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Abstract 

 
The research lays the groundwork for further advancements in VR technology, aiming to develop 
devices capable of interpreting sign language into speech via intelligent systems. The uniqueness of 
this study lies in utilizing the Meta Quest 2 VR device to gather primary hand sign data, subsequently 

classified using Machine Learning techniques to evaluate the device's proficiency in interpreting hand 
signs. The initial stages emphasized collecting hand sign data from VR devices and processing the data 
to comprehend sign patterns and characteristics effectively. 1021 data points, comprising ten distinct 
hand sign gestures, were collected using a simple application developed with Unity Editor. Each data 
contained 14 parameters from both hands, ensuring alignment with the headset to prevent hand 
movements from affecting body rotation and accurately reflecting the user's facing direction. The data 
processing involved padding techniques to standardize varied data lengths resulting from diverse 
recording periods. The Interpretation Algorithm Development involved Recurrent Neural Networks 

tailored to data characteristics. Evaluation metrics encompassed Accuracy, Validation Accuracy, Loss, 
Validation Loss, and Confusion Matrix. Over 15 epochs, validation accuracy notably stabilized at 
0.9951, showcasing consistent performance on unseen data. The implications of this research serve as 
a foundation for further studies in the development of VR devices or other wearable gadgets that can 
function as sign language interpreters. 

 
Keywords: Sign Language, Quaternion, Padded, RNN 

 

  

 

1. Introduction 

 

The advancement of Virtual Reality (VR) 

technology has revolutionized the human 
interaction paradigm within the digital sphere [1]. 

Its ever-expanding relevance has permeated 

various facets of life, encompassing research 

across education, training, medicine, 

entertainment, art, and diverse applications [2], [3]. 

The research exploring the applications of Meta 

Quest 2 [4] VR technology across various domains 

has made remarkable strides. VR has been 

investigated as a vital learning aid in education and 

culture, especially during the pandemic, facilitating 

interactive and effective educational approaches 

[5]. VR research outcomes have facilitated 
simulations of dam failures [6], preservation of 

historical artifacts [7], cultural and touristic 

promotions [8], and even the preservation of 

Gamelan music [9]. In dental education, VR has 

emerged as an innovative training tool [10], [11]. 

Within the healthcare and nursing sectors, VR is 

employed to alleviate post-operative pain [12], 

train multiple sclerosis patients [13], [14], and as 

an assistive tool in surgical robotics [15]. 

Moreover, it contributes to the well-being of 
healthcare professionals, offering relaxation during 

the pandemic [16]. The utilization of VR research 

outcomes extends to mental health training [17], 

memory assessment [18], vertigo therapy [18], 

shoulder rehabilitation monitoring [19], nerve 

disorder examinations [20], and neck movement 

assessments [21]. 

On the other hand, VR research ventures into 

the industrial domain for the development of 

interactive robots [22]. Within the realm of 

entertainment, VR plays a pivotal role in game 

development and experiences within the Metaverse 
[23]. In the communication field, VR is utilized for 

video conferencing [24]. Even in the architecture 

field, VR is employed for spatial mapping and 

visualization, supporting the design of architectural 

projects [25]. 

http://dx.doi.org/10.21609/jiki.v17i2.1280


186   Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,   

      issue 2, June 2024 
 

 

Furthermore, the Meta Quest 2, a leading VR 

device, has garnered attention for further research 

and development. Efforts have been made to 

measure controller precision [26], hand movement 

accuracy [27], eye-tracking evaluations [28], 

integration of haptic features [29], [30], and the 

creation of 3D Avatar applications [31]. 

Interpreting hand signs is crucial, especially for 

those who rely on non-verbal communication 

methods like sign language. Recent studies have 
shown a growing interest in using VR to improve 

hand sign interpretation [32], [33]. This research is 

vital because it offers new ways to understand and 

develop technology, potentially benefiting various 

aspects of life. By collecting data from VR devices 

and using machine learning, researchers aim to 

enhance the accuracy of interpreting hand signs, 

ultimately improving communication for 

individuals with communication challenges. 

The novelty of this research lies in its utilization 

of the Meta Quest 2 device to gather primary hand 
sign data, subsequently classified using Machine 

Learning to evaluate the device's capability in 

interpreting hand signs. The uniqueness of this 

study is centered on its emphasis on the initial 

stages, encompassing the collection of hand sign 

data from VR devices and the subsequent data 

processing to comprehend patterns and 

characteristics of the signs. This strong focus on 

these stages might offer an advantage, especially if 

the data processing techniques are sufficiently 

unique or result in more efficient and accurate 
solutions for interpreting hand signs. 

 

2. Methodology 

The methodology encompassed several stages 

to achieve the research goals, including Hand Sign 

Data Collection, VR Data Processing, 

Interpretation Algorithm Development, and 

Interpretation Accuracy Evaluation. 

Hand Sign Data Collection process involved 

capturing a diverse range of hand sign data, 

encompassing various forms, movements, and 

contextual variations, utilizing the VR Meta Quest 
2 device [4], as depicted in Figure 1, comprising a 

VR Headset and Touch Controller held by users in 

both hands, equipped with high-precision hand 

sensors for accurate measurement of hand 

movements [26], [34].  

This data collection aimed to encompass the 

device's capabilities, focusing on ten frequently 

used hand sign gestures such as "Hello," "Bye," 

"Thanks", "Sorry", "Me", "You", "Good", "Bad", 

"Help", and "Tired". In total, 1021 data points were 

gathered through the performance of these ten 

distinct hand sign gestures, illustrated in Figure 2, 

using the VR device. 

 

 
Fig. 1. Meta Quest 2 VR Headset and Touch Controller. 

 

 
Fig. 2. Ten common hand sign movements [35], [36], [37], [38]. 

 

The data recording process utilized a simple 

application developed with Unity Editor [39], 

visualized in Figure 3, illustrating the dynamic 

changes in 28 input parameters during hand sign 

gestures.  

 

 
Fig. 3. Data recording application interface. 

 

VR Data Processing entailed analyzing the 

recorded data depicted in a graphical format similar 

to Figure 4, collected over varying time frames for 

each hand sign gesture. Each data contained 14 
parameters from the left hand and an additional 14 

parameters from the right hand, encompassing 

Trigger Touch, Trigger Pressed, Grip Pressed, 

Thumb Touch, Position (X, Y, Z), Velocity (X, Y, 

Z), Quaternion (W, X, Y, Z).  
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Fig. 4. Data example of a hand sign movement. 

 

The overall graphs in Figure 4 represent the 

recording of a specific hand sign movement (every 

single data recorded with the Unity application). 

All the x-axis (horizontal), serving as the domain, 

represents the nth Unity sampling. Meanwhile, the 

values of the y-axis (vertical) corresponding to 

graphs 0 to 13, along with the explanation of the 14 

parameters, are detailed in Table 1. 

 
Table 1. Data explanation of hand sign movement [39]. 

Graph Parameter Value of y-axis 

0 Trigger Touch Boolean: 0 or 1 
1 Trigger Pressed Boolean: 0 or 1 
2 Grip Pressed Boolean: 0 or 1 

3 Thumb Touch Boolean: 0 or 1 
4 Position X Meters (m) 
5 Position Y Meters (m) 
6 Position Z Meters (m) 
7 Velocity X Speed (m/s) 
8 Velocity Y Speed (m/s) 
9 Velocity Z Speed (m/s) 
10 Quaternion W Scalar  

11 Quaternion X Vector 
12 Quaternion Y Vector 
13 Quaternion Z Vector 

 

In processing the data, it was ensured that the 

collected data was relative to the headset. This 

alignment aimed to prevent hand movements from 

affecting body rotation, clearly reflecting the user's 
facing direction without causing interference. This 

process involved modifying the center point 

location and global rotation based on the 

orientation of the headset. While collecting each 

hand sign gesture, recorded more than 100 times, 

variations in data length emerged due to diverse 

recording periods, requiring standardization 

through padding techniques [40], [41]. The 

padding technique involves adding zeros to the 

sequences with shorter lengths so that all sequences 

have the same length. 
Interpretation Algorithm Development utilized 

a classification technique, specifically Recurrent 

Neural Networks (RNN) [42], [43], chosen 

according to the data's characteristics and the 

research objectives. The employed layers 

encompassed the Masking Layer, Long Short-Term 

Memory (LSTM) Layer, Dropout Layer for 

Regularization, Batch Normalization Layer, and 

Dense Layer. The computer specification used for 

experiments modeling RNN is AMD FX(tm)-6300 

Six-Core Processor (6 CPUs) ~3.5GHz, 8192MB 

RAM, NVIDIA GeForce GTX 1060 3GB. 

Interpretation Accuracy Evaluation was 

conducted using various metrics like Accuracy, 

Validation Accuracy, Loss, Validation Loss, and 

Confusion Matrix. The training encompassed 80% 
(816 data points) of the hand sign dataset, reserving 

the remaining 20% (205 data points), with the 

random sampling technique, for validation. 

Furthermore, the new dataset (100 data points) for 

testing. The testing set's role is crucial in assessing 

the model's performance on unseen samples, 

ensuring its effectiveness beyond the training data. 

 

3. Results and Analysis 
 

The initial data processing ensured alignment 

with the headset for accurate hand movement 
representation without affecting body rotation. 

Adjustments to the center point and global rotation 

based on the headset's orientation were made, aided 

by additional coding highlighted in Figure 5 within 

the Unity application used for data recording [44]. 

 

 
Fig. 5. Coding for headset alignment in Unity Editor. 

 
Table 2.  Data distribution for each hand sign movement. 

Hand Sign Number of Data 

Hello 101 
Bye 101 
Thanks 103 
Sorry 103 
Me 101 
You 105 

Good 102 
Bad 102 
Help 101 
Tired 102 

Total 1.021 
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The data collection process amassed a total of 

1021 data points from 10 distinct hand sign 

gestures, shown in Table 2 for data distribution 

(https://github.com/umaruta4/SignLanguage_MT

C_Data/tree/main). Figure 6 and Figure 7 illustrate 

a sample of this dataset, depicting 28 parameters 

within each data point, including 14 from both the 

left and right hands.

 

 

 

 

 

 

 

 
Fig. 6. Non-padded data sample of  "Hello," "Bye," "Thanks", "Sorry", "Me", "You", "Good". 
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Fig. 7. Non-padded data sample of “Bad”, “Help”, Tired”. 

 
Data processing involved generating graphs 

and visual representations depicting the processed 

hand sign data. Notably, during the collection of 

each hand sign gesture, varying data lengths arose 

owing to diverse recording periods. To standardize 

these variations, padding techniques were applied, 

as depicted in Figure 8 and Figure 9. 

 

 

 

 
Fig. 8. Padded data sample of “Hello”, “Bye”, “Thanks”. 
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Fig. 9. Padded data sample of "Sorry", "Me", "You", "Good", “Bad”, “Help”, Tired”. 

 
The RNN model for training the dataset is 

structured with several essential components. It 
begins with a Masking layer, which is adept at 

handling sequences of varying lengths, using a 

specified mask value of 0 and an input shape 

denoted as (maxlen, 28), where "maxlen" signifies 
the maximum sequence length, and 28 represents 

the input dimensionality. After applied padding, the 
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maximum sequence length becomes 239. 

Following this, the model integrates two LSTM 

layers, each comprising 64 units. Notably, the first 

LSTM layer is configured to return sequences, 

enabling it to generate an output for each input time 

step, while the subsequent LSTM layer 

consolidates temporal information without 

returning sequences. To prevent overfitting, two 

Dropout layers are incorporated, each operating 

with a dropout rate of 20%, thereby randomly 
setting a fraction of input units to 0 during training. 

The inclusion of Batch Normalization serves to 

normalize the activations of the preceding layer 

within each batch, thereby contributing to the 

stability and expeditiousness of the model training 

process. Finally, the model culminates with a 

Dense layer employing a softmax activation 

function, producing class probability distributions 

for the multi-class classification task, with the 

number of units in this layer aligning with the 

classes in the label encoder. The model is compiled 
using the Adam optimizer with a learning rate set 

at 0.001, aiming to minimize categorical cross-

entropy loss and track accuracy as the evaluation 

metric. This comprehensive architecture is 

deliberately designed to effectively process 

sequential data, leveraging LSTM units to capture 

temporal dependencies while integrating 

regularization techniques such as dropout and 

batch normalization to enhance generalization and 

mitigate overfitting. The model architecture and its 

components are illustrated in Figure 10, depicting 
the detailed layers and their connections. 

 

 
Fig. 10. Layers and Connections of RNN Model. 

 

Throughout the training process, the RNN 

model underwent 15 epochs, revealing substantial 

insights into its performance, with each epoch 

taking approximately 10 to 46 seconds to complete. 

The accuracy data illustrated a progression, 

initiating at 0.5833 and steadily reaching a perfect 

score of 1.0000 by the 7th epoch, maintaining this 

high accuracy until the training's conclusion. A 

graphical representation of the accuracy trends 
across epochs is depicted in Figure 11, showcasing 

the model's steady improvement over the training 

period. Concurrently, validation accuracy started at 

0.8780, stabilizing impressively at 0.9951 by the 

8th epoch, demonstrating the model's consistent 

performance on unseen data. 

 

 
Fig. 11. Accuracy progression of the RNN model. 

 

The model's loss metrics displayed a similar 

encouraging trend. Beginning at 1.5642, the loss 

steadily declined, reaching an impressive low of 

0.0046 by the end of training. A visual 

representation of the loss trends throughout the 

epochs is presented in Figure 12. These graphical 

representations offer a clear visualization of the 

model's learning dynamics and its ability to 

minimize loss while maximizing accuracy over 
successive epochs, indicating its robustness in 

learning patterns within the data. 

 

 
Fig. 12. Loss progression of the RNN model. 

 
The Confusion Matrix model performance, 

encapsulated in Figure 13 and Figure 14, revealed 

highly promising evaluation metrics for the 

classification model. With an accuracy score of 

0.9951, the model showcased remarkable 

precision, recall, and F1 scores across diverse 

classes. Precision ranged from 0.9500 to 1.0000, 

signifying the model's accuracy in identifying 
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positive samples, while recall consistently ranged 

from 0.9231 to 1.0000, demonstrating its reliability 

in capturing positive samples. The F1 score, 

representing the harmonic mean of precision and 

recall, impressively ranges from 0.9600 to 1.0000, 

indicating a balanced and effective performance of 

the model in maintaining both precision and recall 

across different classes.  

 

 
Fig. 13. Classification model performance on validation dataset. 

 

 
Fig. 14. Confusion Matrix heatmap visualization on the 

validation dataset. 

 

The findings from this research indicate a 

robust and highly accurate classification model for 

interpreting hand sign gestures. These results hold 

significant implications for real-world 

applications, particularly in systems involving 

hand gesture recognition, virtual reality interfaces, 
or human-computer interaction. The model's 

exceptional accuracy, reliability in identifying 

specific gestures, and robustness in capturing 

temporal dependencies make it a valuable asset in 

various domains requiring accurate hand gesture 

interpretations. 

The misclassification between 'bad' and 'bye' 

could occur due to similarities in the hand sign 

gestures for these two words. Despite efforts to 

differentiate them, subtle nuances or variations in 

hand movements may not be adequately captured 
by the model, leading to misclassification. 

Additionally, variations in individual hand 

gestures, differences in recording conditions, or 

limitations in the training data could also contribute 

to misclassification errors. Further refinement of 

the model and additional training data focusing on 

distinguishing between these gestures may help 

mitigate this issue. 

Moreover, the comprehensive assessment of 

the model's classification performance is facilitated 

by the utilization of the confusion matrix shown in 

Figure 15 and heatmap shown in Figure 16, derived 

from the testing dataset comprising 100 new hand 

signs data. These visualizations offer detailed 

insights into the model's predictive accuracy across 
various hand sign categories, enabling a thorough 

analysis of its classification efficacy. 

 

 
Fig. 15. Classification model performance on testing (new) 

dataset. 

 

 
Fig. 16. Confusion Matrix heatmap visualization on the testing 

(new) dataset. 

 

Based on the testing dataset results, the model 

demonstrates a commendable overall accuracy of 

0.9600. However, it is noteworthy that the 

precision for the "thanks" class is at 0.7143, 

indicating a proportion of instances classified as 

"thanks" that are indeed "thanks" out of all 

instances classified as "thanks." Furthermore, the 
recall for the "bye" class stands impressively high 

at 0.9000, suggesting the proportion of actual "bye" 

instances that were correctly classified. Similarly, 

the recall for the "me" class is at 0.7000, reflecting 

the model's ability to identify a considerable 

portion of true "me" instances. Additionally, the 

F1-score, ranging between 0.8235 and 0.1000, 

offers a harmonic mean of precision and recall, 

providing a comprehensive evaluation of the 

model's performance across different classes. 
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4. Conclusion  
 

The research embarked on an extensive 

investigation focusing on hand sign gesture 

recognition utilizing VR technology. Meticulous 

data collection, alignment adjustments with the 

headset, and sophisticated data processing 

techniques culminated in the construction and 

training of a powerful RNN model. This model 
exhibited exceptional performance, achieving a 

perfect accuracy score of 1.0000 by the 7th epoch 

and maintaining high accuracy throughout the 15 

epochs of training. Validation accuracy stabilized 

impressively at 0.9951, demonstrating the model's 

consistent performance on new, unseen data. The 

model showcased a robust learning curve, 

minimizing loss to an impressive 0.0046 by the end 

of the training process. Additionally, the model's 

evaluation metrics—precision, recall, and F1 

scores—across various classes, indicated its 
reliability and effectiveness in accurately 

identifying hand sign gestures. 

Despite the remarkable performance exhibited 

by the model, a few considerations for future 

research stand out. First and foremost, overfitting 

remains a concern, especially with complex models 

like the RNN. Future investigations should focus 

on implementing enhanced regularization 

techniques or exploring alternative model 

architectures to mitigate overfitting while 

maintaining high accuracy. Furthermore, the 
potential for expanding the dataset through crowd 

data collection methods could be a promising 

avenue for research. Incorporating a diverse range 

of user-generated data might further enhance the 

model's generalizability and robustness in 

interpreting hand sign gestures across various 

demographics and contexts. Addressing these areas 

in future research endeavors could lead to more 

refined models capable of accurate hand gesture 

recognition without succumbing to overfitting, 

thereby improving their applicability and 

reliability in real-world settings. 
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