an

average training time of 9 minutes and 1 second,

while classical Q-learning took 120 minutes.

Therefore, Q-learning with backpropagation was

92% faster than classical Q-learning with similar

performance [14].

 Furthermore, in a study by Low, Ong, and

Alrahma et.al., Application of Q-learning Method for Disaster Evacuation Route Design 147

Cheah in 2019, improved Q-learning was utilized

to create optimal routes for a mobile robot. The

research results indicated that Q-learning in

simulation covered 22 units, and in real-world

experiments, it covered 22.37 units with a

deviation percentage of 1.68%. Additionally, the

Improved Q-learning-Flower Pollination

Algorithm (IQ-FPA) in simulation covered 24

units, and in the real world, it covered 23.57 units,

with a deviation percentage of 1.79%. Improved

Decentralized Q-learning (IDQ) in simulation

covered a distance of 26 units, and in the real

world, it covered a distance of 26.23 units, with a

deviation percentage of 0.88% [10].

 Li & Li conducted research using enhanced Q-

learning, namely adaptive exploration Q-learning

(AEQ), to solve path planning problems in an

unknown environment. In scenario 1, both AEQ

and Q-learning achieved the goal in 22 units, with

an average computation time of 13.98 seconds for

Q-learning and 13.08 seconds for AEQ.

Meanwhile, SARSA reached the goal in 24 units,

with a computation time of 13.86 seconds. In

scenario 2, AEQ, Q-learning, and SARSA all

required 23 units to reach the goal. The

computation time for Q-learning in scenario 2 was

14.20 seconds, SARSA was 13.72 seconds, and

AEQ was 12.53 seconds [11].

 In a study conducted by Maoudj and Hentout

in 2020, Q-learning was used for path planning in

a mobile robot in various environments. In an

environment with 8 obstacles, Q-learning covered

28.93 units with a computation time of 4.06

seconds. In an environment with 9 obstacles, Q-

learning covered 30.67 units with a computation

time of 4.04 seconds. In an environment with 10

obstacles, Q-learning covered a distance of 30

units with a computation time of 3.64 seconds

[12].

 The study by Zhang et al tested classical Q-

learning and modified Q-learning methods,

namely self-adaptive reinforcement-exploration

Q-Learning (SARE-Q) and self-adaptive Q-

Learning (SA-Q), on the OpenAI Gym grid

environment. In a 20x20 grid environment, Q-

learning required an average operation time of

2.047 seconds and an average number of steps of

23.38. SA-Q method required an average

computation time of 1.739 seconds and an

average number of steps of 24.44. Meanwhile, the

SARE-Q method required an average computation

time of 1.995 seconds and an average number of

steps of 23.16. In a 10x10 grid environment, Q-

learning required an average operation time of

1.43 seconds and an average number of steps of

24.24. SA-Q method required an average

computation time of 1.034 seconds and an

average number of steps of 24.16. The SARE-Q

method required an average computation time of

1.147 seconds and an average number of steps of

24.04 seconds [13].

 These studies collectively demonstrate the

performance of Q-learning in solving various

cases. Reinforcement learning is suitable for

scenarios that lack a dataset or have limited data,

such as evacuation simulation and pathfinding in

unknown environments [15]. Therefore, Q-

learning is suitable for designing disaster

evacuation routes in the DC building. In this

study, classical Q-learning was used, and its

learning rate and reward system parameters were

experimentally modified with reference to the

research by [4].

Another consideration for using Q-learning is

the current limitations of computational resources.

Therefore, this research will be conducted in

stages, starting with methods that require low

computational resources and then proceeding to

methods that require higher computational

resources such as DQN. This way, we can make

computation more efficient if more conventional

methods can be optimal in handling pathfinding

from an environment. The gradual implementation

of Q-learning is also adopted by a number of

studies [4], [10]–[13]. This is an advantage for

several users who have limited computing

machines.

3. Methodology

3.1. Environment Modelling

The environment used is the first floor of the

UNNES Digital Center (DC) building, which was

first represented in a floor plan with a scale of

1:100. This study only utilizes the first floor of the

DC building because floors 2 to 4 have similar

room placements and furniture arrangements as

the first floor, both in terms of the number of

rooms and layout. Thus, the mapping results on

the first floor can be easily duplicated on floors 2

to 4. The first floor is prioritized for simulation in

this research because it has the highest pedestrian

traffic density and direct access to the building's

entrance and exit doors. Figure 1 shows the floor

plan of the DC building's first floor, and Table 1

presents the names and sizes of the rooms.

Figure 1. First floor plan

148 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,

 issue 2, June 2024

Table 1. Name and room size of DC building first floor

No. Room Names Size

1 Room 1A 12x10 meters

2 Room 1B 12x10 meters
3 Room 1C 12x10 meters

4 Power room 6x4 meters

5 Meeting room 1 12x5 meters
6 Meeting room 2 9x5 meters

7 Disabled toilet 2x2 meters

8 Cleansing room 2x2 meters
9 Toilet 6x3 meters

10 Pantry 5x2 meters

Next, the grid version of the environment is

created using the Python programming language,

utilizing the Tkinter library. The grid version of

the environment is shown in Figure 2.

Figure 2. Grid version environment

The grid environment has dimensions of

50x20 grids. In the grid environment, the elevator

is ignored as the agent will not pass through it.

Each grid in the environment represents 1 meter

in the real-world condition. This grid unit is also

used as a unit of measurement for the number of

steps the agent takes on the reference path as in

Table 5, and the Q-learning path as in Table 6, etc.

The total number of grids represents the number

of states that the agent can traverse, which is 1000

states. The agent is depicted as a blue circle that

can move within each room. The initial

coordinates of the agent in each room can be seen

in Table 5. The agent has 4 actions, namely

moving up, right, down, and left. The goal is

represented by a green square located at

coordinates (12,0), which is the exit door of the

building that the agent must reach, and it provides

a reward of +10. White squares represent areas

that the agent can pass through and have a reward

of -1. On the other hand, black squares represent

obstacles, and if the agent passes through them, it

will receive a reward of -10.

3.2. Q-learning Implementation

Q-learning [16] is a model in RL

(Reinforcement Learning). Q-learning belongs to

the model-free and off-policy RL category. In off-

policy RL, the agent attempts to build an optimal

policy by directly interacting with the

environment. In Q-learning, the agent uses a trial

and error approach, wherein it repeatedly solves

the problem using various approaches and

continuously updates the policy as it learns about

the environment [17].

In Q-learning, there is a Q-value that estimates

how much additional reward can be obtained

through all the remaining steps in the current

episode if the agent is in state (s) and takes action

(a). To calculate the Q-value, Formulation 1 is

used.

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾
𝑚𝑎𝑥

𝑎
𝑄(𝑆𝑡+1, 𝑎)

− 𝑄(𝑆𝑡, 𝐴𝑡)]

(1)

In Equation 1, there is a learning rate (α) that

usually takes values between 0 and 1. The

learning rate parameter (α) signifies the rate of

change from the old Q-value to be replaced by the

new Q-value [14], [18]. A smaller learning rate

implies a slower change in Q-value, indicating

that the agent is cautious in updating Q-values. A

low learning rate value (approaching 0) will slow

down convergence, but in certain cases, it can

prevent algorithm instability due to rapid Q-value

changes. Conversely, if the learning rate is too

large (approaching 1), the learning process will be

faster, and convergence will occur more rapidly.

However, this may lead to instability due to

excessively fast Q-value changes [19].

The discount factor parameter (γ) is used to

ensure that the rewards received by the agent

remain bounded [14], [17]. The discount factor

also influences the rewards obtained by the agent.

If the discount factor is small (approaching 0), the

agent will prioritize short-term rewards, whereas

if the discount factor is high (approaching 1), the

agent will prioritize long-term rewards [20].

The learning rate, discount factor, epsilon, and

reward parameters are obtained as in the study by

[4]. The determination of the values for learning

rate, discount factor, epsilon, and reward is the

result of experimental customization, ensuring

that the Q-learning used is optimal for automatic

pathfinding in the DC building. The parameter

comparison can be seen in tables 2 to 4. The

experimentation to determine the parameter

values for learning rate, epsilon, and reward was

conducted only in one room, namely room 1A or

at coordinates (34,1).

Table 2. Experimental study of learning rate (α)

No.
Learning rate

(α)

CPU Time

(s)

Step

(grid)
Episode

1 0.01 - - -

2 0.05 - - -

3 0.1 1.53 63 1042

Table 3. Experimental study of epsilon (ε)

No. Epsilon (ε)
CPU Time

(s)

Step

(grid)
Episode

1 0.1 1.53 63 1042
2 0.5 7.9 63 -

Alrahma et.al., Application of Q-learning Method for Disaster Evacuation Route Design 149

No. Epsilon (ε)
CPU Time

(s)

Step

(grid)
Episode

3 0.9 8.6 63 -

Table 4. Experimental study of reward

No. Reward
CPU

Time (s)

Step

(grid)
Episode

1 +1, reach target

location.
-1, reach obstacle

position.

0, reach other
position

- - -

2 +10, reach target

location.
-10, reach obstacle

location.

-1, reach other
location

1.53 63 1042

The Q-value calculated using Equation 1 is

stored in the Q-table. The Q-table contains rows

for each possible state and columns for each

possible action. The optimal Q-table contains

values that allow the agent to choose the best

action in each possible state, thus providing an

optimal path for the agent to achieve the highest

reward. The Q-table represents the agent's policy

for acting in the current environment. The Q-

learning flowchart used in this case can be seen in

Figure 3.

Figure 3. Q-learning flow chart

3.3. Performance Testing

The performance testing aims to analyze the

ability of the Q-learning algorithm in planning

evacuation routes. The system will be tested using

a grid environment that resembles the first floor of

the DC building, which consists of 11 rooms. The

agent will be placed in each room with

predetermined coordinates, as shown in Figure 4,

where the agent is placed in room 1A with

coordinates (40,1), and then training is conducted.

After each training session is completed, the agent

will be moved to the next room for a new training

session, and so on until the agent occupies all the

rooms. Table 5 shows the names of the rooms,

their initial coordinate points, and the reference

path lengths. The reference path is a route

obtained through observation in the DC building

and manually annotated which will be used as a

comparison for the paths created by the Q-

learning agent. The agent is required to reach the

goal without colliding with any obstacles present.

Figure 4. Example of agent placement

Table 5. Room names, initial coordinates, and references path

lengths

No Room Names
Initial

Coordinates

References

Path Length

(grid)

1 1A (34,1) 63
2 1B (22,1) 49

3 1C (10,1) 20

4 Power room (34,17) 41

5 Meeting room 1 (27,19) 32

6 Meeting room 2 (6,19) 24

7 Disabled toilet (7,9) 9
8 Cleansing room (7,7) 13

9 Women’s

restroom

(7,1) 17

10 Men’s restroom (0,0) 18

11 Pantry (0,6) 12

After the initial position of the agent is

determined, the training process is conducted for a

maximum of 3000 episodes using the following

parameters: learning rate α = 0.1, discount factor γ

= 0.9, and exploration probability (ε) = 0.1, based

on the experimental results presented in Tables 2,

3, and 4. The use of ε = 0.1 is intended to make

the agent more inclined towards exploitation,

meaning the agent is more likely to choose actions

with the highest Q values.

After the training process is completed, the

evacuation routes created by the agent will be

evaluated to assess the performance of the Q-

learning algorithm in generating evacuation paths

in the UNNES DC building. The paths created by

the agent, will be measured in terms of the

number of steps taken and then compared with the

150 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,

 issue 2, June 2024

reference path lengths in Table 5. If the number of

steps generated by the agent is the same as than

the number of steps in Table 5, the results are

considered acceptable. Furthermore, the path

results generated by Q-learning will also be

compared with another method, namely SARSA.

SARSA is chosen as it represents a basic

reinforcement learning method, similar to Q-

learning, but they belong to different types – Q-

learning is categorized as off-policy RL, while

SARSA is considered on-policy RL. SARSA is

frequently employed as a benchmark in prior

research studies. To calculate the accuray of the

paths generated by the Q-learning and SARSA

agents, formula (2) is used. The reference used to

calculate accuracy in this study is the reference

path.

1 − (
|𝑎𝑔𝑒𝑛𝑡 𝑝𝑎𝑡ℎ − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑝𝑎𝑡ℎ|

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ
) × 100% (2)

4. Result

4.1. Comparison Q-learning with the

reference path

The simulation is conducted by placing the

agent at the initial coordinates as listed in Table 5,

in each room alternately. The simulation is

implemented using Python with the help of the

libraries tkinter, matplotlib, and numpy. The

simulation is run on a laptop with the following

specifications: Core i5 8250U 1.6 GHz processor,

12 GB RAM, and Windows 11 64-bit operating

system. The shortest path generated by the Q-

learning agent in the obstacle-free environment

can be seen in Figure 5 a until k. The Q-learning

agent successfully constructs a path from the

predetermined initial coordinates to the goal

without traversing the existing obstacles.

a. Room 1A

b. Room 1B

c. Room 1C

d. Power room

e. Meeting room 1

f. Meeting room 2

g. Disabled toilet

h. Cleansing room

i. Women restroom

Alrahma et.al., Application of Q-learning Method for Disaster Evacuation Route Design 151

j. Men restroom

k. Pantry

Figure 5. Shortest route Q-learning agent

The comparison of the path lengths generated

by the Q-learning agent with the reference path

lengths in each room can be seen in Table 6. The

Q-learning agent succeeded in matching the

length of the reference path or with a 100%

accuracy rate. This demonstrates that the Q-

learning agent has successfully built an optimal

policy, allowing it to find the shortest path from

the starting point to the destination.

Table 6. Path length comparison

No. Room

Names

References

Path (grid)

Q-

learning

Path

(grid)

Q-learning

Accuracy

(%)

1 1A 63 63 100
2 1B 49 49 100

3 1C 20 20 100

4 Power
room

41 41 100

5 Meeting

room 1

34 34 100

6 Meeting

room 2

27 27 100

7 Disabled
toilet

9 9 100

8 Cleansing

room

13 13 100

9 Women’s

restroom

18 18 100

10 Men’s
restroom

18 18 100

11 Pantry 12 12 100

Average Q-learning Accuracy 100

During the training process, the agent will

accumulate knowledge from the DC building

environment. The number of steps required by the

agent to reach the goal gradually decreases as the

number of episodes increases. Figure 6 a until k

shows the number of steps taken by the agent to

reach the goal from the starting point in the

obstacle-free environment. The longer the

distance from the agent's starting point to the

destination, as in space 1A, the more episodes the

agent needs to converge, while in room that are

close to the goal, the fewer episodes it needs to

converge.

a. Room 1A

b. Room 1B

c. Room 1C

152 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,

 issue 2, June 2024

d. Power room

e. Meeting room 1

f. Meeting room 2

g. Disabled toilet

h. Cleansing room

i. Women’s restroom

j. Men’s restroom

k. Pantry

Figure 6. Q-learning convergence graph

Table 7 shows at which episode the Q-learning

agent begins to converge and the computation

time required by the agent to complete 3000

episodes in the scenario of the obstacle-free

environment. The average computational time

required for the agent to complete one training

iteration in an obstacle-free environment is 0.54

seconds.

Table 7. Episode and CPU time Q-learning

No. Room Names Episode
CPU

Time (s)

1 1A 1042 1.53

2 1B 258 0.69

3 1C 152 0.22
4 Power room 641 1.28

5 Meeting room 1 238 0.84

Alrahma et.al., Application of Q-learning Method for Disaster Evacuation Route Design 153

No. Room Names Episode
CPU

Time (s)

6 Meeting room 2 231 0.53

7 Disabled toilet 24 0.14
8 Cleansing room 77 0.20

9 Women’s restroom 153 0.19

10 Men’s restroom 165 0.22
11 Pantry 83 0.16

Average CPU Time 0.54

Testing was also conducted in an environment

that has additional obstacles. The additional

obstacles are placed in rooms 1A, 1B, 1C, and

meeting rooms 1 and 2, representing furniture

inside the rooms. The starting coordinate points

used are the same as those in the obstacle-free

environment. The resulting paths created by the

Q-learning agent can be seen in Figure 7.

a. Room 1A

b. Room 1B

c. Room 1C

d. Meeting room 1

e. Meeting room 2

Figure 7. Q-learning paths in the environment with additional

obstacles

Table 8 shows the path lengths generated by

the agent to reach the goal. The agent can reach

the goal even with additional obstacles and still

obtain the shortest path.

Table 8. Path length of environment with additional obstacles
and without additional obstacle

No.
Room

Names

Q-learning Path

length with

additional

obstacles

Q-learningPath

length without

additional obstacles

1 1A 65 63
2 1B 49 49

3 1C 34 20

4 Meeting
room 1

34 34

5 Meeting

room 2

27 27

Table 9 shows the episodes required by the

agent to begin converging and the computation

time required to complete 3000 episodes in

environment with additional obstacles. Q-learning

successfully reached the goal in less than 3000

episodes with an average computation time of

0.76 seconds.

Table 9. Episode and CPU time Q-learning in an environment

with additional obstacles

No. Room Names Episode CPU Time

(s)

1 1A 742 1.14

2 1B 342 0.95
3 1C 130 0.53

4 Meeting room 1 260 0.81

5 Meeting room 2 440 0.39

Average CPU Time 0.76

4.2. Comparison Q-learning with SARSA

The Q-learning method used is also compared

with SARSA using the same parameters and

environment. A comparison of the paths created

by Q-learning (left side) and SARSA (right side)

can be seen in Figure 8 a to k.. There is a

difference in the grid environment in the SARSA

testing, specifically in room 1A, 1B, and the

power room, where the room doors are made

larger with a size of 3 grids. Meanwhile, in the Q-

learning environment, the doors in room 1A and

1B are 2 grids in size, and the power room is 1

grid in size. This is because the SARSA agent

cannot find a path if the room doors are made the

same as the environment for Q-learning testing.

Additionally, the SARSA agent maneuvers

through obstacles to reach the exit door.

154 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,

 issue 2, June 2024

a. Room 1A

b. Room 1B

c. Room 1C

d.Power room

e. Meeting room 1

f. Meeting room 2

Alrahma et.al., Application of Q-learning Method for Disaster Evacuation Route Design 155

g. Disabled toilet

h. Cleansing room

i.Women’s restroom

j. Men’s restroom

k. Pantry

Figure 8. Comparison of paths created by Q-learning (left) and SARSA (right) agents in each room

Table 10 provides a comparison of the path

lengths created by the SARSA agent with those of

the Q-learning agent. The path lengths generated

by SARSA are generally longer than those of Q-

learning, except for the disabled toilet where the

path lengths are the same. Additionally, the path

from the pantry is shorter for Q-learning, but the

SARSA agent maneuvers through obstacles to

achieve the shortest path, as seen in Figure 8 k.

The average accuracy of the paths generated by

the SARSA agent, when compared to the paths

created by the Q-learning agent, is 75.05%. The

longer path lengths produced by SARSA are

attributed to the difference in approach in

selecting policies. SARSA consistently adopts the

same policy throughout the training process, even

if there is a more advantageous policy available.

Consequently, if the chosen policy is suboptimal,

it can lead to longer path lengths. On the other

hand, Q-learning always selects the policy with

the maximum value for the next action, resulting

in a more optimal policy.

Table 10. Comparison of SARSA and Q-learning path lengths

No.
Room

Names

Q-learning

Path

Length

(grid)

SARSA

Path

Length

(grid)

SARSA

Accuracy

(%)

1 1A 63 77 77.77

2 1B 49 55 87.75

156 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,

 issue 2, June 2024

No.
Room

Names

Q-learning

Path

Length

(grid)

SARSA

Path

Length

(grid)

SARSA

Accuracy

(%)

3 1C 20 30 50

4 Power

room

41 45 90.24

5 Meeting

room 1

34 60 23.53

6 Meeting
room 2

27 31 85.19

7 Disabled

toilet

9 9 100

8 Cleansing

room

13 13 100

9 Women’s
restroom

18 22 77.77

10 Men’s

restroom

18 21 83.33

11 Pantry 12 6 50

Average SARSA Accuracy 75.05

Table 11 presents a comparison of the episodes

required to initiate convergence and the

computational time needed to complete the

training for both SARSA and Q-learning. Both

methods can converge in fewer than 3000

episodes. In some rooms, SARSA may require

fewer episodes than Q-learning. However, on

average, the computational time for Q-learning is

superior to SARSA, with 0.54 seconds for Q-

learning compared to 0.94 seconds for SARSA.

Table 11 also shows that several rooms trained

using Q-learning have a higher number of

episodes but with shorter CPU time compared to

training using SARSA, as seen in rooms 1A,

Power room, Women's restroom, and Men's

restroom. This indicates that Q-learning generally

has a more efficient computation time per episode

because it requires less computational time per

episode than SARSA. This makes Q-learning

advantageous in cases where many episodes are

required, such as in environments with many

obstacles, as many episodes can be completed in a

shorter time.

Table 11. Comparison SARSA and Q-learning episode and

CPU time

No.
Room

Names

Q-learning SARSA

Episode

CPU

Time

(s)

Episode

CPU

Time

(s)

1 1A 1042 1.53 554 1.56

2 1B 258 0.69 397 1.70
3 1C 152 0.22 153 0.70

4 Power

room

641 1.28 639 1.44

5 Meeting

room 1

238 0.84 380 2.11

6 Meeting

room 2

231 0.53 280 0.83

7 Disabled
toilet

24 0.14 47 0.30

8 Cleansing

room

77 0.20 77 0.36

9 Women’s 153 0.19 104 0.69

No.
Room

Names

Q-learning SARSA

Episode

CPU

Time

(s)

Episode

CPU

Time

(s)

restroom
10 Men’s

restroom

165 0.22 72 0.38

11 Pantry 83 0.16 108 0.23

Average CPU Time 0.54 0.94

SARSA was also tested in an environment

with additional obstacles. However, SARSA did

not perform well in that environment. The SARSA

agent could only create paths in meeting rooms 1

and 2, while in rooms 1A, 1B, and 1C, SARSA

failed to find a path. The illustration of the paths

created by the SARSA agent can be seen in

Figures 9 a and b. The comparison of path lengths

created by SARSA and Q-learning in an

environment with additional obstacles can be

observed in Table 11.

a. Meeting room 1

b. Meeting room 2

Figure 9. SARSA paths in the environment with additional

obstacles

Table 12. Length of Q-learning and SARSA paths in

environments with additional obstacles

No. Room Names Q-learning SARSA

1 1A 65 -

2 1B 49 -

3 1C 34 -
4 Meeting room 1 34 44

5 Meeting room 2 27 87

The comparison of episodes required to

initiate convergence and computational time to

complete one training iteration in an environment

with additional obstacles can be observed in Table

13. In Meeting Room 1, SARSA requires more

episodes to start converging, specifically 487

episodes, and also has a longer computational

time of 10.17 seconds. Meanwhile, in Meeting

Room 2, SARSA requires fewer episodes,

specifically 158 episodes, but has a longer

computation time of 1.17 seconds.

Alrahma et.al., Application of Q-learning Method for Disaster Evacuation Route Design 157

Table 13. Comparison of episodes and computational time for

Q-learning and SARSA in environment with additional

obstacles.

No. Room

Names
Q-learning SARSA

Episode CPU

Time

(s)

Episode CPU

Time

(s)

1 1A 742 1.14 - -
2 1B 342 0.95 - -

3 1C 130 0.53 - -

4 Meeting
room 1

260 0.81 487 10.17

5 Meeting
room 2

440 0.39 158 1.17

Average CPU Time 0.76

5. Conclusion

The Q-learning method has been successfully

applied to design evacuation routes in the DC

UNNES building on the 1st floor. The Q-learning

method was tested in an environment without

additional obstacles, comprising 11 rooms. The

path created by the Q-learning agent can be

observed in Figure 5. In terms of performance, the

Q-learning agent successfully generated the

shortest path, with a length equal to the reference

path or having 100% accuracy, with the number of

episodes below 3000 and an average computation

time of 0.54 seconds. In this environment, as the

distance from the agent's starting point to the goal

increases, it requires more episodes and longer

computation time. Then, in an environment with

additional obstacles, Q-learning was tested in 5

rooms and still managed to find the shortest path

with episodes below 3000 and an average

computation time of 0.76 seconds.

The Q-learning method was also compared

with SARSA in the same environment. The path

length created by SARSA in an environment

without additional obstacles has an accuracy rate

of 75.05% and requires longer computation time,

namely 0.94 seconds compared to Q-learning.

However, the required episodes can still be below

3000. The paths created by SARSA in the pantry

are indeed shorter than those created by Q-

learning, but they are made by maneuvering

through obstacles. In an environment with

additional obstacles, SARSA performs less

effectively. Out of 5 rooms, SARSA can only find

paths in 2 rooms, namely meeting rooms 1 and 2.

Based on the experiments conducted, Q-

learning works very well in the DC building

environment. Q-learning can be an alternative

method for evacuation route planning due to its

excellent flexibility, applicable to various

environments. Moreover, if there are changes in

the environment, the Q-learning method can adapt

quickly. Moving forward, we will continue to

develop methods for evacuation route planning,

especially using reinforcement learning, to make

it more effective and efficient, such as using

multi-agents, Deep Q-Networks, and developing

methods for optimizing parameters like dynamic

discount factors, reward systems, epsilon, and

learning rates.

References

[1] K. Deng, Q. Zhang, H. Zhang, P. Xiao,

dan J. Chen, “Optimal Emergency

Evacuation Route Planning Model Based

on Fire Prediction Data,” Mathematics,

vol. 10, no. 17, hal. 1–23, 2022, doi:

10.3390/math10173146.

[2] A. Karasi dan A. P. S. Rathod, “Finding

safe path and locations in disaster affected

area using Swarm Intelligence,” 2016 Int.

Conf. Emerg. Trends Commun. Technol.

ETCT 2016, 2017, doi:

10.1109/ETCT.2016.7882983.

[3] Y. Peng, S. W. Li, dan Z. Z. Hu, “A self-

learning dynamic path planning method

for evacuation in large public buildings

based on neural networks,”

Neurocomputing, vol. 365, hal. 71–85,

2019, doi: 10.1016/j.neucom.2019.06.099.

[4] S. Xu dkk., “Indoor Emergency Path

Planning Based on the Q-Learning

Optimization Algorithm,” ISPRS Int. J.

Geo-Information, vol. 11, no. 1, 2022,

doi: 10.3390/ijgi11010066.

[5] Peraturan Menteri Kesehatan Republik

Indonesia, “Permenkes RI Nomor 48

Tahun 2016 Tentang Standar Keselamatan

dan Kesehatan Kerja Perkantoran.”

Kementrian Kesehatan, Jakarta,

Indonesia, 2016. [Daring]. Tersedia pada:

http://www.ncbi.nlm.nih.gov/pubmed/268

49997%0Ahttp://doi.wiley.com/10.1111/j

ne.12374

[6] Y. Xue, R. Wu, J. Liu, dan X. Tang,

“Crowd Evacuation Guidance Based on

Combined Action Reinforcement

Learning,” Algorithms, vol. 14, no. 1,

2021, doi: 10.3390/a14010026.

[7] P. Thombre, “Multi-objective path finding

using reinforcement learning,” Master’s

Thesis, hal. 52, 2018, doi:

https://doi.org/10.31979/etd.2ntb-4j8q.

[8] Y. Wu, J. Kang, dan C. Wang, “A crowd

route choice evacuation model in large

indoor building spaces,” Front. Archit.

Res., vol. 7, no. 2, hal. 135–150, 2018,

doi: 10.1016/j.foar.2018.03.003.

[9] P. Wu, Y. Wang, J. Jiang, J. Wang, dan R.

Zhou, “Evacuation Optimization of a

158 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,

 issue 2, June 2024

Typical Multi-exit Subway Station:

Overall partition and local railing,” Simul.

Model. Pract. Theory, vol. 115, no.

October 2021, hal. 102425, 2022, doi:

10.1016/j.simpat.2021.102425.

[10] E. S. Low, P. Ong, dan K. C. Cheah,

“Solving the optimal path planning of a

mobile robot using improved Q-learning,”

Rob. Auton. Syst., vol. 115, hal. 143–161,

2019, doi: 10.1016/j.robot.2019.02.013.

[11] T. Li dan Y. Li, “A Novel Path Planning

Algorithm Based on Q-learning and

Adaptive Exploration Strategy,” 2019 Sci.

Conf. Network, Power Syst. Comput.

(NPSC 2019), vol. 3, no. Npsc, hal. 105–

108, 2019, doi: 10.33969/eecs.v3.024.

[12] A. Maoudj dan A. Hentout, “Optimal path

planning approach based on Q-learning

algorithm for mobile robots,” Appl. Soft

Comput. J., vol. 97, hal. 106796, 2020,

doi: 10.1016/j.asoc.2020.106796.

[13] L. Zhang, L. Tang, S. Zhang, Z. Wang, X.

Shen, dan Z. Zhang, “A self‐adaptive

reinforcement‐exploration q‐learning

algorithm,” Symmetry (Basel)., vol. 13,

no. 6, hal. 1–16, 2021, doi:

10.3390/sym13061057.

[14] A. Ardiansyah dan E. Rainarli,

“Implementasi Q-Learning dan

Backpropagation pada Agen yang

Memainkan Permainan Flappy Bird,” J.

Nas. Tek. Elektro dan Teknol. Inf., vol. 6,

no. 1, hal. 1–7, 2017, doi:

10.22146/jnteti.v6i1.287.

[15] H. Park, D. Liu, dan S. Namilae, “Multi-

Agent Reinforcement Learning-Based

Pedestrian Dynamics Models for

Emergency Evacuation Final Report,” no.

June, 2022.

[16] C. J. C. H. Watkins, “Learning from

delayed rewards. PhD thesis,” King’s

College London, 1989.

[17] R. S. Sutton dan A. G. Barto,

Reinforcement learning: An introduction,

2nd ed. Cambridge, MA, US: The MIT

Press, 2018.

[18] E. Even-Dar dan Y. Mansour, “Learning

Rates for Q-Learning BT -

Computational Learning Theory,” 2001,

hal. 589–604.

[19] N. Rochmawati, H. B. Hidayati, Y.

Yamasari, H. P. A. Tjahyaningtijas, W.

Yustanti, dan A. Prihanto, “Analisa

Learning Rate dan Batch Size pada

Klasifikasi Covid Menggunakan Deep

Learning dengan Optimizer Adam,” J. Inf.

Eng. Educ. Technol., vol. 5, no. 2, hal.

44–48, 2021, doi:

10.26740/jieet.v5n2.p44-48.

[20] M. S. Kim, J. S. Kim, M. S. Choi, dan J.

H. Park, “Adaptive Discount Factor for

Deep Reinforcement Learning in

Continuing Tasks with Uncertainty,”

Sensors, vol. 22, no. 19, hal. 1–22, 2022,

doi: 10.3390/s22197266.

