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Abstract

Recent advancements in optical satellite technologies have significantly improved image resolution, providing
more detailed information about Earth’s surface. However, atmospheric interference, such as haze, is still
a major factor in image capture. The interference results in visibility degradation of the acquired images,
hindering computer vision tasks. Numerous studies have proposed various methods to recover haze-affected
regions in satellite images, highlighting the need for more effective solutions. Motivated by this, this paper
compares different atmospheric dehazing methods, including Atmospheric Scattering Model (ASM)-based
and deep learning-based. The results show that SRD is the best ASM-based method, with a PSNR value
of 19.09 dB and an SSIM of 0.908. Among deep learning models, DW-GAN achieves the best restoration
results with a PSNR value of 26.22 dB and an SSIM of 0.959. SRD offers faster inference times, but still
suffers from residual haze and noticeable color degradation compared to DW-GAN. In contrast, DW-GAN
provides a more complete haze removal at the cost of higher computational demands than ASM-based methods.
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1. Introduction

The advancement of optical satellite technology
has enabled the acquisition of more detailed images
of the Earth’s surface for various computer vision
applications. Some examples are land cover mapping
[1] for urban planning, change detection for abrasion
monitoring [2, 3], and classification of plant diseases
[4]. However, optical satellite imagery still suffers
from degradation caused by atmospheric conditions,
such as haze. These conditions occur due to dis-
persed particles larger than air molecules but smaller
than fog in the air due to changes in relative humid-
ity in the atmosphere [5, 6]. These particles affect
traveling light rays [7], which undergo reflection,
refraction, and absorption as they pass through the
atmosphere [8]. This results in a reduced light inten-
sity transmitted to the Earth’s surface and reflected
to the satellite’s optics, contributing to a decline in
object visibility in the final acquired image. This
low visibility negatively impacts computer vision
tasks that require clear object structures, colors, and
textures, leading to errors such as incorrect classifi-

cation in land cover mapping [9].
The simplest solution involves retaking the im-

age under clear conditions at a different time. How-
ever, this comes at the expense of more resources
and time to ensure high-quality image acquisition.
Alternatively, many works have been proposed to
restore images from haze, which is also commonly
known as dehazing. These techniques are based on
the atmospheric scattering model (ASM) [5, 10–12],
which provides a simplified mathematical equation
that models the scattering of light traveling through
a medium [6]. In mathematical terms, this model can
be written in Equation (1).

I(x) = J(x)t(x) +A(1− t(x)) (1)

where I(x) represents the degraded image, J(x)
represents the undegraded image, t(x) describes the
transmission mapping, and A describes the global
atmospheric light or the ambient light in the atmo-
sphere.

The ASM model consists of two crucial cal-
culations. The first is the J(x)t(x) term, which
calculates the direct attenuation that describes the
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decay of light when traversing the medium to the
sensor. The second is A(1− t(x)), which describes
the phenomenon in which the atmosphere itself acts
as a light source [6] causing a change in colors [13]
and disrupting the original path of light. Therefore,
to obtain the restored image, Equation (1) can be
adapted as Equation (2), with 0.1 as the lower bound
of transmission to prevent division by zero.

J(x) =
I(x)−A

min(0.1, t(x))
+A (2)

Solving the ASM for image restoration requires
three known essential variables: the haze-affected
image I , atmospheric light values A, and transmis-
sion t(x). However, in a single-image haze restora-
tion task, A and t(x) are unknown, adding to the
image restoration challenge. He et al., [10] proposed
the Dark Channel Prior (DCP) to estimate A and
t(x) through the image’s dark pixels. However, DCP
[10] fails in the presence of white-colored, non-
sky objects, which can be detected as haze. Hence,
Jackson et al., [11] proposed a hybrid method to
reduce the influence of white-colored objects by
combining the brightest pixel acquisition, namely
Bright Channel Prior (BCP) and DCP. However,
neither technique accounts for the non-homogeneous
nature of haze in satellite images.

To address satellite images specifically, He et al.,
[12] introduced Superpixel Remote Sensing Dehaz-
ing (SRD) by incorporating superpixel clustering.
Unlike other ASM-based methods, SRD [12] esti-
mates the transmission map by taking the minimum
value from the lowest pixel in each RGB color
channel, ensuring non-homogeneous channel-wise
transmission values. Despite better performance in
haze restoration, estimating atmospheric light and
transmission variables remains a complex challenge,
especially in highly thick-distributed haze conditions
[14].

In recent years, deep learning breakthroughs
have introduced promising alternatives for haze re-
moval. Fu et al. [14] proposed a dual-branch net-
work consisting of a prior knowledge branch using
Res2Net [15] and a Discrete Wavelet Transform
(DWT) branch to solve limited data for training and
preservation of details. Zhou et al., [16] followed
by incorporating the DWT branch with Fast Fourier
Convolution (FFC), contributing to the enlargement
of receptive fields. In addition, Zhou et al., [16] re-
placed the pre-trained Res2Net [15] with ConvNeXt
[17] as one of the state-of-the-art network CNN-
based architectures, giving high-quality restoration
results compared to ASM-based approaches. How-
ever, as He et al., [5] pointed out, deep learning-

based methods require sufficient hardware capability
and training data to achieve satisfactory results.

Thus, any computer vision application will face
the balancing act between restoration performance
and computational costs for dehazing. This motivates
us to study the latest ASM and DL approaches. The
various methods are then evaluated through a series
of benchmarked experiments. This research provides
a comparative analysis and discussion of dehazing
results using ASM-based and deep-learning-based
approaches for satellite images. Through this com-
parison, it is possible to find the most efficient and
accurate approach for satellite image dehazing as
needed.

2. Materials

In this study, we devise experiments to compare
and analyze various dehazing methods. We compare
4 ASM-based methods, i.e., DCP [10], BDCP [11],
HALP [5], and SRD [12]; as well as 2 deep learn-
ing methods, i.e., DW-GAN [14], and DWT-FFC
[16]. The dehazing is conducted on a benchmarked
synthetic haze dataset, and the results are evaluated
using the same evaluation metrics. Both types of
methods have strengths and weaknesses when ap-
plied in satellite image dehazing scenarios.

2.1. Dark Channel Prior (DCP)

He et al., [10] introduced Dark Channel Prior
(DCP) as atmospheric light and transmission values
estimation that built on the assumption that in the
natural image, the shadow of objects contributes to
at least one low-pixel intensity colored channel. The
low pixel intensity results from several factors, such
as object shadows, colored objects, and dark-colored
surfaces. He et al., [10] observed that haze-affected
regions seem brighter due to high-intensity pixels,
which can be used to detect haze-affected areas.

DCP [10] begins by patching the image into
several segments or patches, from which the low-
est RGB pixel will be extracted. The dark pixels
mapping undergoes sorting to extract the top 0.1%
brightest pixels from the dark pixels mapping as
global atmospheric light estimation. The obtained
atmospheric light values will be used to estimate
transmission mapping by channel-wise dividing the
hazy image and the atmospheric light values. Finally,
the estimated atmospheric and transmission values
will be used to restore the haze-free image using
Equation (2). The transmission estimation module
can work as such due to dark prior, where the
unaffected region will have near-zero dark mapping
values.
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2.2. Bright Channel and Dark Channel Prior
(BDCP)

The Dark Channel Prior (DCP) [10] has limita-
tions regarding white objects, such as sky regions,
which lack low-intensity pixels. To address this,
Jackson et al., [11] proposed the combination of
Dark Prior and Bright Prior (BDCP), integrating
Bright and Dark Channel Prior for more accurate
atmospheric light and transmission mapping. Addi-
tionally, BDCP uses a guided Filter to replace soft
matting in DCP [10] to reduce computational over-
head. BDCP estimates atmospheric light by patch-
ing, from which the top 0.1% minimum and max-
imum channel pixels are extracted from the bright
and dark pixels mapping, respectively. The darkest
pixels from bright pixels mapping will balance the
influence of high-intensity pixels of white objects
from dark pixels mapping, contributing to more ac-
curate atmospheric light estimation and transmission
mapping.

2.3. Heterogeneous Atmospheric Light Prior
(HALP)

Most ASM-based methods, such as DCP [10]
and BDCP [11], focus more on restoring natural
scenery, not remote sensing imagery. Due to the
very long near-vertical distance [5] between the
satellite and the Earth’s surface, the depth values
are considered uniform across the image for satellite
images [12], unlike natural scenes, where the image
visibility is tied to the horizontal distance. The long
near-vertical distance also contributes to the degrada-
tion of transmitted light [18, 19], affecting visibility.
In addition, the broad spatial coverage information
retrieval ability of remote sensing introduces non-
uniform haze distribution.

He et al., [5] addressed the non-uniform nature
of haze in remote sensing by introducing Heteroge-
neous Atmospheric Light Estimation (HALP), which
employs a patch-based module for atmospheric light
estimation. This method obtains local atmospheric
light values using the HSV color space and a square
patching strategy to divide the image into several
local regions. Then, the maximum V component
is extracted from each local region, which is then
used to obtain the haze-affected region. In addi-
tion, HALP considers the issue of box filters that
cover irrelevant image regions by incorporating a
Side Window Filter (SWF) to estimate and refine
transmission from dark pixel mapping. SWF works
by convoluting eight different filters that fit the edges
of the image.

2.4. Superpixel Remote Sensing Dehazing
(SRD)

Despite the heterogeneous nature provided by
the modified ASM through the patch-based mod-
ule [5], the square patching strategy introduces a
new issue in defining the optimum patch size that
can accurately represent the atmospheric light esti-
mation on a particular region. In addition, HALP
[5] does not consider the heterogeneous wavelength
degradation effect by particles in the atmosphere.
To address these issues, He et al., [12] introduced
Superpixel Remote Sensing Dehazing (SRD), which
incorporates superpixel modules as a replacement
for the square patching strategy, giving the method
the ability to extract pixel representation based on
the area with the same characteristics such as color,
structure, luminance, and contrast. Additionally, the
transmission estimation is no longer obtained from
division operation but through performing dark pixel
mapping on each RGB channel, ensuring non-
homogeneous channel-wise transmission values.

2.5. Discrete Wavelet-Generative Adversar-
ial Network (DW-GAN)

In general, ASM-based methods lack the ability
to eliminate the presence of haze and do not work
well under dense haze conditions. Deep learning ap-
proaches, particularly Convolution Neural Networks
(CNNs), excel in reconstructing objects affected by
the thick haze close to their ground truth in an end-
to-end manner. Fu et al., [14] proposed a dual-branch
network called the Discrete Wavelet Generative Ad-
versarial Network (DW-GAN). The first branch is
called prior-knowledge, a U-Net architecture that
uses pre-trained Res2Net [15] to mitigate data limi-
tation issues and promote multiscale feature extrac-
tion by leveraging previously learned feature maps
that create a combination effect. Finally, the prior
knowledge network is also integrated with Channel-
Pixel-wise Attention [20], allowing the model to
adapt to the nature of heterogeneous haze distribu-
tion.

Meanwhile, the second branch features the Dis-
crete Wavelet (DW) branch with U-Net-like architec-
ture integrated with Haar Wavelet Transform, which
decomposes images through high-pass and low-pass
filtered feature maps [14]. During the training phase,
the model uses a Generative Adversarial Network
(GAN) schema, ensuring sharp details through ad-
versarial loss that utilizes a Discriminator to classify
whether the generated image is close to the ground
truth or otherwise. On the other hand, DW-GAN
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architecture will act as a Generator to reconstruct
the haze-free images.

2.6. Discrete Wavelet Transform-Fast
Fourier Convolution (DWT-FFC)

Zhou et al., [16] introduced Discrete Wavelet
Transform-Fast Fourier Convolution (DWT-FFC),
which consists of dual-branch networks inspired by
DW-GAN [14] with the integration of Fast Fourier
Convolution (FFC) [21] in the bottleneck layers. The
integration of FFC and DWT enables the model to
learn the spatial and frequency information of the
affected haze region. Following the Fourier theory,
where a change in one frequency will alter the rest
of the spatial points [21], this enhances the receptive
fields.

The FFC scheme consists of a local branch and
a global branch, where a spatial residual connection
from the local branch complements the information
in the global branch that learns information in the
frequency domain. DWT-FFC [16] also replaces the
existing Res2Net [15] with ConvNeXt [17] for a
pre-trained encoder backbone in the prior-knowledge
branch to leverage the most state-of-the-art CNN
model that achieved outstanding evaluation metrics
in several classification tasks [17]. Similar to DW-
GAN [14], DWT-FFC [16] is trained using a Gen-
erative Adversarial Network (GAN) scheme.

3. Methods

This study conducted satellite image dehazing
using 6 methods, consisting of 4 ASM-based meth-
ods, i.e., DCP [10], BDCP [11], HALP [5], and
SRD [12]; as well as 2 deep learning methods,
i.e., DW-GAN [14] and DWT-FFC [16]. The exper-
iment design is shown in Figure 1. The experiment
flow consists of dataset acquisition, pre-processing,
training, validation (for deep learning-based methods
only), inference or testing, and evaluation.

The deep learning methods will separate the
dataset into training, validation, and testing sets
for each phase, which are then trained using the
NVIDIA DGX-A100 GPU. Meanwhile, the ASM-
based methods will use the testing set only, as they
do not require a training phase. We also tune several
parameters and implement image pre-processing to
adapt to the original model configuration’s input
dimensions.

During the testing phase of both the ASM-based
and deep learning models, inference is done on an
Intel Xeon 2.20 GHz CPU. After inference, we com-
pare the restored results of each method using full-
reference image quality evaluation metrics. Finally,

Table 1. Parameter configuration for deep learning ap-
proaches.

Parameters DW-GAN [14] DWT-FFC [16]
Epochs 1,000 1,000
Optimizer Adam Adam
Learning Rate 0.0001 0.0001
Scheduler Multistep 0.5 Multistep 0.5
α 0.2 0.2
β 0.001 0.01
γ 0.005 0.0005

we provide an analysis of the complexity of the deep
learning models and inference time calculation for
every method to restore one hazy image.

In this research, we used the Gaofen Satellite 2
(GF-2) SateHaze1k dataset [22], which consists of
separate directories representing each thin, medium,
and thick haze category. Each category contains
400 images, with 320 images for training, 35 for
validation, and 45 for testing.

The images in the SateHaze1k [22] dataset were
originally 512 × 512 pixels, but we resized the
images to 256 × 256 pixels due to resource limi-
tations. We used horizontal flip and random rotation
augmentation strategies for the training phase only
to create variation in the training dataset for non-
equivariant transformation [23]. We apply normal-
ization to convert the image pixels from [0, 255]
to [−1, 1] for the training, validation, and testing
phases, as shown in Figure 1.

Regarding the training parameters of deep
learning-based methods, hyperparameter tuning was
done on the epochs parameter and batch size to
address the insufficient availability of resources for
training. We use batch size 16 for training, as pre-
scribed by the original author, and an epoch of 1000,
which we reduced from the original 10000 epochs.
The summary of the training configuration for our
deep learning methods is represented in Table 1.

To evaluate the results, we used several metrics
to evaluate each method’s haze restoration quality.
We first use the Peak Signal-to-Noise Ratio (PSNR)
to measure the performance of compressed distorted
image reconstruction [24]. This metric is based on
the Mean Squared Error (MSE) integrated with the
signal conversion formula in decibels (dB) as shown
in Equation (3), where x and y represent the ground
truth and restored hazy image, and MAX represents
the maximum pixel value allowed by the image.

PSNR(x, y) = 10log10
MAX2

MSE(x, y)
(3)

We also use the Structural Similarity Index
(SSIM), which considers the image’s structure, lu-
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Figure 1. Experiment design on exploring deep learning-based and ASM-based image dehazing approaches.

minance, and contrast aspect [25]. The SSIM com-
putes the final SSIM score by taking the average
luminance of the image µ, the standard deviation of
image contrast σ, and a constant C to compute the
final SSIM score, as in Equation (4).

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4)

4. Results and Discussion

This section describes the results obtained for
image dehazing on the 6 methods compared in our
experiments. We also followed up on the results
with a discussion and comparative analysis for each
method. We use evaluation metrics for the dehazing
results, complexity measures, and inference time to
analyze computation requirements.

4.1. Results

The dehazing results of our experiments are
shown in Table 2. As we can see, the restora-
tion quality decreases as the haze’s thickness in-
creases. This indicates that the ASM-based methods
struggle more to restore image regions affected by
dense haze. For example, DCP achieves a PSNR/S-
SIM score of 14.79/0.818 for thick haze, signif-
icantly lower than under medium and thin haze

conditions. The BDCP achieved PSNR/SSIM scores
of 20.66/0.933 under thin haze, 20.54/0.925 under
medium haze, and 15.11/0.824 under thick haze
conditions, with an overall improvement of 1.57%
from the DCP results.

Meanwhile, HALP shows unsatisfactory results
for all haze thicknesses with an overall PSNR/S-
SIM score of 15.88/0.810, likely due to a poorly
defined patch size. As described in Section 2.4, the
patch size is the method’s parameter for extracting
local atmospheric light. Different images will require
different patch sizes, making fine-tuning harder. Fi-
nally, SRD obtains the highest PSNR/SSIM score
amongst all ASM-based methods, with a score of
19.09/0.908.

Table 2 also shows that the deep learning-based
models perform better in removing the haze, rep-
resented by an average PSNR/SSIM score of up
to 25/0.952. However, unlike ASM-based methods,
the experiments on deep learning-based methods
show a pattern in which trained models perform
best under medium-haze conditions, followed by
thin and thick haze conditions. We suspect that
medium-haze patterns get higher evaluation because
medium-haze tends to have limited variation in haze
thickness than thin haze conditions, which helps the
model to focus more on restoring the haze-affected
region instead of weighting which region required
more haze suppression. In addition, SateHaze1k’s
moderate thickness resembles thin haze conditions,
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Table 2. Comparison of ASM-based and Deep Learning-based Methods on Combine SateHaze1k training

Methods MACs Inference Time Thin Medium Thick Average
(G) (s) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP[10] N/A 19.80 20.26 0.932 20.39 0.926 14.79 0.818 18.48 0.892
BDCP[11] N/A 0.107 20.66 0.933 20.54 0.925 15.11 0.824 18.77 0.894
HALP[5] N/A 2.495 18.62 0.891 17.08 0.865 11.56 0.710 15.88 0.810
SRD[12] N/A 0.154 21.11 0.941 19.64 0.934 16.51 0.876 19.09 0.908

DW-GAN[14] 30.1 0.715 25.66 0.969 29.55 0.973 23.46 0.934 26.22 0.959
DWT-FFC[16] 90.1 4.669 25.22 0.962 27.45 0.969 23.37 0.926 25.35 0.952

Figure 2. SateHaze1k Restoration Result on DCP [10], BDCP [11], HALP [5], SRD [12], DW-GAN [14] and DWT-FFC
[16]

allowing the model to extract as much information
as possible to reconstruct a clear image, unlike thick
haze conditions where colors and object visibility
nearly degrade fully, limiting the ability to recon-
struct objects accurately.

Regarding the performance of deep learning
models, DW-GAN outperforms DWT-FFC in re-
covering the image with an average PSNR/SSIM
score of 26.22/0.959 compared to DWT-FFC’s score
of 25.35/0.952. DW-GAN outperforms the image
restoration quality of DWT-FFC in all haze thick-
nesses with slightly higher perceptual quality with
PSNR/SSIM scores of 25.66/0.969 under thin haze,
29.55/0.973 under moderate haze, and 23.46/0.934
under thick haze conditions. In addition, in the
restoration quality aspect, deep-learning-based meth-
ods outperform ASM-based in all of SateHaze1k’s
thickness benchmark datasets, highlighting the ad-
vantages of an end-to-end learning scheme over the
ASM-based estimation methods.

The dehazing results of each method are dis-
played in Figure 2. Through observation, we can
confirm that all ASM-based methods struggle to
retrieve information degraded by thick haze. This is
due to the non-zero transmission of light mapping
values to prevent division by zero during the image

restoration calculation. Additionally, the ASM-based
methods show signs of over-saturation, visualized by
color degradation in unaffected regions that become
darker in shades compared to the ground truth one,
as well as the appearance of yellowish objects.

Among the ASM-based methods, SRD is su-
perior in significantly reducing haze with non-
homogeneous atmospheric light alongside superpixel
clustering. However, it is not immune to oversat-
uration, as represented by several degraded color
components. In contrast, DW-GAN and DWT-FFC
successfully remove the haze with minimal color
degradation, represented by a slightly brighter scene
than the ground truth.

Next, we discuss the complexity of the deep
learning models. As shown in Table 2, DW-GAN
has 51.508M total parameters, while DWT-FFC has
260.270M. Both models’ multiplication and addi-
tion operations show that DWT-FFC is heavier in
terms of memory consumption than DW-GAN with
multiply-accumulate operations (MACs) values of
90.1G and 30.1G, respectively. We conclude that
DWT-FFC requires more computation power than
DW-GAN due to the use of Res2Net and Con-
vNeXt to deal with limited labeled training data.
We identified that the ConvNeXt pre-trained con-
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tributed 99% to the total parameters of the DWT-
FFC with 260.057M parameters. Likewise, Res2Net
contributes 97.3% to the total parameters of DW-
GAN with 50.117M. Both methods try to solve the
issue of limited training data with pre-trained at the
expense of high computation resources.

Finally, we also analyze the inference time
needed to restore a single image. As described
in Section 3, inference using both the ASM-based
and deep learning models is done on Intel Xeon
2.20 GHz CPU. We can see in Table 2 that DCP
requires significantly more time to compute as it
utilizes a soft matting algorithm to mitigate the
block effect caused by the square patching strat-
egy in transmission estimation. In contrast, other
ASM-based methods, like BDCP and SRD, leverage
the (Fast) Guided Filter, eliminating the additional
computational overhead. Similarly, HALP utilizes a
Side Window Filter (SWF), contributing to increased
computational time, although it remains faster than
the soft matting algorithm used by DCP.

Compared to previous methods, DW-GAN has
an inference time of 0.715 seconds. While this is
longer than BDCP and SRD, it is still faster than
DCP and HALP. In contrast, DWT-FFC only outper-
forms DCP with an inference time of 4.669 seconds,
underlining the significant impact of the soft-matting
algorithm on the restoration inference time.

The extended inference times of DW-GAN and
DWT-FFC are primarily due to the use of pre-trained
models: Res2Net in DW-GAN and ConvNext in
DWT-FFC, both of which introduce additional com-
plexity. Furthermore, DWT-FFC uses a fast Fourier
transform to learn frequency information through
standard spatial convolution, which does not take
advantage of faster inference following the Fourier
theory.

4.2. Discussion

Based on Table 2, the overall results show that
deep learning methods perform better than ASM-
based methods. The best performing ASM-based
model, SRD [12], still falls behind the deep-learning
models, proving the limitations of using ASM in
the quality restoration of images. This is due to
the dependency of estimation accuracy for solving
the ASM equation. Deep learning-based methods
leverage end-to-end learning, which can consider
random factors previously unknown in the defined
equation.

Non-Homogeneous Variables in ASM-based
Methods. The patching strategy (square/superpixel)
used in the ASM-based models is proven to preserve
spatial information, providing clear contrast to the

Figure 3. Heterogeneous Atmospheric Light Illustration
Estimated by HALP [5] and SRD [12]

Figure 4. Transmission Mapping Estimation Through
DCP [10], BDCP [11], HALP [5], and SRD [12]

pattern of unaffected and haze-affected areas. This
evidence is represented in Figure 3 where darker
regions in the refined atmospheric light estimation
represent non-haze-affected areas. In contrast, white
areas represented haze-affected areas where severe
light scattering processes occur.

Despite preserving structural information, the
optimal patch size is a hyperparameter that must
be selected carefully for accurate and representative
local atmospheric light estimation. Figure 3 shows
that square patching struggles to maintain the con-
trast between haze-covered and clear areas due to
large patch sizes. This is a significant drawback
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Figure 5. Discrete Wavelet Transform

Figure 6. Convolution on Spectral Domain

of using a square patching module. The diverse
haze distribution pattern and thickness also demand
a non-uniform patch size definition for every im-
age. In contrast, superpixel patching is superior in
capturing haze-affected regions, proven by visible
haze patterns due to clustered objects with similar
characteristics. Even if superpixel patching still en-
counters the patch size issue, it compensates with
the clustering process.

Figure 4 shows the transmission map estimation
results of the ASM-based models. Compared to non-
homogeneous channel-wise transmission, integrating
BCP with DCP provides a decent alternative to
enhance the contrast of the disrupted light trans-
mission by reducing the influence of white objects.
Therefore, the generated transmission tends to have
a darker shade for the severe haze effect and a lighter
shade for the less affected region represented in the
transmission mapping.

The SWF module in HALP provides an alter-
native for transmission estimation through convolu-
tion to reduce image grid effects created by square
patching. It preserves the haze-affected region yet
is pale, as shown by the lighter shade of the haze-
affected area, which describes the significance of
the haze-affected region. In contrast to other ASM-
based methods, SRD [12] obtains the transmission
by solely using superpixel patching and dark pixels
through each color channel without requiring divi-
sion operation of the haze and atmospheric light
images. Bolstered with superpixel clustering, SRD
[12] can obtain characteristics-specific transmission
values where severe haze thickness resides, making
it easier to detect visualized by darker shade than
other DCP-based methods.

Discrete Wavelet Transform (DWT). With the
conversion of the spatial domain to the frequency
domain through Haar Discrete Wavelet, as presented
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in Figure (5), the feature map will undergo a decom-
position process that produces a low-pass-filtered
image (LL) and high-pass-filtered images (LH, HL,
HH). The high-pass-filtered feature maps highlight
details in light haze-affected regions, visualized by
texture patterns. These patterns can help the decoder
improve its ability to reconstruct crisp details. In
contrast, the low-level features will produce a down-
sampled image, which is fused along the previous
convolution layers to the following encoder layers,
providing more context information for feature ex-
traction. Figure (5) shows that the DWT module can
preserve details, such as roads, which we highlight
with a yellow box. However, extracting line pat-
terns from densely haze-affected regions still poses a
challenge, as shown by the high-pass filtered image
represented by the area inside the red box.

Fourier Transform. Fast Fourier Convolution
(FFC) leverages the Fourier theory, which allows
capturing a broader context, enabling us to perform
a 1 × 1 convolution operation on the Fourier spec-
trum. This operation will alter the spatial information
context and facilitate global context extraction to
estimate the haze-affected pixel. Figure 6 illustrates
the FFC result, in which the convolution performed
in the frequency domain produces feature maps with
soft structural details, suppressing high-frequency to
reduce noise levels as well as reducing texture that
will be added from the local convolution branch.

5. Conclusion

We successfully conducted dehazing experi-
ments on satellite images using the synthetic Sate-
Haze1k dataset. We compared 6 dehazing methods,
consisting of 4 ASM-based methods, i.e., DCP [10],
BDCP [11], HALP [5], and SRD [12]; as well
as 2 deep learning methods, i.e., DW-GAN [14],
and DWT-FFC [16]. Overall, deep learning-based
methods provide higher restoration quality at the
expense of high computational power. The best per-
forming deep learning method was DW-GAN, with
a PSNR/SSIM score of 26.22/0.959, outperforming
DWT-FFC in both restoration quality and complex-
ity. Although it still left some color degradation, this
method effectively removed haze layers in an image.
Meanwhile, ASM-based methods excel in providing
haze reduction with low computational power. The
best-performing ASM-based model, SRD, offers sig-
nificant haze reduction, with an overall PSNR/SSIM
score of 19.09/0.908. Additionally, SRD provides
a faster inference time than the other ASM-based
models, making it suitable for reducing the haze
effect in non-dense haze conditions.
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