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Abstract 

 
Detecting DNA sequence mutations in cancer patients contributes to early identification and treatment 
of the disease, which ultimately enhances the effectiveness of treatment. Bioinformatics utilizes 
sequence alignment as a powerful tool for identifying mutations in DNA sequences. We used the 
Needleman-Wunsch algorithm to identify mutations in DNA sequence data from cancer patients. The 

cancer sequence dataset used includes breast, cervix uteri, lung, colon, liver and prostate cancer. Various 
types of mutations were identified, such as Single Nucleotide Variant (SNV)/substitution, insertion, and 
deletion, locate by the nucleotide index. The Needleman Wunch algorithm can detect type and index 
mutation with the average F1-scores 0.9507 for all types of mutations, 0.9919 for SNV, 0.7554 for 
insertion, and 0.8658 for deletion with a tolerance of 5 bp. The F1 scores obtained are not correlated 
with gene length. The time required ranges from 1.03 seconds for a 290 base pair gene to 3211.45 
seconds for a gene with 16613 base pairs. 

 
Keywords: Cancer early detection, DNA sequence, Mutation detection, Needleman-Wunsch, Sequence 
alignment. 

 

 

 

1. Introduction 

 

The rising number of cancer-related deaths and 

newly diagnosed patients emphasizes the critical 

importance of early cancer detection. Delayed 

examination leads to a late diagnosis, which is one 

of the factors that causes increased mortality. In 

patients with late diagnosis, cancer develops to an 
advanced stage, and treatment becomes less 

effective. Performing a biopsy on solid tumors can 

be particularly challenging in cases where a tumor 

is not formed or when the cancer is located in a 

hard-to-reach organ. So, DNA tests using patients’ 

blood samples can be used for early detection of 

cancer. An abnormality (mutation) in the DNA can 

cause cancer. Different types of mutations can 

occur, including single nucleotide variant 

(SNV)/substitution, insertion, and deletion. 

Different types of cancer cause different mutations 

in the chromosomes. For example, in breast cancer, 
gene mutations often occur in the BRCA1, BRCA2 

[1], [2], [3], [4], [5], and PALB2 genes [6]. 

Bioinformatics can be used as an alternative to 

detect these gene mutations. An effective method 

to identify mutations in cancer involves the 

alignment approach, which entails comparing the 

patient's DNA sample to a comprehensive database 

of reference DNA sequences. The effectiveness of 

the alignment process can be evaluated by 

measuring the match/mismatch value of the matrix 
created for each nucleotide or amino acid residue 

that is part of the alignment. Several studies were 

conducted to detect mutations using an alignment 

approach. Dicks built a system called AutoCSA to 

detect somatic variants using the ABI Genescan 

software [7]. In 2008, Huang and his team 

introduced an innovative mapping technique 

designed to significantly accelerate the alignment 

process. This technique involves converting each 

nucleotide into unique integer values, ranging from 

h1 to h4. By ensuring that the values are distinct, 

Huang's method revolutionizes the alignment 
process [8]. Teer conducted research on mutation 

detection using the GATK Unified Genotyper 
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software, without the need to match the test 

sequences to normal sample sequence data. Not 

matching the test sample with a normal sample 

leads to less precise results compared to using a 

normal sample [9]. 

IsoMut, a tool developed by Pipek and 

colleagues in 2017, is the solution for identifying 

mutations in multiple isogenic samples in 

experimental scenarios [10]. IsoMut is capable of 

decreasing the occurrence of false positives when 
compared to traditional tools. It surpasses them by 

a wide margin in its ability to accurately identify 

not only single nucleotide variations, but also 

detect insertions and deletions. This remarkable 

tool exhibits its superiority in as many as 30 

isogenic samples. Schmidt's two-line sweep-based 

technique is capable of managing high throughput 

alignment, offering superior accuracy when 

compared to previous aligners, which struggled 

with multiple insertions and deletions [11]. When 

Bivartect converts the entire sequence to a bit 
string, it only needs to store a small part of the 

suffix reads in memory – specifically, the position 

at which the sequence alignment process deviates. 

Bivartect can identify multiple single nucleotide 

variations by comparing short reads with normal 

samples. [12]. 

According to the research mentioned earlier, 

the alignment method is capable of accurately 

identifying mutations in DNA sequence data. In 

this paper, we employed the Needleman-Wunsch 

algorithm, an alignment approach, to identify type 
and index mutation in DNA sequences of cancer 

patients. The Needleman-Wunsch algorithm is a 

powerful global pairwise alignment algorithm that 

efficiently aligns two sequences starting from the 

first nucleotide and ending at the last nucleotide of 

the tested sequence [13]. The data used in this study 

was obtained from the the Catalog of Somatic 

Mutation in Cancer public database [14]. This 

comprehensive database covers various types of 

cancer, including breast, cervical, lung, colon, 

liver, and prostate cancers. The data is then 

preprocessed, and the type and location of 
mutations are detected using the Needleman–

Wunsch algorithm. Various types of mutations such 

as SNV/substitution, insertion, and deletion were 

identified, pinpointing the nucleotide index with 

mutations in specific gene sequences. 

 

2. Materials and Methods 

 

Mutations are alterations that occur in one or 

more nucleotides within the DNA sequence. 

Mutations can be caused by various factors such as 
errors during cell replication, inheritance, or other 

factors. This research revealed DNA sequence 

mutations, such as SNV/substitution and base-pair 

mutations (insertion and deletion). During 

SNV/substitution, one or more nucleotide is altered 

without affecting the overall length of the DNA. 

When one or more genes are added or removed, it 

is called a base-pair mutation. This mutation 

impacts the length of the DNA sequence [15]. 

Insertion and deletion mutations can occur 

simultaneously and are often referred to as Delins 

mutations. Duplication mutations can be classified 

as insertion mutations, where these mutations can 
occur by duplicating one or more certain 

nucleotides. Table 1 shows an example of a DNA 

sequence mutation in the original sequence 

"CGACCAACGGCG". Red nucleotides represent 

the mutated nucleotides. 

 
Table 1. Example of DNA sequence mutation. 

Mutation Type Sequence Example 

SNV/substitution CGTCCAACGGCG 

Insertion CGACCAGAACGGCG 

Deletion CGAC—ACGGCG 

 

The Needleman–Wunsch algorithm proposed is 

specifically tailored for identifying mutations in 

cancer DNA sequences, determining both their 

type and index. The research involves 

preprocessing data and designing a mutation 
detection system using the Needleman-Wunsch 

algorithm. The detected mutations encompass 

SNV, insertion, and deletion types, with the 

mutation location representing the indices of 

mutated nucleotides within the DNA sequence. 

 

2.1. Data Preprocessing 
 

The DNA sequence data used in this study 

originate from various types of cancer and were 

obtained from COSMIC (Catalogue of Somatic 
Mutation in Cancer) – a public database source 

[14]. We analyzed patients' gene mutation data 

(mutation call data) across various types of cancer, 

including breast, cervical, lung, colon, liver, and 

prostate cancers, along with reference gene data. 

Gene data consists of genes with the highest 

number of mutations in specific types of cancer. 

Each gene is characterized by its length and 

reference gene. Gene length refers to the count of 

nucleotides present in a single gene sequence. 

The mutation call data includes gene name, 

gene transcript, sample name, sample ID, protein 
mutation (AA mutation), DNA mutation (CDS 

mutation), primary tissue, and other information 

(Table 2). Mutations encompass a range of genetic 

changes, such as substitution (SNV), insertion, 

deletion, delins (deletion/insertion), and 

duplicates. Extracted from the CDS mutation, the 

type, location, and length of the mutation are 

derived by parsing, abiding by the following rules: 
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- Deletion-Insertion/Delins (example: 
c.778_782delinsTAGAT)  778_782 (position 

of deletion mutation), TAGAT (inserted 

nucleotides). 

- Deletion (example: c.348_367del)  348_367 

(position of deletion mutation) 

- Insertion (example: c.357_358insTCCTG)  

357_358 (insert mutation position), TCCTG 

(inserted nucleotides) 

- Duplicate (example: c.77dup)  77 (duplicate 

mutation position) 

- SNV (example c.280A>G)  280 (SNV 
position), A (initial nucleotide), G (mutated 

nucleotide) 

- Data cleaning (example: c.?): delete data whose 

location and type of mutation are unknown. 

 

The sequence data from patients is grouped by 

the mutation calls, using a unique combination of 

sample ID and gene name (transcript gene). The 

appropriate reference gene is then mutated based 

on the results of this grouping of the mutation call 

data. After completing the preprocessing, we have 

extracted the patient sequences and identified the 
type and location of mutations for each patient. 

Table 3 provides detailed specifications of the 

preprocessed data. 

 
Table 3. Specification of the preprocessed data. 

Cancer 

Type 

Gene 

Name 

Number 

of Initial 

Mutations 

Preprocessing Results 

Number of 

Sequence 

Number of 

Mutation 

Breast 

cancer 

BRCA1, 

BRCA 2 

1,599 1,495 1,597 

Cervix 

uteri 

FBXW7, 

KMT2C, 

KMT2D, 

PIK3CA 

1,004 889 1,002 

Lung 

cancer 

EGFR 30,057 18,201 19,901 

Colon 

cancer 

APC, TP53 41,649 38,508 41,502 

Liver 

cancer 

TP53 27,616 25,878 27,615 

Prostate 

cancer 

ERBB4, 

LRP1B, 

PTPRT 

719 583 718 

 

 

 

 

 

2.2. Needleman Wunsch Algorithm 
This research introduces a pairwise alignment 

approach, where one sequence is compared to 

another using alignment techniques. The 

Needleman–Wunsch algorithm, which is a global 

alignment algorithm, is applied in pairwise 

alignment. Global alignment technique aligns the 

entire sequence from beginning to end [16]. The 

Needleman-Wunsch algorithm leverages dynamic 

programming, an optimization technique that 

divides the problem into subproblems and stores 

the results in a matrix [17], [18]. Next, the 
backtrace method is employed on the constructed 

matrix to combine the results of solving these 

problems. To construct the matrix, it is essential to 

have a score function or recurrence relation that 

can be used to determine the value for each element 

within the matrix. Dynamic programming can 

determine the optimal solution to a problem by 

using the appropriate scoring function. 

The score function utilized in the Needleman-

Wunsch algorithm to populate each value in the 

dynamic programming matrix is demonstrated by 

Equation 1 [19]. The size of the constructed matrix 
is determined by adding one to the number of 

columns in the first sequence (m) and one to the 

number of rows in the second sequence (n). The 

matrix is filled with values in an iterative process 

that begins at column 0, row 0 and continues until 

column m + 1, row n + 1. The substitution score, 

denoted as s(i,j), represents the score assigned 

when comparing nucleotides at a specific index in 

two sequences. The score is assigned when the 

nucleotides match or when a substitution takes 

place. The study displays the substitution score 
used in Figure 1, assigning a value of "+1" for a 

match and "−1" for a mismatch. The gap penalty is 

imposed whenever an insertion or deletion occurs. 

The corresponding gap values we have observed 

are -1, -2, and -3. 

𝐶(𝑖, 𝑗) = 𝑚𝑎𝑥 {

𝐶(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑖, 𝑗)

𝐶(𝑖 − 1, 𝑗) − 𝑔𝑎𝑝

𝐶(𝑖, 𝑗 − 1) − 𝑔𝑎𝑝

 (1) 

with 𝑪(𝒊, 𝒋) is dynamic programming table, 

𝒔(𝒊, 𝒋) is substitution score, 𝒈𝒂𝒑 is penalty of 

insertion and deletion, and 𝒊, 𝒋 is index of dynamic 

programming table. 

 

Table 2. Mutation call data from COSMIC database. 

Gene Name Transcript 
Sample 

ID 

AA 

Mutation 

CDS 

Mutation 
Primary Tissue 

Tissue 

Subtype 1 

TP53 ENST00000269305.8 1361573 p.E221D c.663G>C Large intestine Colon 

TP53 ENST00000269305.8 1394231 p.E221G c.662A>G Large intestine Colon 

TP53_ENST00000359597 ENST00000359597.8 1677081 p.Q331H c.993G>C Large intestine Colon 

TP53_ENST00000359597 ENST00000359597.8 2433480 p.Q331R c.992A>G Large intestine Colon 

TP53_ENST00000413465 ENST00000413465.6 1361590 p.R248Q c.743G>A Large intestine Colon 

TP53_ENST00000413465 ENST00000413465.6 1399686 p.R248Q c.743G>A Large intestine Colon 
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Figure 1. Substitution score. 

For a more streamlined traceback process, a 

matrix of the same size as the previous score matrix 

is essential. The traceback matrix B(i,j) contains 

"up," "left," and "diag" (diagonal) values that 

specify the direction for the traceback operation. 

Equation 2 is used to determine the direction 

during the process. The path for backtrace is 

determined from the matrix index (m+1, n+1) to 
the matrix index 0, 0 using the following directions 

contained in matrix B: 

- “diag” indicates match or SNV 

mutation/substitution, 

- “up” indicates insertion mutation, 

- “left” denotes the deletion mutation. 

 

𝐵(𝑖, 𝑗) = {

𝑑𝑖𝑎𝑔,   𝑖𝑓 𝐶(𝑖, 𝑗) = 𝐶(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑖, 𝑗)

𝑢𝑝,  𝑖𝑓 𝐶(𝑖, 𝑗) = 𝐶(𝑖 − 1, 𝑗) − 𝑔𝑎𝑝

𝑙𝑒𝑓𝑡,  𝑖𝑓 𝐶(𝑖, 𝑗) = 𝐶(𝑖, 𝑗 − 1) − 𝑔𝑎𝑝

 (2) 

 

 
Figure 2. An example of alignment and mutation detection 

using the Needleman–Wunsch algorithm. 

Figure 2 displays how the Needleman-Wunsch 

algorithm is used to align and detect mutation types 

and locations, where deletion mutations are located 

at indexes 3 and 4, while SNV/substitution 

mutations occur at index 6. The accuracy of the 

system is determined by the presence or absence of 

each type of mutation at the corresponding 

nucleotide point in the sequence, using metric 

precision, recall, and F1-score [20]. Equation 3 - 5 

shows precision, recall, and F1-score metrics, 

where True Positive (TP) is a mutated nucleotide 
that is correctly predicted as a mutated nucleotide, 

False Positive (FP) is a normal nucleotide that is 

incorrectly detected as a mutated nucleotide, and 

False Negative (FN) is a mutated nucleotide that is 

incorrectly detected as a normal nucleotide. 

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
   (3) 

𝒓𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
    (4) 

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 =
𝟐∗𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝒓𝒆𝒄𝒂𝒍𝒍
  (5) 

 

 

3. Results and Discussion  
 

In order to assess the effectiveness of detecting 

different types and locations of mutations in 

various cancers, we conducted a thorough 

evaluation schemes, including: 

 Comparison of exact match and 5 bp tolerance 

scheme for lung, colon, liver, breast, prostate, 

and cervical cancer mutation detection. 

 Observation of gap parameters in the 

Needleman Wunsch algorithm, where the 

observed gap values are -1, -2, and -3. 

 Comparison of the best F1-score values 

achieved for lung, breast, liver, colon, prostate, 

and cervical cancer datasets. 

 

Our evaluation included measuring precision, 

recall, F1 score, and running time. Furthermore, we 

incorporated penalty gap parameters into the 

alignment process to improve mutation detection. 

This enabled us to not only compare the 
performance across all cancer data, but also 

analyze the processing time. The results provide 

valuable insights into the accuracy and efficiency 

of our mutation detection methods. 

 

3.1. Mutation Detection Performance for Each 

Cancer Type 

 

We conduct tests on each cancer dataset to 

accurately identify the specific mutations and their 

respective index. Detection of the mutation index 
involves two schemes, as follows: 

 Exact match scheme, a predicted mutation 

point is considered correct only when it 

precisely matches the actual point mutation 

data. 

 The 5 bp tolerance scheme, allows for a range 

of ±5 nucleotides from the actual point 

mutation data, making it acceptable for the 

predicted mutation point to fall within this 

range. 

 Comparison of the best F1-score values 
achieved for lung, breast, liver, colon, prostate, 

and cervical cancer datasets. 

 

The detected mutations included 

SNV/substitution, insertion, and deletion. The 

precision, recall, and F1 score were used to 

quantify the accuracy of mutation detection 

performance. The performance measures 

(precision, recall, and F1 score) for detecting 

mutations in DNA sequence data are showed in 

tables 4 to 9. These tables specifically present the 

findings for different types and locations of 
mutations in lung, colon, liver, breast, prostate, and 

cervical cancers. SNV demonstrated exceptional 

performance, exceeding thresholds of 0.9 for 



Wisesty et.al., Detecting Type and Index Mutation in Cancer DNA Sequence 171 

 

 

 

precision, recall, and F1 score in both the exact 

match and 5 bp tolerance detection schemes. 

Insertion and deletion mutations have low 

performance, especially for insertion, when it 

comes to exact match detection. The sequence data 

is affected by a nucleotide shift, which can be 

addressed by implementing a 5 bp tolerance to 

enhance performance. The term "All" encompasses 

all forms of mutations, including SNV, insertions, 

and deletions. 
 

Table 4. Mutation detection performance for lung cancer. 

Detection 

Scheme 

Mutation 

Type 
Precision Recall F1-score 

Exact 

Match 

All 0.7795 0.7834 0.7814 

SNV 0.9879 0.9855 0.9867 

Insertion 0.1123 0.1281 0.1197 

Deletion 0.7869 0.7870 0.7869 

5bp 

Tolerance 

All 0.9698 0.9747 0.9722 

SNV 0.9879 0.9855 0.9867 

Insertion 0.8435 0.9629 0.8992 

Deletion 0.9738 0.9739 0.9738 

 
Table 5. Mutation detection performance for colon cancer. 

Detection 

Scheme 

Mutation 

Type 
Precision Recall F1-score 

Exact 

Match 

All 0.8161 0.8170 0.8166 

SNV 0.9967 0.9990 0.9979 

Insertion 0.2021 0.1967 0.1994 

Deletion 0.5457 0.5482 0.5470 

5bp 

Tolerance 

All 0.9533 0.9543 0.9538 

SNV 0.9973 0.9996 0.9984 

Insertion 0.7731 0.7528 0.7628 

Deletion 0.8945 0.8987 0.8966 

 
Table 6. Mutation detection performance for liver cancer. 

Detection 

Scheme 

Mutation 

Type 
Precision Recall F1-score 

Exact 

Match 

All 0.8450 0.8535 0.8492 

SNV 0.9966 0.9800 0.9883 

Insertion 0.0697 0.0925 0.0795 

Deletion 0.6702 0.6719 0.6711 

5bp 

Tolerance 

All 0.9386 0.9481 0.9433 

SNV 0.9984 0.9817 0.9900 

Insertion 0.5282 0.7014 0.6026 

Deletion 0.9103 0.9126 0.9115 

 
Table 7. Mutation detection performance for breast cancer. 

Detection 

Scheme 

Mutation 

Type 
Precision Recall F1-score 

Exact 

Match 

All 0.7423 0.7419 0.7421 

SNV 0.9688 1.0000 0.9842 

Insertion 0.3977 0.3309 0.3612 

Deletion 0.6832 0.6907 0.6869 

5bp 

Tolerance 

All 0.8523 0.8519 0.8521 

SNV 0.9688 1.0000 0.9842 

Insertion 0.8333 0.6934 0.7570 

Deletion 0.8016 0.8104 0.8060 

 

 

 

 

 
 

 

Table 8. Mutation detection performance for prostate cancer. 

Detection 

Scheme 

Mutation 

Type 
Precision Recall F1-score 

Exact 

Match 

All 0.9764 0.9764 0.9764 

SNV 0.9986 0.9874 0.9929 

Insertion - - - 

Deletion 0 0 0 

5bp 

Tolerance 

All 0.9847 0.9847 0.9847 

SNV 0.9986 0.9874 0.9929 

Insertion - - - 

Deletion 0.6000 1.0000 0.7500 

 
Table 9. Mutation detection performance for cervical cancer. 

Detection 

Scheme 

Mutation 

Type 
Precision Recall F1-score 

Exact 

Match 

All 0.9980 0.9980 0.9980 

SNV 1.0000 0.9980 0.9990 

Insertion - - - 

Deletion 0.7500 1.0000 0.8571 

5bp 

Tolerance 

All 0.9980 0.9980 0.9980 

SNV 1.0000 0.9980 0.9990 

Insertion - - - 

Deletion 0.7500 1.0000 0.8571 

 

3.2. Gap Parameter Observation 

 

In this section, we will examine the significance 

of the parameter "gap" in assessing the 

effectiveness of mutation detection. In the 

Needleman-Wunsch algorithm, the parameter gap 

serves as a penalty for any insertions or deletions 
that may occur during the alignment process. The 

values of the observed gap for liver and cervical 

cancer are -1, -2, and -3. The precision, recall, and 

F1 score results for different gap values in the 

mutation detection in liver cancer (Tables 10 and 

11) show consistent values for all types of 

mutations, both in exact match and 5 bp tolerance. 

In terms of cervical cancer (Tables 12 and 13), we 

observed a modest improvement in the accuracy of 

detecting single nucleotide variations, deletions, 

and their combination. In this scenario, the values 
of -2 and -3 for the gap are superior to -1. 

Minimizing the occurrence of insertions and 

deletions is crucial, as the penalty for these 

operations increases with the value of the gap. 

 
Table 10. Observation of gap value on mutation detection 

performance in exact match detection on liver cancer. 
 Gap -1 -2 -3 

Precision 

All 0.8450 0.8450 0.8450 

SNV 0.9966 0.9966 0.9966 

Insertion 0.0697 0.0697 0.0697 

Deletion 0.6702 0.6702 0.6702 

Recall 

All 0.8535 0.8535 0.8535 

SNV 0.9800 0.9800 0.9800 

Insertion 0.0925 0.0925 0.0925 

Deletion 0.6719 0.6719 0.6719 

F1-Score 

All 0.8492 0.8492 0.8492 

SNV 0.9883 0.9883 0.9883 

Insertion 0.0795 0.0795 0.0795 

Deletion 0.6711 0.6711 0.6711 
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Table 11. Observation of gap value on mutation detection 

performance with 5bp tolerance on liver cancer. 
 Gap -1 -2 -3 

Precision 

All 0.9386 0.9386 0.9386 

SNV 0.9984 0.9984 0.9984 

Insertion 0.5282 0.5282 0.5282 

Deletion 0.9103 0.9103 0.9103 

Recall 

All 0.9481 0.9481 0.9481 

SNV 0.9817 0.9817 0.9817 

Insertion 0.7014 0.7014 0.7014 

Deletion 0.9126 0.9126 0.9126 

F1-Score 

All 0.9433 0.9433 0.9433 

SNV 0.9900 0.9900 0.9900 

Insertion 0.6026 0.6026 0.6026 

Deletion 0.9115 0.9115 0.9115 

 
Table 12. Observation of gap value on mutation detection 

performance in exact match detection on cervical cancer. 
 Gap -1 -2 -3 

Precision 

All 0.9980 1.0000 1.0000 

SNV 1.0000 1.0000 1.0000 

Insertion - - - 

Deletion 0.7500 1.0000 1.0000 

Recall 

All 0.9980 1.0000 1.0000 

SNV 0.9980 1.0000 1.0000 

Insertion - - - 

Deletion 1.0000 1.0000 1.0000 

F1-Score 

All 0.9980 1.0000 1.0000 

SNV 0.9990 1.0000 1.0000 

Insertion - - - 

Deletion 0.8571 1.0000 1.0000 

 
Table 13. Observation of gap value on mutation detection 

performance with 5bp tolerance on cervical cancer. 
 Gap -1 -2 -3 

Precision 

All 0.9980 1.0000 1.0000 

SNV 1.0000 1.0000 1.0000 

Insertion - - - 

Deletion 0.7500 1.0000 1.0000 

Recall 

All 0.9980 1.0000 1.0000 

SNV 0.9980 1.0000 1.0000 

Insertion - - - 

Deletion 1.0000 1.0000 1.0000 

F1-Score 

All 0.9980 1.0000 1.0000 

SNV 0.9990 1.0000 1.0000 

Insertion - - - 

Deletion 0.8571 1.0000 1.0000 

 

3.3. Analysis of F1-score and Running Time of 

All Cancer Data 

 

This section presents an analysis of the 

mutation detection system's overall performance 

using DNA sequence data collected from cancer 

patients. We have conducted a thorough analysis of 

the F1 scores in cancer datasets using both exact 

match and 5 bp tolerance detection schemes. 

Additionally, we have examined the correlation 

between F1 score and gene length, as well as the 
relationship between running time and gene length. 

Tables 14 and 15 display the F1 scores for the lung, 

breast, liver, colon, prostate, and cervical cancer 

datasets regarding exact match and 5 bp tolerance. 

 

 

Table 14. Comparison of F1-Score mutation detection using 

exact match scheme for all types of cancer. 

Cancer 

Type 

F1-Score 

All SNV Insertion Deletion 

Breast 0.7421 0.9842 0.3612 0.6869 

Lung 0.7814 0.9867 0.1197 0.7869 

Liver 0.8492 0.9883 0.0795 0.6711 

Colon 0.8166 0.9979 0.1994 0.5470 

Prostate 0.9764 0.9929 - 0.0000 

Cervix 0.9980 0.9990 - 0.8571 

Average 

score 
0.8606 0.9915 0.1899 0.5915 

 
Table 15. Comparison of F1-Score mutation detection using 5 

bp tolerance scheme for all cancer types. 

Cancer 

Type 

F1-Score 

All SNV Insertion Deletion 

Breast 0.8521 0.9842 0.7570 0.8060 

Lung 0.9722 0.9867 0.8992 0.9738 

Liver 0.9433 0.9900 0.6026 0.9115 

Colon 0.9538 0.9984 0.7628 0.8966 

Prostate 0.9847 0.9929 - 0.7500 

Cervix 0.9980 0.9990 - 0.8571 

Average 

score 
0.9507 0.9919 0.7554 0.8658 

 

 
Figure 3. Relationship of F1-Score and gene length. 

 
Figure 4. Relationship of running time and gene length. 

Exact match mutation detection has excellent 

results in detecting SNV mutations, achieving an 

impressive average F1-score of 0.9915 (Table 14). 

Regarding insertion and deletion mutations, the 

performance is quite low. The average F1 score for 

insertion mutations is 0.1899, and for deletion 

mutations, it is 0.5915. Insertion and deletion 
mutations shift the nucleotide index in DNA 

sequences, making it difficult to predict accurate 

mutation points using exact match detection. In 

order to effectively address this issue, the mutation 
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detection process involves allowing for a 5 base 

pair tolerance from the exact point of mutation. The 

F1 score for SNV mutations can be significantly 

increased, with an impressive average of 0.9919, 

when allowing a 5 bp tolerance. Similarly, for 

insertion mutations, the F1 score can reach an 

average of 0.7554, and for deletion mutations, it 

can reach an average of 0.8658 (Table 15). 

We conducted an analysis to assess the impact 

of gene length on F1 score and mutation detection 
time when using the Needleman-Wunsch 

alignment algorithm. The F1-score and detection 

time average for each gene were computed and 

arranged in ascending order according to the gene's 

length. Figure 3 demonstrates that there is no 

impact or correlation between gene length and the 

resulting F1-score value, where if the correlation 

calculation is carried out using the Pearson 

Correlation method, the Pearson score obtained is 

-0.0106. A Pearson score close to zero indicates 

that there is no correlation between the two 
variables being measured. Upon examining Figure 

3, it becomes evident that no discernible pattern 

exists between the length of the gene and the 

resulting F1-score. 

Unlike the F1 score, which is not correlated 

with gene length, the running time shows a strong 

correlation with gene length. Based on the 

correlation calculation between gene length and 

running time, the Pearson score obtained was 

0.9497. The alignment process takes longer as the 

length of the nucleotides that form a gene 
increases, as shown in Figure 4. According to the 

graph, the gene length that requires the least 

amount of time is 1.03 seconds for 290 bp, whereas 

the gene length that demands the longest time is 

16613 bp with a staggering 3211.45 seconds. The 

amount of time required grows exponentially as the 

length of the sequence increases. The Needleman-

Wunsch algorithm contains various processes that 

contribute to its overall time complexity. 

 

4. Conclusion  
 

This paper presents the development of a 

mutation detection system for DNA sequence data, 

utilizing the renowned Needleman-Wunsch 

algorithm, an effective pairwise alignment 

algorithm. The Needleman-Wunsch algorithm is a 

powerful global alignment technique that identifies 

mutations in every nucleotide of a given sequence. 

We utilized DNA sequence data from various 

cancer types, such as breast, lung, cervical, colon, 

liver, and prostate cancers. These valuable data 

were obtained from the publicly available 
COSMIC Cancer Browser database. This research 

incorporates data collection, preprocessing, and the 

development and application of the Needleman-

Wunsch algorithm to identify mutation types and 

their index. 

According to the experiments carried out, the 

Needleman-Wunsch algorithm possesses the 

capability to identify mutations and pinpoint their 

index, achieving average F1 scores of 0.8606 for 

all types of mutations, 0.9915 for SNVs, 0.1899 for 

insertions, and 0.5915 for deletions. The average 

F1 scores will increase as follows: 0.9507 for all 

types of mutations, 0.9919 for SNV, 0.7554 for 
insertion, and 0.8658 for deletion with tolerance of 

5 bp. Nevertheless, this algorithm has two 

vulnerabilities. Initially, the alignment process 

necessitates a substantial amount of time to 

complete. The minimum amount of time needed is 

only 1.03 seconds for a gene length of 290 base 

pairs, whereas the maximum time required is a 

3211.45 seconds for a gene length of 16613 base 

pairs. As the length of the sequence increases, the 

time will increase exponentially. Another 

drawback is that it necessitates a reference 
sequence dataset containing a specific transcript 

for aligning and detecting mutations. Finally, the 

algorithm we developed cannot detect mutations in 

certain cases where several mutations occur at the 

same nucleotide index in one sequence. 
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