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Abstract 

 
Active Contour (AC) is an algorithm widely used in segmentation for developing Computer-Aided 
Diagnosis (CAD) systems in ultrasound imaging. Existing AC models still retain an interactive 

nature. This is due to the large number of parameters and coefficients that require manual 

tuning to achieve stability. Which can result in human error and various issues caused by the 

inhomogeneity of ultrasound images, such as leakage, false areas, and local minima. In this study, an 
automatic object segmentation method was developed to assist radiologists in an efficient diagnosis 
process. The proposed method is called Automatic Combinatorial Active Contour (ACAC), which 
combines the simplification of the global region-based CV (Chan-Vese) model and improved-GAC 
(Geodesic Active Contour) for local segmentation. The results of testing with 50 datasets showed an 

accuracy value of 98.83%, precision of 95.26%, sensitivity of 86.58%, specificity of 99.63%, 
similarity of 90.58%, and IoU (Intersection over Union) of 82.87%. These quantitative performance 
metrics demonstrate that the ACAC method is suitable for implementation in a more efficient and 
accurate CAD system. 
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1. Introduction 

 

Ultrasonography (US) is the most used 
medical imaging modality for screening glandular 

and tissue abnormalities due to its affordability, 

non-invasiveness, and ease of use. The ability of 

US to generate real-time and fast image results 

makes it highly efficient for large-scale and 

repeated examinations. Despite all its advantages, 

interpreting US images is subjective and highly 

dependent on the expertise, skills, and experience 

of the radiologist, leading to high variability in the 

diagnostic process [1]. The inadequate quality of 

US, such as poor resolution or low contrast, 
further complicates visual analysis and increases 

the potential of misinterpretation [2]. 

To address these challenges, Computer-Aided 

Diagnosis (CAD) technology has rapidly 

developed by implementing various image-

processing algorithms and pattern-recognition 

techniques [3]. CAD aims to provide objective 
information to radiologists as a second opinion to 

support diagnosis. The procedural process in CAD 

systems typically involves image acquisition, 

preprocessing, segmentation, feature extraction, 

classification, and obtaining accurate diagnostic 

results [4]. 

Segmentation plays a crucial role in CAD 

systems by accurately separating lesions and 

nodules from the surrounding tissue [5]. The 

segmentation stage encounters challenges arising 

from variations in image quality. US images 
exhibit characteristics such as non-uniform 

intensity texture distribution and blurred object 

edges, which complicate the segmentation 

process. These complications are primarily caused 
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by the influence of speckle noise and the presence 

of various artifacts in US images. Speckle noise is 

the main cause of blurred object appearance and 

indistinct boundaries [6]. On the other hand, 

artifacts refer to pixel defects resulting from 

manual addition of descriptive attributes by 

machines or operators, such as text, notations, 

lines, or symbols [7].  
 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Ultrasound: S Detect for Thyroid RS80 (a) RS80 

Machine, (b) Manual Segmentation, (c) Segmentation Results 

[8] 

 

Computer-Aided Diagnosis (CAD) has been 

extensively developed for several ultrasound 

machines. One of them is Ultrasound: S Detect for 
Thyroid RS80 developed by Samsung Medical 

Imaging, as shown in Figure 1 point (a) [8]. The 

RS80 is not only used for detecting thyroid cancer 

but also breast lesions [9]. However, the machine 

still has weaknesses in the segmentation stage. In 

this stage, for segmentation to occur, radiologists 

still need to manually initialize the location of 

cancer objects, as seen in Figure 1 point (b), and 

choose the desired segmentation results, as shown 

in Figure 1 point (c). This process is not efficient 

and increases the chances of human error when 
repeated for a large number of patients. Yet, 

segmentation plays a crucial role in US imaging 

with CAD systems [10]. Segmentation in CAD 

systems is used to separate nodular or lesion areas 

from the surrounding tissue (background) [11]. 

The segmentation is crucial role as it is used to 

obtain objective data such as geometric 

information, shape, edge boundaries, and texture 

as part of the feature extraction process. Well-

segmented lesion and nodule objects will provide 

accurate and objective diagnostic conclusions 

[12]. The selection of methods used in each stage 
of CAD needs to be carefully considered to 

achieve optimal results. 

Among the existing methods, the active 

contour (AC) model variation is an efficient 

approach that can be developed into a specialized 

image segmentation technique [13]. Surveys from 

several studies [14]–[20] show that deformable 

AC models are the most widely applied approach 

in segmenting US images. The two of them are a 

review of segmentation methods in US breast by 

Xian et al. [17] and thyroid by Nugroho et al. [17] 

as reported in Figure 2. 

  

 

 
 
Figure 2. Distribution of breast (above) and thyroid (under) 

segmentation methods. 

 

AC is a dynamic curve that evolves in the 

normal plane of image and stops at the gradient of 

edge or at the border of intensity change. An AC 

simulation on synthetic images segmentation is 

shown in Figure 3. The first line of Figure 3 (a,b) 

shows that AC is able to provide accuracy of 

segmentation in the object topology with the 
dominance of sharp curves. The second line of 

Figure 3 (c,d) illustrates that AC evolution is able 

to segment multiple objects simultaneously. 

Dynamic object topologies are also able to be 

handled effectively by AC. The flexibility of 

closed-curves AC is capable to accurately separate 

object boundaries in various biological network 

tissues and allows users to integrate with other 

frameworks if needed to improve performance. 

This cannot be done by conventional 

segmentation methods such as edge detection, 

thresholding and classical morphological 
operations  [21].  
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Figure 3. AC segmentation on the rough (a,b) and multiple 

(c,d) objects. 

 

Well-established interactive approaches such 

as region growing and graph cut are also not 

appropriate for large-scale segmentation as they 

are inefficient [20]. Whereas the most prominent 
weakness of all learning-based approaches is that 

they are highly dependent on training data. If 

there is not a higher amount of dataset available, it 

is less possible to get a significant performance 

increase [20]. Moreover, radiological US objects 

are specific so global segmentation approaches 

such as watershed and clustering based methods 

tend to produce inaccurate results. While AC can 

segment specific objects without requiring a long 

preprocessing stage. With this capability, AC is 

very robust for a wide variety of applications. 

This method is built based on a mathematical 
model involving parameters and variables that are 

adjustable so it has the opportunity to be 

generated as an automatic segmentation 

technique. 

Existing AC models still retain an interactive 

nature. This is due to the large number of 

parameters and coefficients that require manual 

tuning to achieve stability. A stable AC model is 

characterized by convergent trends in the change 

in length and area of the curve during evolution. 

Convergence is the ability of an AC model to stop 
exactly at the expected object segmentation. The 

more converging, the AC model will be more 

reliable and resilient. Despite this, a high number 

of parameters or coefficients in an AC model can 

lead to increased operator intervention, making it 

impractical. The segmentation process becomes 

complicated and difficult.  

In addition, US inhomogeneity negatively 

effects the evolution so that the curve is trapped in 

the false area (FA) or false regions that are not the 

real object segmentation as shown in Figure 4 
point (a). FA includes two possibilities, which are 

non-lesion areas that are segmented as lesions 

(false positive-FP) and areas of lesions that are 

segmented as non-lesion areas (false negative-

FN). Inhomogeneity also results in leakage 

problems in the evolution of curve AC. Leakage is 

a term for the evolution of curves that penetrate or 

hit object boundaries because of weak edge 

gradients or the blurring of intensity between 

objects and their backgrounds. Leakage is shown 

in Figure 4 (b). In the severe noisy conditions, 

even the AC curve cannot move at all because it is 

trapped in the local minima (LM) area as 

illustrated in Figure 4 (c). LM is an area that can 

hardly be detected by the presence of a gradient 

around the edge so that it cannot be distinguished 

between objects and backgrounds. LM is the 
opposite condition to leakage in the phenomenon 

of AC evolution. Indeed, homogeneous images 

will be easier to segment with AC model. Thus, 

the adaptation of an AC model to be robust 

against noise and inhomogeneity is also a matter 

of great concern. 
 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

 
Figure 4. AC segmentation problems on ultrasound images 

locally (red contours) and globally (blue contours). (a) Local 

minima (LM), (b) Leakage, and (c-d),False area (FA), with 

their ground truth on right side. 
 

Ground truth (GT) refers to the meticulous 

segmentation results performed by experts 

through a manual process by a number of 
radiologists who have reached a consensus. Thus, 

a valid GT reference is obtained without any 

variability concerns. In this study, GT was created 

by Dr. Lina Choridah, Sp. Rad., and her students 
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in the Department of Radiology, Faculty of 

Medicine, Universitas Gadjah Mada. 

Combinatorial AC model will realize a 

practical and efficient CAD system. Automation is 

applied to reduce the dependence of AC on 

operator intervention. The development of the AC 

model by integrating this point is the biggest 

challenge in this work due to the diverse quality 

of US images. 

 

1.1 Gaps Among Existing AC Models 

 

In principle, all AC methods adopt three basic 

categories of AC models: parametric Snakes [22], 

edge-based geodesic active contour (GAC) with 

local edge information [23], and global region-

based Chan-Vese (CV) [24]. Each method differs 

only in the application of preprocessing 

techniques and optimization methods. Besides 

these three categories of AC models, there are still 

many AC models that have not been used as 
methods for US image segmentation. One of them 

is the hybrid model category. The following 

explanation will provide an overview of the 

development of various AC models. 

The concept of contour explicit parametric 

models, particularly in the realm of computer 

vision and image processing, has given rise to 

innovative techniques such as edge-based active 

contours (AC). One noteworthy example of these 

models is the Snakes model and its evolution into 

the ADF (Active Deformable Framework). These 
models leverage supporting algorithms like 

Balloon Force and GVF (Gradient Vector Flow) to 

enhance their effectiveness in capturing complex 

shapes and contours within images. A notable 

contribution of these approaches lies in their 

ability to address challenges related to concave 

structures and specific segmentation tasks. 

Recognizing their limitations is crucial, as these 

methods might lack flexibility and encounter 

challenges in scenarios involving merging and 

splitting. This underscores the continuous pursuit 

of advancements in contour parametric modeling 
for applications that are more robust and versatile. 

[6], [22], [25]. 

The concept of implicit geometric and 

variational level set methods has significantly 

contributed to the advancement of edge-based 

active contours (AC) in the field of image 

processing and computer vision. Within this 

category, the Geodesic Active Contour (GAC) 

model stands out as a fundamental representation 

of these techniques. Supporting algorithms such 

as DRLSE (Distance Regularized Level Set 
Evolution) and RDLSE (Region-based Distance 

Regularized Level Set Evolution) have played 

crucial roles in refining and optimizing the 

performance of these models. One notable 

contribution of these approaches is their efficacy 

in regularization, allowing for more stable and 

accurate contour evolution. Additionally, they 

exhibit a commendable degree of flexibility in 

handling complex scenarios involving the 

merging and splitting of contours. It's essential to 

acknowledge certain weaknesses, including the 

reliance on trial and error in the Explicit Shape 

Feedback (ESF) process, potential issues of 
leakage, and challenges associated with Level Set 

Methods (LM). Addressing these limitations 

remains an ongoing area of research to further 

enhance the applicability and robustness of 

implicit geometric and variational level set 

models in diverse image analysis tasks. Caselles 

et al. 1997; Li et al. 2010; Malladi et al. 1995; 

Osher and Sethian 1988; Zhang et al. 2013). 

The concept of implicit geometric and 

variational level set methods has found 

application in the domain of global region-based 
active contours (AC), showcasing its versatility in 

image processing and computer vision. Various 

models, such as CV/ACWE (Chan-Vese/Active 

Contour Without Edges), RBSPF (Region-Based 

Shape Prior Fields), MLSAC (Multi-Level Set 

Active Contour), and ILF (Implicit Level Set 

Function), exemplify the diversity within this 

category. These models make significant 

contributions to the field by demonstrating 

robustness in handling initial contours, 

incorporating Explicit Shape Feedback (ESF), and 
effectively leveraging gradient information for 

contour evolution. Despite these strengths, a 

notable weakness arises when these models 

encounter challenges in the form of being trapped 

in false attractors (FA) in the presence of 

heterogeneous images. Ongoing research efforts 

aim to address this limitation, focusing on 

enhancing the adaptability of implicit geometric 

and variational level set methods to diverse image 

characteristics for more robust and accurate 

segmentation outcomes. [26]–[28]. 

The concept of implicit variational level set 
methods has been applied effectively within the 

realm of local region-based active contours (AC), 

offering a tailored approach to image processing 

and computer vision challenges. Several models, 

including LRBAC (Local Region-Based Active 

Contour), LBF (Local Binary Fitting), LIF (Local 

Intensity Fitting), LIC (Local Intensity and 

Contrast), LSAC (Local Shape-Constrained 

Active Contour), LCV (Local Color Variance), 

LRCV (Local Region-Based Color Variance), 

LGDF (Local Gradient Direction Fitting), and 
LLIF (Local Level Set with Intensity Fitting), 

exemplify the diversity within this category. 

These models contribute significantly by 
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localizing contours to adapt to heterogeneous 

image conditions, demonstrating effectiveness in 

scenarios where a more nuanced approach is 

required. It is important to acknowledge certain 

weaknesses inherent in these methods, such as the 

potential for excessive convolution operations, 

resulting in models that are computationally 

heavy and slow. Addressing these computational 

challenges remains a focal point for researchers 

seeking to enhance the efficiency and applicability 
of implicit variational level set models in local 

region-based active contour applications. [29]–

[31]. 

The concept of implicit geometric and 

variational level set methods has been ingeniously 

applied in the domain of hybrid active contours 

(AC), offering a synthesis of both local and global 

strategies for image processing and computer 

vision challenges. Various models, including 

GACV (Global and Local Geometric Active 

Contour with Vectors), LGBF (Local and Global 
Binary Fitting), GLIF (Global and Local Intensity 

Fitting), LGGDF (Local and Global Gradient 

Direction Fitting), and SPFLBF (Sparse Field 

Level Set with Local Binary Fitting), exemplify 

the diversity within this hybrid category. These 

models make noteworthy contributions by 

seamlessly integrating local and global AC 

components, providing a more adaptable and 

robust framework for contour evolution. It's 

important to recognize certain weaknesses 

associated with these hybrid models, such as a 
higher degree of intervention required during 

parameter tuning and a notable computational 

cost, which can be burdensome in resource-

intensive applications. Researchers are actively 

addressing these challenges to strike a balance 

between intervention and computational 

efficiency, aiming to further enhance the 

versatility and practicality of implicit geometric 

and variational level set methods in the context of 

hybrid active contour models. [32]–[34]. 

Human skills in manually annotating the 

investigated US images are certainly competent 
and careful. However, the need for high 

reproducibility and efficiency in performing this 

task motivates the development of automatic 

segmentation methods. This study aims to develop 

an AC model that can be used as an effective 

segmentation method on US images in the field of 

radiology. This effort is categorized into two 

specific objectives. (1) Developing a hybrid AC 

formulation that is capable of working 

autoadaptive to the character of US image so that 

operator intervention can be minimized. (2) 
Integrating the proposed hybrid AC model with 

morphological Gaussian-based regularization to 

maintain evolutionary stability and handle 

inhomogeneity. 

By achieving an autoadaptive AC 

segmentation technique in this study, the 

radiologists gained three benefits i.e. accurate 

local detection of investigated objects, more 

efficient CAD procedure and its practical use with 

minimal intervention. 

The structure of this paper is as follow: after 

explaining the background, research gaps, and 

study objectives in Introduction, a review and 
theoretical basic of AC based segmentation is 

describe in Literatur Reviews. Next, the method 

developed in this study is described in the 

Methodology. The results of the testing and 

validation of the method are explained in the 

Results and Discussion. Lastly, Conclusion is 

described about summarizes and concludes the 

study. 

 

2. Literatur Reviews 

 
This study utilizes a hybrid model to develop a 

new automated segmentation method by 

leveraging both the local edge-based geodesic 

active contour (GAC) model and the global 

region-based Chan-Vese model. 

 

2.1 Edge-based GAC 

 

After the development of implicit geometric 

AC models based on the level set theory [35] by 

Caselles et al. [36] and Malladi et al. [37], explicit 
parametric AC models are rarely used. The 

segmentation mechanism is then represented as a 

solution to a partial differential equation obtained 

implicitly at the zero level set (ZLS) condition. 

The level set formulation allows the AC curve to 

reliably handle merging and splitting in dynamic 

object topology. Additionally, multiple objects can 

be segmented simultaneously in a single evolution 

using the same initial contour. The evolution is 

halted by an edge stopping function (ESF) 

obtained through edge gradient after smoothing 

operations. AC segmentation techniques with 
optimized ESF like this are specifically known as 

edge-based models. The most fundamental 

example of an edge-based AC model is the 

Geodesic Active Contour (GAC) by Caselles et al. 

[38]. The GAC model uses edge information of 

the image, which makes the model sensitive to 

noise and clutter, which will lead boundary leak 

phenomenon to the segmentation result, at the 

same time, the model is highly sensitive to the 

initial contour position.  

In general, the main drawback of edge-based 
models is their high dependence on the 

effectiveness of the ESF (edge stopping function). 

The intervention of operators in determining the 
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smoothing parameters and the initial contour 

location still relies on trial and error. GAC often 

gets trapped in the local minimum (LM) area due 

to inaccurate initial contour placement. Excessive 

smoothing operations can also lead to the loss of 

object edge sharpness, resulting in leakage issues. 

 

2.2 Simplified CV 

 

Due to these limitations, Chan-Vese (CV) [24] 
subsequently developed the Active Contour 

Without Edge (ACWE) based on the curve 

evolution theory of Mumford-Shah [105], 

represented in the concept of variational level set. 

This model works globally, similar to clustering, 

as it investigates the entire object in an image 

field. It is known as a "variational" model because 

of the fundamental modifications made to the 

general level set evolution equation (LSE). The 

CV model utilizes the mean intensity between the 

foreground and background as a suitable term to 
stop the evolution. The fitting term replaces the 

ESF in edge-based models. In addition to being 

reliable in segmenting blurred objects, the CV 

model is also insensitive to the initial contour 

placement. Regardless of the initial contour's 

position, the curve continues to evolve towards 

the object edges based on the obtained average 

intensity values. It has been discovered that the 

global region-based concept is only optimal for 

homogeneous foreground and background 

regions. In cases of inhomogeneity, the AC curve 
becomes trapped in the false attractor (FA) 

regions. 

 

2.3 Similar Studies  

 

The use of AC models as a method of 

segmenting US images was found in several 

studies summarized in Table 1. Of these studies, 

breast lesions and thyroid nodules are the most 

discussed objects. Thyroid and breast cancer are 

two malignancies with the highest incidence in 

women [39]. Epidemiological studies have shown 
that patients with breast cancer have a higher risk 

of developing thyroid cancer, and vice versa [40], 

[41]. Therefore, both cancers may share some 

similarities, such as hormonal factors, genetic 

predisposition, environmental factors, and related 

therapies [42]. To help reduce the number of 

deaths due to cancer, an innovation is needed to 

assist radiologists in diagnosing cancer, especially 

to expedite the screening process by automating 

it. The US imaging of breast and thyroid cancer 

can be seen in Figure 5.  
 

 
(a) 

 
(b) 

 

Figure 5. US images (a) of breast cancer and (b) of thyroid 

cancer. 

 

This study designedly involved the two types 

of cancer objects to obtain sufficient datasets 

capable of representing other similar radiological 

objects. With the adequacy of existing datasets, 

the performance evaluation of the proposed AC 

model becomes increasingly valid and significant. 

Meanwhile, previous studies were limited to one 
kind of US object only. 
 

Table 1. Utilization of the AC models for US image 

segmentation. 

Study Object Model 

[43]–[48] 

[49] 

[50] 

[19], [51], [52] 

- Breast 

- Thyroid 

- Liver 

- Artery 

Snakes [22] 

[53] 

[14], [54]–[56] 

- Breast 

- Thyroid 

GAC* [53] 

[4], [57]–[61] 

[4], [11], [70]–[76], 

[62]–[69] 

[77] 

[78] 

- Breast 

- Thyroid 

- Liver 

- Heart 

CV** [79] 

This paper - Breast & 

thyroid 

Hybrid CV-

GAC 

*GAC = Geodesic Active Contour, **CV = Chan-Vese 

 

Additionally, several studies leverage AC for 

the development of CAD systems. 

In 2015, Nugroho et al. conducted a study 
developing a method called ACBF (Active 

Contour Bilateral Filter) for breast lesion 

segmentation in ultrasound (US) images [60]. The 

bilateral filter was used in the study to reduce 

speckle noise in US images. The ACBF method 

combines active contour segmentation with the 

bilateral filter to separate the breast lesion area. 

The research findings showed that using this 

method could detect the edges of breast lesions, 

iteratively separate normal tissues, and 

successfully reduce noise in US images. The 

testing results using parameters such as MSE 
(Mean Square Error), SNR (Signal to Noise 

Ratio), PSNR (Peak Signal to Noise Ratio), AD 

(Average Difference), and SI (Speckle Index) 

yielded the following respective values: 38.90324, 

21.25934, 32.23095, 0.019258, and 7.77e-6. 

In 2020, Nugroho et al. conducted further 

research by developing the ACBF method [4]. The 

method evolved into a Combinatorial Active 

Contour Bilateral Filter. The study presented a 
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combinatorial framework for US image 

segmentation using the bilateral filter (BF) and a 

Region-Edge-based AC model. The research 

findings showed a Dice coefficient value of 90.05 

± 5.81% with a dataset consisting of 258 US 

images along with their ground truth annotations.  

In the same year, Nugroho et al. also 

conducted research by developing a method called 

MoRbAC (Morphological Region-based Active 

Contour) for automatic cancer object detection in 
US images [4]. The study was implemented on 

four samples of breast and thyroid cancer US 

images. The average values from each validation 

were as follows: accuracy of 98.58±0.89%, 

sensitivity of 89.58±7.69%, specificity of 

99.58±0.11%, precision of 95.58±2.77%, and 

similarity of 92.36±4.67%. In conclusion, the high 

performance of MoRbAC demonstrates its 

potential for practical applications in the 

development of computer-aided detection (CAD) 

systems. 
The MoRbAC method was further 

implemented in a study titled "Ultrasound object 

detection using morphological region-based active 

contour: an application system" [80]. The results 

of the research demonstrated that the MoRbAC 

(Morphological Region-Based Active Contour) 

method worked well in program implementation 

and was tested on 20 US images of breast cancer 

lesions and thyroid nodules. Quantitative 

measurements based on the overlapping area 

compared to the referenced ground truth achieved 
an average accuracy of up to 98.58 ± 1.15% with 

a relatively short average execution time of 2.38 ± 

0.89 seconds. This promising performance 

concludes the effectiveness and efficiency of 

MoRbAC as a viable method to be applied in 

computer-aided detection (CAD) systems. 

In 2022, the CV method was simplified by 

Nugroho et al. for cancer object detection in US 

images [81]. The simplified CV, followed by 

morphological operations, proved to be effective 

in object detection by achieving quantitative 

performance measured using Intersection over 
Union (IoU) scores between the detected objects 

and their ground truth annotations. The proposed 

method was validated using 20 thyroid and breast 

US images, resulting in an average IoU score of 

92.36%. This promising performance indicates 

that the proposed method is suitable for 

implementation in CAD systems. In 2023, 

Nugroho et al. implemented the MoRbAC 

method, which includes a simplified CV model, 

within a web-based application [82]. The 

proposed web-based application has been 
validated on 20 breast lesion and thyroid nodule 

US images. Python programming with the Flask 

framework was used to deploy this application. 

The validated results are compatible with various 

browsers and achieve an average accuracy of 

98.75%. This achievement demonstrates that 

MoRbAC is suitable for use as an US CAD 

detection technique in a web service system. 

This work can be considered as an extension 

of the MoRbAC method that was previously 

developed. The MoRbAC method is limited to 

carrying out automatic detection with bounding 

box output for suspected cancer objects but has 
not yet completed it to the segmentation stage. 

The detection process serves as a preprocessing 

stage in the CAD system, which is still in its early 

phase. Meanwhile, the proposed method here is 

already capable of performing the segmentation 

process. The segmentation process is a crucial 

stage in the CAD system, providing a wealth of 

information for the feature extraction and 

classification stages, thereby obtaining accurate 

diagnostic results. 

 

3. Methodology 
 

3.1 Dataset 
 

In this study, the dataset consists of 50 US 

images, comprising 35 breast cancer object 

images and 15 thyroid gland images obtained 

from the Department of Radiology, Dr. Sardjito 

General Hospital, and Hardjolukito Air Force 

Hospital in Yogyakarta, Indonesia. All types of 

nodules and lesions exhibit diverse features for 
classification into benign and malignant 

categories. However, these features do not affect 

the segmentation process, as the segmentation 

results will be used to extract these features 

afterward. As they are acquired from the same 

machine, the image quality and noise levels are 

consistent across all datasets. The images are 

available in .png format and accompanied by 

ground truth data, which can be used to validate 

the segmentation results obtained through a 

Python program. 

 

3.2 ACAC Segmentation Method 
 

The Automatic Combinatorial Active Contour 

(ACAC) is a method developed in this study for 

automatic segmentation in US image. This 

method combines CV (Chan-Vese) models for 

global segmentation and GAC (Geodesic Active 

Contour) for accurate local segmentation. The 

method is automated and applied to object 

detection to generate initial contour results 

through the simplification of the CV formulation. 
The segmentation of US images through the 

ACAC method is carried out through the 

following process. First, the ESF (becoming to 
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Binary Stopping Function-BSF) is created using 

the simplified CV formulation, followed by local 

object delineation using GAC. ACAC combines 

the simplified CV model in equation (1) with the 

GAC model in equation (2). 

 
∂∅

∂t
= [𝑑𝑖𝑣 (

∇∅

|∇∅|
) + [I − 0.5(𝑐1 + 𝑐2)] 𝛿(∅) (1) 

 
∂∅

∂t
= [𝑑𝑖𝑣 (𝑔

∇∅

|∇∅|
) + vg]    (2) 

 

where: 

𝜙 = level set function 

𝑡  = time variable 

𝑑𝑖𝑣 = divergence operation 

∇ = spatial gradien function  

𝐼 = Input image 

𝑐1 =  average pixel value in the contour 

𝑐2 = average pixel value out of the contour 

𝛿 = dirac function 

𝑔 =  ESF (Edge Stopping Function) 

𝑣 = constant velocity. 

 

From the combination of the two equations, the 

ACAC formulation is obtained as follows: 
 
∂∅

∂t
= {𝑑𝑖𝑣 (𝜅

∇∅

|∇∅|
) + (1 − |α|) [I −

𝑐1+𝑐2

2
] + ακ} |∇∅| (3) 

 

where 𝜅 =  curvature. 

 
The main process of the ACAC method is 

illustrated in Figure 65. 

 

 
 

Figure 6. ACAC Method Process. 

 

3.2.1 Grayscalling  

 
First step is grayscalling. It is the initial step to 

convert the data of each pixel in the US image 

into a single channel that has values ranging from 

1 to 225, with a data type of double (which can 

store decimal and negative values) based on the 

level of light intensity in the image. 

 

3.2.2 Initialize Level Set (𝛟𝟎) 

 

Secound step is initialize level set. This is the 

process of initializing the starting position of the 

curve evolution in the US image. The 

initialization location is typically set at the center 

of the image to be detected, requiring the width 

and height parameters of the image I(x, y). In this 

step, a binary image will be generated, which 

means an image that only has two values: 0 and 

255. The initialization of the level set is 

performed using the following equation. 

ϕ0 =  ϕ0(𝑥, 𝑦, 0) =  {
−1 , 𝑗𝑖𝑘𝑎 (𝑥, 𝑦)  ∈  𝐶0

1, 𝑗𝑖𝑘𝑎 (𝑥, 𝑦) ∉    𝐶0
  (4) (4   (4) 

where  𝐶0 represents the initialization region 

within the domain of the image I(x,y). 

 

3.2.3 ACAC Evolution 

 

The third step is ACAC evolution. It is a series 

of evolution processes implemented using the 

ACAC formulation in equation (3). The evolution 
process in this stage is illustrated in Figure 7 

below. 

 

 
 
 

Figure 7. ACAC Evolution Process. 

 

Basically, the CV method is a global 

segmentation method, meaning the initial contour 

can be placed anywhere in the image field. The 

CV method will automatically evolve the contour, 

regardless of the initial contour's specific location. 

The ACAC method is designed to operate 

automatically without manual adjustments, 

resulting in the following level set evolution 

equation: 
𝜕𝜙

𝜕𝑡
=  (𝐼 −

𝑐1+ 𝑐2

2
 )    (5) 

Where the constant c1 represents the average 

intensity inside the curve, and c2 represents the 

average intensity outside the curve, which can be 

obtained through the following formulation: 

{
𝑐1(ϕ) =  

∬ 𝐼(𝑥,𝑦).𝐻(ϕ) 𝑑𝑥𝑑𝑦  

∬ 𝐻(ϕ) 𝑑𝑥𝑑𝑦 
 , ϕ < 0  

𝑐2(ϕ) =  
∬ 𝐼(𝑥,𝑦).(1−𝐻(ϕ)) 𝑑𝑥𝑑𝑦  

∬(1−𝐻(ϕ)) 𝑑𝑥𝑑𝑦 
 , ϕ > 0  

  (6) 

H(ϕ) is the Heaviside function formulated as 

follows: 

𝐻(ϕ) =  
1

𝜋
tan−1(ϕ) + 0.5   (7) 
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(a) (b) 

Figure 8. Ilustration (a) global evolution, (b) and local 

evolution [83]. 

 

In equation (3), the parameters κ and α play a role 

in controlling the transition between global and 
local evolution (switching control). The evolution 

process in the ACAC method is performed 

through two stages of evolution. First, global 

evolution is carried out to automatically detect all 

objects in the image, regardless of the location of 

the initialization, as shown in Figure 8 point a, 

where the green contour represents the initial 

contour and the yellow contour represents the 

final contour. Second, local evolution is 

performed for more specific object segmentation. 

Convergence checking is conducted for each 
result of global and local evolutions, preceded by 

a morphological operation stage. 

 

3.2.4 Operation Gaussian Morphologhy 

 

 In the ACAC method, two morphological 

operations, namely opening and closing, are 

performed on the ACAC-evolved image. These 

operations are convolved with a Gaussian kernel 

to suppress artifacts and speckles, thereby 

effectively preventing leakage, LM, and FA. In 

US segmentation, adopting Gaussian filtering is 
quite reasonable as it gives smoothing effect to 

suppress speckle and artifact. This process also 

helps accelerate the convergence of evolution.  

With these sequential opening and closing, 

small foregrounds are not considered in the 

segmentation process and therefore the ACAC 

algorithm becomes robust to noisy images. This 

morphological-Gaussian provides an advantage to 

suppress speckles and artifacts so that the 

inhomogeneity of US images can be overcome. 

This regularization also eliminates preprocessing 
so that CAD works in shorter and more efficient 

stages. 

 

3.2.5 Checking Convergence 

 

 Convergence is a parameter in AC evolution 

that indicates decreasing error and leads to the 

contour stopping at the desired segmentation 

target. The convergence mechanism, as an 

Evolution Stopping Criterion (ESC) control, is 

implemented to make the method automatic based 

on the criteria given in Equation (8) and Equation 

(9). With this approach, the transition from global 

to local segmentation can be performed 

automatically. Bear in mind that ESC converges 

twice. Keep on calculating ErrorLength and 

ErrorArea during iteration until after both are less 

than or equal to θ then switch global evolution 

mode to local at the first convergence. Where θ 

being a tolerable small number. Go back to step 3, 
which is ACAC Evolution, until ESC converges 

for the second one, then evolution ACAC breaks.  

 

Error Length = 𝐿𝑒𝑛𝑔𝑡ℎ (𝜙 𝑖+I) − 𝐿𝑒𝑛𝑔𝑡ℎ (𝜙 𝑖) ≤ 𝜃 (8) 

 

Error Area = 𝐴𝑟𝑒𝑎 (𝜙𝑖+I) − 𝐴𝑟𝑒𝑎 (𝜙𝑖) ≤ 𝜃  (9) 

 

3.2.6 Display the Results 

 

 After the result has converged, the 
segmentation outcome will be displayed, showing 

the segmented contour. This outcome can then be 

tested and analyzed further. 

 

3.3 Testing Method and Validation 

 

 The testing and validation method used in the 

research is the confusion matrix. The confusion 

matrix provides information about how often 

certain behaviors are detected correctly and how 

often they are classified as other behaviors [84]. 

This data analysis method is used to compare the 
results of automatic segmentation of cancer 

objects with the manual ground truth created by 

radiologists. The research uses seven (7) 

indicators, including accuracy, precision, 

sensitivity, specificity, similarity, Intersection over 

Union (IoU) score, and CPU time. 

 In Figure 9, the segmented object is marked 

in red, while the ground truth is marked in green, 

overlapping each other to obtain the values of TP, 

TN, FP, and FN used for validating the accuracy, 

precision, sensitivity, specificity, and similarity 
using Equations (10)-(14). High percentage values 

of accuracy, precision, sensitivity, specificity, and 

similarity indicate that the segmented contour 

closely matches the ground truth. 

 

 
 

Figure 9. Testing and validation using confussion matrix. 
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Accuracy =  
|𝑇𝑃+TN|

|𝑇𝑃+FP+FN+TN|
 × 100%   (10) 

Precission =  
|𝑇𝑃|

|𝑇𝑃+FP|
 × 100%    (11) 

Sensitivity =  
|𝑇𝑃|

|𝑇𝑃+FN|
 × 100%   (12) 

Specifity =  
|𝑇𝑁|

|𝑇𝑁+FP|
 × 100%   (13) 

Similarity =  
|2𝑇𝑃|

|2𝑇𝑃+FP+FN|
 × 100%   (14) 

 

IoU (Intersection over Union) is the overlapping 

area between the predicted segmentation and the 

ground truth divided by the combined area of the 

predicted segmentation and the ground truth. 

equation (15) represents the calculation of IoU. 

 

IoU =  
𝑇𝑃

𝐹𝑁+𝑇𝑃+𝐹𝑃
 × 100%  (15) 

 

 CPU-Time (or CPU-usage, runtime) is the 
amount of time the CPU requires to process 

computer program instructions (excluding waiting 

time for input/output operations). 

 The testing was conducted by developing a 

specialized Python program to calculate the 

difference in the number of pixels between the 

manually created groundtruth and the proposed 

method's results. The pixels in the binary image 

resulting from the ACAC method's segmentation 

were counted using the NumPy and OpenCV 

libraries and then processed according to 

Equations (10)-(15). 
 

 

4. Results and Discussion 

 

In this study, the cancer dataset obtained 

consists of images with a gray-level depth of 256. 

The lesions in the dataset were clinically analyzed 

by radiologists, and manual segmentation was 

provided as groundtruth. The collected dataset 

consists of various forms of nodules or lesions. In 

a single image, there may be one or more detected 
nodules or lesions. One of the datasets used is 

shown in Figure 10. 

 

 
 

Figure 10. Example of US image dataset. 
 

Next, the ACAC method algorithm will be 

applied to US images. This method will 

automatically detect the location of the cancer 

using level set initialization. The initial level set 

location will detect the length and width of the 

cancer object, and then the level set will shrink 

following the contours of the cancer object. This 

process minimizes local minima and leakage on 

weakly defined edge boundaries of the object. 

The initial step before image processing 

(preprocessing) is Grayscaling, which converts 

each pixel in the image into a single channel with 

values ranging from 0 to 255 based on the 
intensity level of the light. Then, the level set 

initialization is performed to initialize the starting 

point of the curve evolution in an image. The 

initialization point is typically set at the center of 

the image to be detected, requiring parameters for 

the width and height of the image I(x, y), as 

shown in Figure 11. In the figure, white color 

corresponds to a value of 1, while black color 

corresponds to a value of 0. 

 

 
 

Figure 11. Initialize level set. 

 

Next, the regularization of the ACAC 

algorithm is performed. By utilizing the CV 

simplification for global segmentation, the 

regularization process produces a bounding box 

that functions as the detection of the cancer 

location. Before generating the bounding box, the 

regularization starts by applying the ACAC 

formula in the program, resulting in an image 
similar to Figure 12 point (a). 

Next, a binary procedure is applied using 

Gaussian morphological operations, followed by 

morphological operations such as opening, 

clearing borders, and filling holes. These series of 

morphological operations are performed to reduce 

noise in the image, and the binary procedure is 

applied to obtain the processed image result as 

shown in Figure 12 point (b). 

 

 
(a) 

 
(b) 

 

Figure 12. Sample image result of (a) regularization process 

and (b) Binary Gaussian procedure. 
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After detecting all the objects in the image, 

each connected pixel is labeled to form objects 

that are suspected to be cancerous. This step 

allows for obtaining region properties for each 

object using the regionprops function. Each 

suspected cancerous object is marked with a 

bounding box, with a tolerance of 20 pixels at 

each corner, as shown in Figure 13, which also 

indicates the result of the first iteration. 

 

 
 

Figure 13. Detection cancer object sample image result. 

 
After the cancerous objects are detected by the 

bounding box, the next step is to perform 

iterations by applying the improved-GAC method 

to achieve accurate local segmentation. The 

bounding box (red contour) acts as the level set, 

which then segments the object using the 

shrinking method, following equation (16) below. 

 

𝜅 {
𝐻(𝜙)

1 − 𝐻(𝜙)
 
𝑒𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔 𝐺𝐴𝐶, 𝑣 < 0 𝑎𝑛𝑑 𝐶0 
𝑠ℎ𝑟𝑖𝑛𝑘𝑖𝑛𝑔 𝐺𝐴𝐶, 𝑣 > 0 𝑎𝑛𝑑 𝐶0 

 (16) 

 

The iteration process will continue until the 
level set approaches a value of 0. Once it reaches 

this condition, the iteration will stop, and the 

segmentation process will end. The segmentation 

result with the given input image sample is shown 

in Figure 14. 

 

 
 

Figure 14. Segmentation cancer object sample image result. 

 

Based on the overlapping area between the 

automatically segmented result and the manually 

created ground truth by radiologists. This 

overlapping area will indicate the values of TP, 

TN, FP, and FN. The visualization of these values 
can be seen in Figure 15. 

Figure 15 shows eight different visualizations 

of the confusion matrix values used. BW 

represents the image resulting from automatic 

segmentation using the ACAC method. GT 

represents the manually created ground truth 

image. SA represents the combined area between 

BW and GT. TP (True Positive) is the area BW ∩ 

GT, while TN (True Negative) is ~BW ∩ ~GT. 

FN (False Negative) is ~BW ∩ GT, FP (False 

Positive) is BW ∩ ~GT, and FA is inversely 

related to SA. The values of the confusion matrix 

are obtained from the number of white pixels in 

the image area. 

 
 

Figure 15. Testing segmentation sample image result using 

confusion matrix method. 

 

Based on these values, several dice coefficient 

calculations were obtained to validate the testing 

of accuracy, precision, sensitivity, specificity, 

similarity, and intersection over union. Each 
dataset will have a dice coefficient value and CPU 

time, which is used to determine how fast the 

automatic segmentation process is on US images. 

Figure 16 point a-g depict graphs of the test 

results for each validation test on 50 datasets. The 

accuracy percentages range from a minimum of 

96.33% to a maximum of 99.94%. The precision 

percentages vary from a minimum of 86.47% to a 

maximum of 99.78%. The lowest sensitivity is at 

75.06%, while the highest is at 95.9%. Specificity 

ranges from 97.17% to 100%. The similarity 

percentages vary from a minimum of 84.91% to a 
maximum of 95.42%. The IoU percentages range 

between 73.77% and 91.23%. The fastest CPU 

time is recorded at 6.47 seconds, while the 

slowest is at 188.83 seconds. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

 
(g) 

 

Figure 16 (a-g). Graph showing the result for each indicators 

testing using 50 datasets. 

 
Table 2. Summary of the results of the calculation of the 

validity test. 

Indicators Min. Max. Average 

Accuracy 96.33% 99.94% 98.8314% 

Precision 86.47% 99.78% 95.2646 % 

Sensitivity 75.06% 95.9% 86.5842% 

Specificity 97.17% 100% 99.6268 % 

Similarity 84.91% 95.42% 90,547% 

IoU 73.77% 91.23% 82.874 % 

CPU Time 6.47 s 188.83 s 39.09 s 

 

Table 2 shows the values generated from the 

calculation of the dice coefficient of the 50 

datasets used in this study. From the entire dataset, 

the automatic segmentation process is fast 

because it only takes about 39.09 seconds. The 

accuracy level of this method is very high, as 

indicated by the average calculation above, which 

is 98.83%. The precision level, which indicates 

the accuracy of pixel detection, is 95.26%. The 

average sensitivity value obtained is 86.58%, 
indicating a high ability to detect cancer object 

pixels. The average specificity value obtained is 

99.63%. The similarity value has an average of 

90.58%, and the average IoU value obtained is 

82.87%. The IoU value is used to determine the 

suitability of the automatic segmentation area 

with the manual ground truth, and the value 

obtained is considered quite high in the ACAC 

method in this research. 

The high variability in the quality of US 

images results in reduced image contrast. 

Additionally, uneven pixel intensity causes objects 
to appear blurry. These weaknesses make the 

interpretation process of US images still 

subjective. The development of Computer-Aided 

Diagnosis (CAD) as a second opinion simplifies 

the interpretation process. However, some 

machines still require manual initialization of the 

cancer object's location and the selection of 

desired segmentation results. This is ineffective 
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and increases the likelihood of human error, 

especially when repeated for a large number of 

patients. With the ACAC method developed in 

this work, the interpretation process becomes 

more efficient and reduces the chances of human 

error. The manual initialization aspect has been 

eliminated with this proposed ACAC model. 

Furthermore, the preprocessing stage has been 

integrated with the automatic segmentation 

model, allowing the elimination of the 
preprocessing stage and thus shortening the 

process in CAD. However, the ACAC model has 

not been directly tested as CAD in the US 

machine. Therefore, in this study, the model 

cannot conclude the type of detected cancer, 

whether benign or malignant. Further work is 

needed to extract features and classify them in the 

CAD system sequence to obtain accurate 

diagnostic results. 

 

5. Conclusion 
 

Based on the results and discussion, it shows 

that the AC model has a potential and ability to be 

developed as an effective segmentation method 

for radiological US images. This study 

successfully developed an automatic cancer object 

segmentation method on US images to assist 

radiologists in the efficient diagnosis process 

called Automatic Combinatorial Active Contour 

(ACAC). The method was implemented in a 

Python program to perform segmentation of 
thyroid and breast cancer objects. 

The high level of intervention or operator 

dependence on the AC model has been overcome 

by developing of a hybrid edge and region based 

active contour model called ACAC that is 

enriched with autoadaptive capabilities i.e 

automation and adaptability. The binary stopping 

function (BSF) has been successfully utilized as 

an automatic lesion detector eleminating manual 

initialization.  

The proposed Morphological Gaussian-based 

regularization which is integrated into the ACAC 
model has succeeded in maintaining evolutionary 

stability and dealing with the inhomogeneity of 

speckled and artifacted US images. The 

occurrence of problematic FA, leakage, and LM 

has been able to be overcome without the need for 

preprocessing efforts.  

Furthermore, the accuracy level of this method 

is very high, as seen from the average calculation 

above, which is 98.83%. Therefore, the ACAC 

method is worthy of implementation in CAD 

systems to obtain accurate diagnosis results and 
more objective clinical recommendations. 

Apart from practicality, an efficient 

segmentation process is a necessity in radiological 

CAD system. The improvement in ACAC 

efficiency is an issue that is highly recommended 

for further task. Automated object detection 

techniques for initial contour determination that 

do not involve many iterative operations need to 

be considered. The watershed method and some 

clustering techniques also have the potential to be 

utilized, considering that they have the same type 

of global segmentation as the CV model. The 

completeness of the US image dataset, apart from 
breast and thyroid cancer, is an invaluable support 

in this study. The performance of the proposed 

ACAC needs to be more comprehensively 

validated on more varied cancer objects. The 

consequence of adding a dataset will also increase 

the work of radiologists to make ground truth. 

Also with the increasing variety of cancer objects, 

there may be a number of objects that have 

significant ground truth differences between 

radiologists. 
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