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Abstract 

 
Sign language (SL) is vital in fostering communication for the deaf and hard-of-hearing communities. 

Continuous Sign Language Translation (CSLT) is a work that translates sign language into spoken 

language. CSLT translation is done by changing continuous forms into isolated signs. Segmenting 

morpheme signs from phrase signs has several challenges, such as the availability of annotated datasets 

and the complexity of continuous gesture movements. The Indonesian Sign Language (SIBI) system 

follows Indonesian grammatical norms, including word formation, in contrast to other sign languages 

with rules derived from their spoken language. In SIBI, a word can consist of a root word and an affix 

word. Therefore, temporal action segmentation in SIBI is important to reconstruct the results of 

translating each sign into spoken Indonesian sentences. This research uses an optical flow approach to 

segment temporal actions in SIBI videos. Optical flow methods that calculate changes in intensity 

between adjacent frames can be used to determine the occurrence of sign movement or vice versa to 

determine the delay between sign movements. The absence of intensity differences between the two 

frames indicates the boundary between sign gestures. This study tested the use of dense optical flow on 

videos containing SIBI sentences taken from 3 signers. Evaluation is done on several parameters in the 

dense optical flow algorithm, such as threshold size, PyrScale, and WinSize, to obtain the best accuracy. 

This paper shows that the optical flow algorithm successfully performs segmentation, as measured by 

Perf and F1r. The experimental results showed that the highest Perf and F1r yields were 0.8298 and 

0.8524, respectively. 

 
Keywords: dense optical flow, farneback, sign language, segmentation, sibi 

 

 

 

1. Introduction 

 

Sign language is crucial for fostering 

accessibility and inclusivity within deaf and hard-

of-hearing communities. World Health 

Organization (WHO) estimates that in 2050, one in 

every four individuals will have a hearing 

impairment [1]; thus, sign language proficiency is 

crucial. Accurate sign language recognition and 

comprehension are essential for facilitating 

effective communication between non-sign and 

sign language users. 

Countries that share a common spoken 

language may also have distinct sign languages. 

Special education incorporates the Indonesian Sign 

System for Bahasa Indonesia (SIBI), a formal sign 

language utilized in Indonesia. SIBI employs 

Indonesian rules encompassing vocabulary and 

grammar, which may comprise root and 

inflectional words. As an illustration, the word 

membaca (reading) is structured by appending the 

prefix me to the root baca. For comparison, in 

Indonesian Sign Language (BISINDO), reading 

sign words is done with a sign. Likewise, affixes 

do not have sign movements in American Sign 

Language (ASL), which is the source of SIBI [2]. 

This characteristic differentiates SIBI from other 

sign languages; in fact, SIBI is not a sign language 

but a sign system that refers to the spoken language 

Indonesian [3]. 

Continuous sign language recognition (CSLR) 

converts some of the words or sentences of sign 
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language into spoken language sentences. 

Temporal segmentation for sign language 

translation is still an open research problem 

because of the low accuracy obtained. 

Alternatively, Hidden Markov Model (HMM) and 

Connectionist Temporal Classification (CTC) have 

been used to perform segmentation or sequence 

labeling. However, both methods require a learning 

stage requiring extensive training data. In addition, 

annotated video training data requires additional 

time and costs. 

The temporal action segmentation (TAS) 

method can transform continuous shapes into 

isolated signs to facilitate translation into oral 

language at the frame level. TAS involves 

identifying and isolating individual sign 

movements in a continuous video sequence. The 

segmentation process is critical to enable the sign 

language recognition system to accurately 

recognize the significance of every gesture to allow 

a smooth translation. Nevertheless, 

researchers face the obstacle of achieving accurate 

segmentation through appropriate sign movement 

[4]. Recognizing gestures for formed words 

without segmentation can result in poor accuracy, 

as was done by Halim and Rakun [5], who applied 

TensorFlow and Long Short-Term Memory 

(LSTM) for SIBI. 

Temporal action segmentation (TAS) is crucial 

in sign language video analysis and understanding. 

It involves dividing a sign language video into 

smaller segments based on the temporal boundaries 

of individual signs or actions the signer performs, 

as depicted in Figure 1. This segmentation process 

enables researchers and developers to analyze and 

extract meaningful information from sign language 

videos, leading to advancements in areas such as 

sign language recognition. SIBI uses the same rules 

as a spoken language, making it unique compared 

to other sign languages. TAS segments untrimmed 

continuous sign language phrases so that the 

constituent morphemes can be identified. Although 

there have been significant advances in temporal 

segmentation techniques in recent years, applying 

TAS using an Optical Flow-based method to SIBI 

sign language videos has never been carried. 

 

 
 
Figure 1. The TAS model segments untrimmed continuous sign 
language video sequences into several isolated sign language 

video segments. 

Since the emergence of deep learning 

architectures, many studies have tried to use deep 

learning approaches with various architectural 

variations to solve some specific issues. In the 

video segmentation domain, deep learning 

architectures have been implemented in at least 

three types of networks, such as convolution 

networks [6], [7], [8], [9], [10], [11], Recurrent 

Neural Networks (RNN) [12], [13], [14] and 

Transformers (attention-based architectures) [15], 

[16], [17]. However, it is common knowledge that 

deep learning requires a lot of data as training data 

and has high computational costs for building 

models, so it is not discussed in this paper. 

Pre-computed frame-wise features using 

optical flow have much cheaper computational 

costs compared to learning models (learning video 

features) [18], [19]. A method was introduced for 

the optical flow-based still image to video 

segmentation models, resulting in increased 

stability [20]. Optical flow has emerged as an 

effective tool for motion analysis in video 

processing. Dense motion vectors between 

consecutive frames are computed by optical flow, 

yielding significant temporal insights into pixel 

motion patterns. This information can be used to 

identify the beginning and end of a sign gesture. 

Furthermore, using optical flow in sign 

language video segmentation addresses the 

challenge of co-articulation, where the previous 

sign influences one sign. The motion feature that 

uses Optical Flow can be used to detect shot 

boundaries [21]. In this research, shot boundaries 

are detected using the projection feature to obtain 

candidate boundary frames and the motion feature 

to remove non-boundary frames from the candidate 

frames provided by the projection feature. The 

proposed method successfully detects the 

transition of an abrupt shot from the presence of 

motion and changes in the illumination of video 

sequences.  

Research on temporal segmentation is also 

closely related to motion detection or object 

movement tracking. The Canny Edge and Optical 

Flow (CE-OF) [22] method can detect and track 

moving objects with curation and precision above 

90%. Apart from object tracking, Optical Flow can 

also be used to calculate movement speed [23], so 

it can potentially be used to extract information 

related to the speed of movement of signs, a non-

manual component in sign language. 

This research proposes an innovative approach 

that leverages optical flow-based temporal 

segmentation for sign language videos. By using 

dense optical flow, our method aims to achieve 

precise, robust, and lightweight sign language 

segmentation, thereby enabling more detailed 

analysis of sign language sequences at a later stage 
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while maintaining computational costs. The 

proposed TAS method is expected to obtain 

acceptable accuracy to become a solution for the 

segmentation stage in the SIBI sign language 

recognition framework [24]. 

 

2. Methodology 

 

2.1 Temporal Action Segmentation (TAS) 

Temporal action segmentation (TAS) divides a 

video into segments or intervals representing 

different actions or activities humans or objects 

perform. It involves analyzing a video sequence’s 

temporal structure to identify and mark the 

boundaries between different actions. The aim is to 

accurately segment and label each action or 

activity, allowing for a more detailed 

understanding and analysis of the sequence [18].  

Practically, TAS is implemented using pre-

computed frame-wise features as input because it 

avoids the more significant computational load 

required for learning video features [18]. In cases 

where the movement of objects is dynamic and 

there may be dependencies between video frames, 

a temporal or sequential model that uses a learning 

model such as a Convolutional Network, RNN, and 

Transformer is needed. Each approach has a trade-

off between complexity and computational speed. 

Accurate but high computational costs can be less 

suitable for real-time applications that require fast 

processing. The model proposed in this paper uses 

frame-wise features using dense optical flow to 

determine the boundaries between signs that can be 

detected because there is a change from stillness to 

movement by the signer at the beginning or pause 

between signs. 

  

2.2 Dense Optical Flow 

Optical flow algorithms aim to estimate the 

velocity of an object or pixel between successive 

frames in a sequence. Optical Flow observes the 

movement of objects by measuring variations in 

image intensity over time caused by the object’s 

movement. Optical Flow assumes an object’s pixel 

intensity does not change over successive frames. 

The intensity of the image I(x,y,t), after time dt has 

moved a distance dx and dy can be calculated by: 

 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡).  (1)  

 

By using the Taylor’s series expansion of (1), 

the optical flow equation can be derived:  

 
𝜕𝐼

𝜕𝑥

𝑑𝑥

𝑑𝑡
+ 

𝜕𝐼

𝜕𝑦

𝑑𝐼

𝑑𝑦
+  

𝜕𝐼

𝜕𝑡
= 0.             (2) 

 

Dense optical flow is a notion in computer 

vision that refers to the computation of motion 

vectors for each pixel in an image or frame of a 

video. It aims to produce a dense representation of 

the flow field by calculating the motion at each 

pixel in the picture. Dense optical flow considers 

every pixel in the image, giving a more thorough 

and in-depth comprehension of the motion 

throughout, in contrast to sparse optical flow, 

which simply estimates motion at particular areas 

or features. 

An approach for dense optical flow that 

estimates object motion in a video sequence is 

called the Farneback Optical Flow [25]. The 

Farneback Optical Flow algorithm uses the Taylor 

series approximation to estimate the flow between 

image frames, while polynomial expansion is used 

to represent the local image structure. It uses 

polynomial expansion to represent the local image 

structure after dividing the image into a grid of 

small regions. Next, by comparing the coefficients 

of the polynomials, the program calculates the 

motion between these regions. Farneback Optical 

Flow estimates each neighboring pixel with a 

polynomial:  

 

𝑓(𝑥) ∼  𝑥𝑇𝐴𝑥 +  𝑏𝑇𝑥 + 𝑐.                (3) 

 

The implementation of the Farneback Optical 

Flow algorithm was made using the functions of 

OpenCV [26]. The calcOpticalFlowFarneback 

function compares two adjacent frames as input 

and returns the computed flow image. In addition, 

the function accepts 7 input parameters, consisting 

of the first 4 parameters (pyr_scale, levels, winsize, 

and iterations) specifying the pyramidal approach, 

the 2 parameters (poly_n and poly_sigma) 

correspond to the polynomial expansion in each 

pixel, and the last parameter is the operation flags 

which must be done with a priori displacement 

fields and optical flow estimation smoothing 

filters. 

 

2.3 Dataset 

The data in this study was collected from three 

special school teachers who mastered SIBI. There 

are five sentences commonly used by students in 

the school environment. Each sentence was 

recorded ten times, so the total data used in this 

study was 150 videos. This study arranges 

sentences with affixes to ensure the proposed 

algorithm correctly segments affixes and root 

words. Table 1 shows the five sentences used in the 

study, consisting of some words and their signs. 

The affixes used in the sentences are as follows: 

reading, late, exercising, together, and sweeping. 

Video is captured using a mobile phone camera, 

with video specifications of 720 × 1280 resolution 

(portrait layout) and a frame rate of 24 fps. 
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Table 1.  Dataset properties. 

No Sentences 

Num. 

of 

Words 

Num. of 

Signs 

1 Saya senang membaca 

buku (I enjoy reading 
books). 

4 5 

2 Saya terlambat bangun 

tidur (I woke up late). 

4 5 

3 Saya suka berolahraga 
(I like exercising). 

3 4 

4 sekarang kita makan 

bersama (we eat 
together now). 

4 5 

5 saya tidak suka 

menyapu di kelas (I 

don’t like sweeping the 
class). 

6 7 

 

2.4 Performance Metric 

This study measures segmentation performance 

using Perf and F1r performance metrics. Perf [27] 

combines F1-Score and Accurate Temporal 

Segmentation Rate (ATSR). Perf provides an 

analysis of the accuracy of the location of key 

frames at the frame level and also considers the 

Precision (P) and Recall (R) used in calculating the 

F1-Score. Perf can be expressed by: 

 

𝑃𝑒𝑟𝑓 = 10 ×  
𝐴𝑇𝑆𝑅 ×𝑃 ×𝑅

4 ×𝐴𝑇𝑆𝑅 +𝑃+𝑅 
,         (4) 

 
where P is precision and R is recall. ATSR is 

defined by: 

 

𝐴𝑇𝑆𝑅 = 1 −  
1

𝑛
× ∑ 𝐴𝑇𝑆𝐸(𝑖),𝑛

𝑖=1           (5) 

where: 

 

𝐴𝑇𝑆𝐸 =  
‖𝑆𝑡𝑎𝑟𝑡𝐺𝑇 − 𝑆𝑡𝑎𝑟𝑡𝐴𝑙𝑔‖+‖𝑆𝑡𝑜𝑝𝐺𝑇 − 𝑆𝑡𝑜𝑝𝐴𝑙𝑔‖

𝑆𝑡𝑜𝑝𝐺𝑇 − 𝑆𝑡𝑎𝑟𝑡𝐺𝑇
. (6) 

 

F1r [28] is a combination of the F1-score and 

concordance rate (r). F1r solves the problems 

found in ATSR when it analyzes segments with 

different segment sizes between ground truth and 

algorithm results. F1r and Perf return values 

between 0 and 1. F1r is calculated by replacing 

ATSR in (4) with concordance rate (r), which is 

given by:  

 

𝑟𝑐(𝑔𝑖 , 𝑎𝑗) =                                                             

2 ×  
𝑚𝑖𝑛(𝑡𝑔𝑖𝑒𝑛𝑑 ,𝑡

𝑎𝑗
𝑒𝑛𝑑 )−𝑚𝑎𝑥(𝑡𝑔𝑖𝑠𝑡𝑎𝑟𝑡,𝑡

𝑎𝑗
𝑠𝑡𝑎𝑟𝑡 )

 𝑡𝑔𝑖𝑒𝑛𝑑 −𝑡𝑔𝑖𝑠𝑡𝑎𝑟𝑡+𝑡
𝑎𝑗

𝑒𝑛𝑑 −𝑡
𝑎𝑗

𝑠𝑡𝑎𝑟𝑡 
.  (7) 

 

3. Experiment 

 

This study uses a quantitative experimental 

approach to investigate and test several group 

configurations using statistics. Independent 

variables from the Farneback parameters include 

magnitude threshold, PyrScale, and WinSize. 

Meanwhile, the dependent variable in this study 

refers to the performance matrix described in the 

previous section, namely Perf and F1r. 

The first independent variable is the magnitude 

threshold. The magnitude threshold determines 

how much change in the pixel value is considered 

movement. The smaller the magnitude threshold 

value, the more sensitive the algorithm is in 

assessing whether moving objects are in two 

frames. The magnitude threshold values used in 

this research are 5.0, 10.0, and 15.0. 

  The second independent variable is PyrScale. 

This variable determines the reduction control 

factor at each level of the pyramid. A smaller 

PyrScale value will result in a deeper pyramid with 

higher resolution at each pyramid level. PyrScale 

values that can be used range from 0 to 1. The 

PyrScale values used in this study are 0.25, 0.5, and 

0.75. 

The third independent variable is WinSize. Its 

value ranges from 0 to 1. A value closer to 1 gives 

a smoother value but is less sensitive to small 

movements. The WinSize values used in this study 

are 10, 15, 20, and 25. 

Other parameters were given the following 

settings: the pyramid layers were set to 3, number 

of iterations equal to 3 to get the convergence of 

the pyramid report transition to the actual image 

resolution, the size of the neighboring pixels was 

set to 5 to get a smoother image surface and the 

standard deviation of the Gaussian filter to 1.2. 

 

4. Result and Discussion  

 

4.1.1 Frames Analysis 

Frames analysis is performed on ground-truth 

videos. A ground-truth video is a video of sign 

sentences labeled with the boundaries between sign 

language words. Label determination is carried out 

by experts based on the results of SIBI recordings. 

Referring to the label of sign language word 

boundaries, determining the duration of a sign 

movement can be calculated from the number of 

frames divided by the framerate. Table 2 shows the 

smallest and largest number of frames of each sign 

taken from the five-sentence dataset. The analysis 

results show that the shortest sign is 12 frames (0.5 

seconds), and the most extended sign is 52 frames 

(2.16 seconds).  

 

4.1.2 Testing Result 

The first test compares the results of Perf and 

F1r to the minimum use of segment duration. The 

use of minimum segment duration is expected to 

avoid the formation of temporal segments that are 

too small because the applied algorithm is too 

sensitive to movement. The results of Perf and F1r 
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for comparisons without (S1) and with (S2) a 

minimum segment duration are displayed in Tables 

3 and 4, respectively. Based on the twelve tests that 

used a magnitude threshold of 5.0 and a minimum 

segment duration of 0.5 seconds, the confidence 

interval results are in the negative area. This means 

that S1 is worse than S2. In other words, using a 

minimum segment duration can improve the 

performance of the Farneback optical flow 

algorithm. 

Table 2.  The number of required frames of each word or affix 

to determine the minimum duration of a sign. 

No Words 
Number of Frames 

Min Max 

1 saya 22 36 

2 senang 20 28 

3 me 12 26 

4 baca 16 22 

5 buku 16 40 

6 ter 16 16 

7 lambat 20 24 

8 bangun 16 18 

9 tidur 28 40 

10 suka 18 40 

11 ber 12 16 

12 olahraga 32 52 

13 sekarang 20 22 

14 kita 20 32 

15 makan 16 20 

16 sama 26 34 

17 tidak 14 20 

18 sapu 14 18 

19 di 14 24 

20 kelas 24 40 

 

Table 3. Comparison of Perf measurement to minimal segment 

duration usage. 

S1 S2 Cum. 

Mean 

Diff. 

SD    Confidence 

Interval 

Lower 

interval 

Upper 

interval 

0.737 0.765 -0.028 n/a n/a n/a 

0.783 0.799 -0.022 0.008 -0.023 -0.020 

0.801 0.821 -0.021 0.006 -0.022 -0.020 

0.805 0.823 -0.021 0.005 -0.021 -0.020 

0.727 0.753 -0.022 0.005 -0.022 -0.021 

0.761 0.799 -0.024 0.008 -0.025 -0.024 

0.804 0.820 -0.023 0.008 -0.024 -0.023 

0.813 0.830 -0.022 0.008 -0.023 -0.022 

0.715 0.736 -0.022 0.007 -0.023 -0.022 

0.768 0.792 -0.023 0.007 -0.023 -0.022 

0.798 0.815 -0.022 0.007 -0.022 -0.022 

0.803 0.824 -0.022 0.006 -0.022 -0.022 

 

Furthermore, using test scenarios with 

variations in the value of the independent variable, 

the test results are obtained, as shown in Figure 2. 

To make it easier to understand the information in 

Figure 2, we can distinguish the test results at a 

threshold magnitude of 5.0 (Figure 2(b)) and above 

5.0 (Figure 2(c)). At the magnitude threshold of 

5.0, Figure 2(b) shows the PyrScale value, which is 

inversely proportional to segmentation 

performance. The green line shows that when 

PyrScale is increased, the average performance 

decreases. In contrast, the purple line in Figure 2(b) 

shows the increasing WinSize values in line with 

growing performance values. 

Table 4.  Comparison of F1r measurement to minimal segment 

duration usage. 

S1 S2 

Cum. 

Mean 

Diff. 
SD 

   Confidence 

Interval 

Lower 

interval 

Upper 

interval 

0.760 0.796 -0.036 n/a n/a n/a 

0.799 0.817 -0.028 0.012 -0.030 -0.025 

0.821 0.842 -0.026 0.009 -0.027 -0.024 

0.825 0.847 -0.025 0.008 -0.025 -0.024 

0.759 0.801 -0.028 0.010 -0.029 -0.027 

0.774 0.817 -0.031 0.011 -0.031 -0.030 

0.822 0.841 -0.029 0.011 -0.030 -0.028 

0.833 0.852 -0.028 0.011 -0.028 -0.027 

0.755 0.779 -0.027 0.010 -0.028 -0.026 

0.784 0.813 -0.027 0.010 -0.028 -0.027 

0.813 0.832 -0.027 0.009 -0.027 -0.026 

0.824 0.846 -0.026 0.009 -0.027 -0.026 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. Temporal segmentation performance test results with 

magnitude values (a) 5.0, 10.0, and 15.0, (b) 5.0, and (c) above 
5.0. 
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The test results with a magnitude threshold 

above 5.0 (Figure 2 (c)) show that the WinSize 

value is inversely proportional to the method 

performance. Meanwhile, PyrScale does not 

significantly affect segmentation performance, 

although, at a threshold magnitude of 10, it appears 

that the PyrScale value negatively impacts 

segmentation performance. 

The best temporal segmentation results were 

produced in a magnitude threshold configuration of 

5.0, a PyrScale of 0.5, and a WinSize of 25, with 

an average Perf of 0.8298 and an F1r of 0.8524. 

The best performance occurred in subject 1 for 

sentence 1, with a Perf value of 0.98 and F1r of 

0.99. The magnitude threshold of 5.0 means that 

the optical flow algorithm will recognize the 

occurrence of a new segment based on the 

occurrence of object movement after the no-motion 

condition if there is a movement of the pixel value 

between two frames with a distance of 5 pixels. 

Therefore, it is crucial to remember that the 

magnitude threshold value that produces the best 

performance on the data only applies to the 360 × 

640. 

The large WinSize can smooth the estimation 

results and minimize the effect of noise, thus 

making the results more stable. However, 

algorithms can fail to detect subtle movements or 

detailed frame changes. Combining a small 

threshold magnitude to capture smoother 

movements and a considerable WinSize value to 

minimize noise effects has proven to have the best 

performance, as seen from the test results. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 3.  Segment analysis in subject 1, sentence 1, 

PyrScale 0.75, WinSize 25, (a) threshold 5.0, (b) threshold 
10.0, (c) threshold 15.0. 

 

Figure 3 shows some of the temporal 

segmentation results in the SIBI video sentences. 

Figure 3(a) has the best performance in temporal 

segmentation testing because it has different 

segments based on the ground truth and algorithm 

results. The segmentation shown in Figure 3(a) can 

be successful because the algorithm’s 

segmentation results do not remove information 

from the main movement of the word sign. More 

details can be seen in Table 5; the 36th and 38th 

frames have no significant difference. The 

Farneback algorithm, with a threshold value of 5, 

determines that the 36th frame is the start of a new 

segment. This is due to the movement of the body 

position of the signer, even though the hand 

gestures do not show any visible changes. Even 

though these differences do not significantly affect 

the segmentation results, semantic segmentation 

can be implemented for signaling hands so that the 

segmentation results can be carried out more 

accurately.     

Table 5.  Analysis of frame sequences from index 34 to 40. 

Index 34 36 38 40 

Frames 

    

 

Figure 3(b) shows the algorithm’s results, 

providing an additional segment in the 70th frame. 

Using a higher threshold magnitude (10) causes the 

algorithm to detect motion roughly. As seen in 

Table 6, there is no significant difference in the 

66th and 68th frames, so the algorithm assumes 

that the 68th frame has a pause, closes the segment, 

and starts a new segment in the 70th frame.  

Table 6.  Analysis of frame sequences from index 66 to 70. 

Index 66 68 70 72 

Frames 

    

 

Figure 3(c) shows unfavorable results for the 

magnitude threshold and WinSize conditions for 

the most significant value combination. A large 

threshold magnitude causes the algorithm to be 

insensitive to gesture movements, exacerbated 

when using a considerable window size value. In 

this test, three segments out of six are compared to 

ground truth. 

Figure 4 shows the performance trend of the 

segmentation method based on the configuration 

variations of the experimental scenarios for the 

three subjects used. Based on the pattern shown in 

Figure 4, each subject has almost the same pattern, 

but there are differences in several test variations. 

This happens because the speed of hand 
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movements in conveying messages in sign 

language differs for each signer. However, the 

most significant average value of the performance 

of the segmentation algorithm can be obtained by 

using Farneback Optical Flow of 0.8298 and 

0.8524 for Perf and F1r, which are in a magnitude 

threshold configuration of 5, PyrScale of 10, and 

WinSize of 25. 

 

 
 
Figure 4. Temporal segmentation performance measurement 
results for each subject 

 

5. Conclusion 
 

Several conclusions can be drawn based on the 

experimental results that have been carried out by 

observing the use of the Farneback optical flow 

algorithm for temporal action segmentation of 

SIBI. Each sign produces a variety of movement 

speeds, resulting in different performance 

measurement results in different method 

configurations. Apart from variations in the speed 

of gestures by different signers, performance is 

also affected by the complexity of sentence 

composing signs input to the algorithm. Threshold 

and WinSize variables negatively correlate to the 

segmentation algorithm’s performance. This can 

be seen from the results of the measurement 

visualization, which show that the smallest 

magnitude threshold has the best performance 

when the WinSize value is the largest. Performance 

was measured using Perf and F1r, which yielded 

the best performance of 0.8298 and 0.8524, 

respectively. This research has successfully 

demonstrated using the Farneback optical flow 

algorithm in performing temporal segmentation on 

SIBI sign language videos. 

Semantic segmentation of the body parts of the 

hand, which is a component that determines 

meaning in sign language, can improve the 

performance of temporal segmentation. Adding 

machine learning to segmentation can increase 

performance but at an increased computational 

cost. The following research is to develop a 

temporal segmentation method that is adaptive to 

the possibility of different video attributes and to 

add a frame selection algorithm for significant 

movement to the sign segments that have been 

made. For the record, this research uses a 

controlled environment in taking videos, such as 

the subject’s background and the camera’s distance 

from the subject. Thus, the movement of objects 

other than the movement of the subject being 

observed and changes in light intensity can affect 

performance. The segmentation results will be used 

in the SIBI sign language translation. 
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