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Abstract

The rapid and accurate sorting of municipal waste is essential for efficient recycling and sustainable
resource recovery. Most existing Al solutions focus only on four common materials (plastic, paper,
metal, and glass), overlooking many other routinely encountered waste types and losing accuracy when
applied to the mixed waste compositions seen in operational environments. We introduce HR-ViT, a
hybrid network that combines ResNet50 residual blocks, which capture fine-grained local cues, with
Vision Transformer global self-attention. Trained on a balanced six-class benchmark of about 775
images per class (plastic, paper, organic, metal, glass, batteries), HR-ViT attains 98.27 % accuracy and
a macro-averaged F1-score of 0.98, outperforming a pure ViT, VI-MLH-CNN, and Garbage FusionNet
by up to five percentage points in both metrics. Gains arise from selective fine-tuning of the last ten
ResNet layers, lightweight ViT hyper-parameter optimisation, and targeted data augmentation that
mitigates cluttered backgrounds, uneven lighting, and object deformation. These results show that
hybrid attention-residual architectures provide reliable predictions under complex imaging conditions.
Future work will extend the method to multi-object scenes and domain-adaptive deployment in smart-
city recycling systems.
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1. Introduction

Waste management has evolved into an
increasingly urgent global crisis as population and
consumption continue to rise [1], [2], [3], [4], [5],
[6]. Many major cities worldwide report annual
increases in waste volume, triggering various
environmental problems, including soil, water, and
air pollution [3], [4]. Proper waste sorting can
mitigate these negative impacts, as each waste
category can be treated or recycled according to its
unique characteristics [5], [6]. Unfortunately,
manual sorting remains time-consuming, depends
on the skill of the operator, and is prone to
inaccuracies [7], [8], [9]. As waste management
challenges become more complex, implementing
artificial intelligence (Al)-based automation is
becoming increasingly necessary to develop more
efficient and stable waste classification systems
[10], [11].
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Over the last decade, Convolutional Neural
Networks (CNNs) have made a significant impact
in various areas, particularly waste management.
For instance, Cheema et al. [12] focused on four
classes (glass, metal, plastic, and trash) using
VGG16, achieving 96% accuracy. Laksono et al.
[13] studied HDPE bottles, PET bottles, glass,
cans, cardboard, and plastic using DenseNet-201
(95.6% accuracy), while Alrayes et al. [14] tested
six classes (glass, paper, cardboard, plastic, metal,
trash) with VI-MLH-CNN (95.8% accuracy). Qin
et al. [15] employed SVM, and Zhou et al. [16]
implemented a combination of ResNet50,
YOLOVS, and CNN on the same classes, attaining
83.46% and 95.88%, respectively. Li et al. [17]
used CNN & Graph LSTM for cardboard, metal,
glass, paper, plastic, and organic waste, reaching
97.5%. Although these results are promising, a
large fraction of existing studies still employs
datasets comprising fewer than eight distinct
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classes or, when larger corpora are used, they
present extreme class imbalance. Larger datasets
with 10 [18] or 12 [19] classes do exist, but they
suffer from severe class imbalance (e.g., “clothes”
comprises over 5.325 samples versus fewer than
800 for several other categories), which can
hamper training stability and inflate performance
metrics. This disparity destabilizes training, biases
evaluation metrics toward majority categories, and
increases the computational burden during re-
balancing. Consequently, many CNN-based
approaches that excel on small, balanced
collections exhibit degraded efficiency and limited
generalisation as class counts rise or as dataset
imbalance worsens [20]. Moreover, CNNs have a
limited capacity to capture global image context
because they rely on local receptive fields, making
it difficult to learn long-range relationships among
objects within an image [21], [22]. Some models
experience overfitting when faced with diverse
backgrounds and lighting conditions commonly
found in waste disposal processes [23].

Recently, the Vision Transformer (ViT) has
emerged as a different approach from CNNs for
image classification. By leveraging the self-
attention mechanism originally introduced in
Natural Language Processing [24], [25], [26], ViT
represents an image as a series of patches and
examines global relationships among them,
proving effective on large-scale datasets such as
ImageNet [24], [27]. However, pure ViT often
lacks the ability to capture local features (inductive
bias) and requires extensive data to achieve optimal
performance [28], [29]. Various efforts have been
made to enhance ViT, for instance, using the
Discrete Cosine Transform [30], add-embedding
[31], and Token-aware Average Pooling [32].
Although ViT performs well on standard datasets
(e.g., CIFAR-10 and ImageNet), studies [33] and
[34] reveal that a pure ViT remains suboptimal
when data are limited or highly variable, which is
typical in waste classification. For example, one
implementation of ViT on five waste categories
attained only 92.36% accuracy [35], indicating that
ViT without additional adjustments can experience
performance degradation under highly diverse
backgrounds and object shapes. Thus, ViT faces a
significant challenge in waste classification, where
visual variation is high and data are often
insufficient [34], [36].

In response to the need to harness the
advantages of Dboth architectures, several
researchers have started to develop hybrid models
combining CNNs and ViT [37], [38]. This
approach capitalizes on the strength of CNNs in
extracting local features [39] and the self-attention
mechanism in ViT, which excels at understanding
global information [40], [41]. For example, in [42],

integrating the two architectures improved the
accuracy in detecting steel surface defects. Other
applications in [43], [44], and [45] have also
demonstrated significant potential in the medical
field. Meanwhile, for waste classification, Alrayes
et al. [14] tried a hybrid approach, but still
encountered efficiency challenges when the dataset
size increased. Overall, these findings indicate that
hybrid approaches can improve ViT in capturing
local details [29], although they remain
underexplored for waste classification with a larger
number of classes and datasets than TrashNet [46].

This study introduces a Hybrid ResNet50-
Vision  Transformer (HR-ViT), a hybrid
architecture that integrates the residual learning of
ResNet50 with ViT’s self-attention mechanism. We
hypothesized that this hybrid approach could
enhance ViT’s ability to capture local details while
drawing on ResNet50’s strengths in identifying
diverse visual features [24], [47]. Although newer
CNN architectures such as EfficientNet and
DenseNet deliver high accuracy and parameter
efficiency, we selected ResNet50 as our backbone
for three reasons. First, its residual block design is
well validated for preventing degradation in deep
networks. Second, pretrained ResNet50 weights
are widely accessible, enabling stable and rapid
fine-tuning in a hybrid CNN-Transformer setting
[48]. Third, its moderate depth strikes an effective
balance between model expressiveness and
computational efficiency, making it particularly
suitable for resource-constrained waste-sorting
systems, where both performance and operational
efficiency are key. Moreover, we emphasize fine-
tuning so that HR-ViT can be optimized without
excessive computational overhead [49], supporting
applications in waste-sorting industries or public
facilities that prioritize efficiency [46]. We also
integrated two different datasets, Garbage
Classification (6 Classes) [19] and Garbage
Classification (12 Classes) [50], totaling 4,650
images. These datasets have been utilized in
several previous studies, such as by Ahmed et al.
[7], who compared various methods and reported
the highest accuracy of 98.95% using ResNet50,
and by Quy [51], who achieved 92% accuracy
using a Vision Transformer-based approach.
However, our work distinguishes itself by
employing a hybrid Vision Transformer-based
model and combining both datasets to enhance data
diversity, going beyond conventional TrashNet-
based approaches [20], [52], [53], [54], [55]. We
considered six waste categories: batteries, plastic,
paper, metal, organic, and glass, chosen to
represent the major types of waste in management
systems and provide a more comprehensive and
realistic dataset. This approach is important for
testing the model under realistic conditions, given
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that waste issues often involve nonideal data [56].
Using a more extensive dataset, we aimed for better
generalization and improved handling of noise
arising from variations in texture, shape, and
background [57], [58], [59].

This study offers four main contributions. First,
we propose HR-ViT, a hybrid model that integrates
ResNet50’s residual learning and ViT’s self-
attention mechanism to improve  waste
classification performance. Second, we tested HR-
ViT on six waste classes (batteries, plastic, paper,
metal, organic, and glass) comprising 4,650
images, expanding upon previous work that mostly
addressed four to six categories without fully
representing everyday waste. Third, we adopted a
fine-tuning strategy to maintain model efficiency
and minimize computational load, thus supporting
real-world adoption. Fourth, we integrated HR-ViT
into a cross-platform mobile application and real-
time backend, enabling instant waste classification
and facilitating global scalability. To support
transparency and reproducibility, the source code
for this work is available at
https://github.com/barenbaruna/HR-ViT. Through
this approach, we aim to pave new ground for
developing smarter, more efficient waste
classification systems, while also contributing to
the broader literature on hybrid architectures.

2. Literature Review
2.1 Convolutional Neural Networks (CNN)

Waste management has become a critical
global issue due to the continuous increase in waste
volume, which impacts the environment and public
health. Consequently, efforts to automate waste
classification continue to develop greater
efficiency and accuracy. One frequently used
method is Convolutional Neural Networks (CNN),
which excels at extracting local features from
images. Several studies have highlighted the
success of CNN in various waste classification
scenarios, while also identifying certain limitations
that motivate the development of new approaches.

Early research utilizing pure CNNs, for
instance, Bobulski et al. [60], achieved 74%
accuracy in distinguishing four types of plastic
waste (PS, PP, PE-HD, PET), indicating limited
model performance on complex backgrounds.
Nnamoko et al. [61] found that image resolution
and dataset size significantly affect model
performance, with lower resolution achieving
greater efficiency (80.88% vs. 76.19%) but still
trailing behind more advanced architectures. Tatke
et al. [62] reported the use of ResNet50 on the
Garbage in Images (GINI) dataset with 95.93%
accuracy, exceeding that of a simpler CNN at

82.19%. This result demonstrates that adding
residual learning layers can mitigate vanishing
gradient issues and improve training stability.

Subsequent studies adopted transfer learning
using popular CNN architectures. Cheema et al.
[12] achieved over 90% accuracy on TrashNet
(four classes: glass, metal, plastic, and trash) using
VGG16, whereas Laksono et al. [13] expanded to
six classes (HDPE, PET, glass, cans, cardboard,
and plastic) with DenseNet-201 (95.6% accuracy).
These studies confirm that CNN-based approaches
are relatively strong at extracting local features;
however, when datasets become increasingly
heterogeneous, models may face overfitting or
require substantial computational resources to
maintain accuracy.

Other studies have introduced specialized
modules to complement CNNSs. Li et al. [17] added
Graph LSTM to CNN, raising -classification
accuracy for six classes of waste to 97.5%. Qin et
al. [15] employed the lightweight MobileNetV2
architecture for efficiency, although its 83.46%
accuracy lagged behind that of more complex CNN
approaches. This underscores the trade-off between
model size and performance, which is becoming
increasingly important in edge device or real-time
applications where resources are limited. Rayhan
and Rifai [63] also found that DenseNetl21
outperformed MobileNetV2 (95.2% vs. 92%)
across 13 heterogeneous waste classes, yet adding
more classes increased the model’s susceptibility to
overfitting.

Research focusing on background variation
and noise further reinforces the notion that pure
CNNs may not suffice in real-world conditions.
Yuan and Liu [64] split the classification task into
two streams (dual-stream CNN) prior to the final
stage, achieving 98.5% accuracy on TrashNet.
Yang et al. [65] incorporated a preprocessing step
(for example, Canny edge detection) to address
lighting disturbances, lifting accuracy to 96.77%
on an in-house dataset and 93.72% on TrashNet.
Although such techniques can improve
performance, they typically rely on the local
feature extraction characteristics of CNNs, making
them vulnerable when objects overlap (occlusion)
or when background clutter is present. While
CNNs have become the backbone of waste image
classification, with accuracies ranging from 74% to
98.5% across different studies, challenges emerge
when data become more diverse, the number of
classes increases, and systems must remain
efficient. CNNs are also relatively limited in
capturing the global context, especially in
scenarios with complex backgrounds or
overlapping classes (occlusions) [66]. These
limitations have driven researchers to explore other
architectures, such as the Vision Transformer
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(ViT), which offers a self-attention mechanism for
broader contextual understanding.

2.2 Vision Transformer (ViT)

The Vision Transformer (ViT) employs a self-
attention mechanism originally prominent in
Natural Language Processing. Its primary
advantage is its ability to grasp the global context,
addressing a key limitation of CNNs. In waste
classification, ViT has been applied to a limited
extent, yet the results demonstrate significant
potential. Wu et al. [35] implemented Query2Label
(Q2L) based on ViT-B/16 in the “Garbage In,
Garbage Out” (GIGO) dataset, which includes
25,000 street images with four types of waste
(bulkywaste, garbagebag, cardboard, litter). Using
asymmetric loss and replacing the ResNetlO
backbone with ViT-B/16 increased the accuracy by
4.75%. This improvement underlines the
effectiveness of global attention in dealing with
multi-label data in real-world settings. However,
the study was confined to four waste categories,
which do not fully capture the variety of urban
waste.

Huang et al. [67] used ViT on TrashNet’s six
classes, achieving 96.98% accuracy. Their focus
was on real-time inference on a cloud server,
making ViT accessible from mobile devices. This
finding highlights ViT’s scalability for remote
processing, while also noting that high
computational power is essential. For edge-device
applications, a pure ViT is often considered
resource-intensive. Although ViT consistently
outperforms conventional CNNs in terms of
accuracy, its large data requirements and high
processing costs pose significant challenges for
deployment in  low-power or real-time
applications. Consequently, current ViT-based
waste classifiers are typically limited to a few
easily distinguishable categories and have yet to
address more complex waste types.

Despite these advantages, certain waste
categories remain particularly challenging for ViT-
based classifiers. Electronic waste, such as circuit
boards, batteries and cables, exhibits high intra-
class variance due to pronounced differences in
shape, size and material composition. Medical
waste items, for example used gloves or infusion
bottles, often present visual ambiguity, because
stains, folds or partial occlusions can cause them to
be mistaken for non-hazardous debris. Organic
waste, including food scraps and vegetable peels,
undergoes rapid changes in colour and morphology
during decomposition, further complicating feature
extraction. Moreover, the scarcity of large-scale,
well-annotated datasets for these complex waste
types requires robust data augmentation and

transfer learning strategies to ensure reliable model
generalization.

2.3 Hybrid CNN-ViT

To overcome the limitations of each method, a
hybrid approach combining the benefits of local
feature extraction (CNN) and global attention
(ViT) has emerged. The main objective of this
combination is to achieve higher accuracy while
maintaining  computational  efficiency and
robustness under various conditions. Liu et al. [68]
introduced Garbage Classification Net (GCNet),
integrating EfficientNetV2, ViT, and DenseNet for
four main waste categories (recyclable, hazardous,
kitchen waste, other garbage). GCNet achieved
97.54% accuracy, surpassing individual models
such as DenseNet (96.40%), ViT (96.75%), and
EfficientNetV2 (96.12%). The advantage of
GCNet lies in its fusion of models and transfer
learning, enabling the effective capture of local
features (DenseNet, EfficientNet) and leveraging
global attention (ViT). However, this approach
requires more computational resources, posing a
challenge for real-time or low-power devices.
Additionally, the scope of waste classes remains
limited to four broad categories, excluding other
types of urban waste.

A similar approach was presented by Cai et al.
[69] through CT-Net (CNN + Transformer), which
reached 96.55% accuracy on the Huawei Cloud
dataset. The authors highlighted robustness and
scalability, but did not provide detailed
computational overhead data for industrial
environments with more classes. Alrayes et al. [ 14]
tested VI-MLH-CNN on six classes (glass, paper,
cardboard, plastic, metal, trash), achieving 95.8%
accuracy. Although this represents more classes
than those in Cai et al. [69] and Liu et al. [68], the
dataset is relatively small and prone to overfitting.

Wang et al. [18] introduced Garbage
FusionNet (GFN), combining ResNet, ViT, and
additional modules like the Pyramid Pooling
Module (PPM) and Convolutional Block Attention
Module (CBAM). Tested on two datasets
(TrashNet and Garbage Dataset), it attained
accuracies of 94.21% and 96.54%, respectively,
surpassing standalone ResNet and Swin
Transformer. This study underscores the
advantages of combining residual learning and
global attention but also notes that each additional
module increases the computational overhead.

From these studies, it is clear that waste
classification research has focused on three main
pillars: (1) local feature extraction through CNN,
(2) global context awareness using ViT, and (3)
hybrid architectures that blend both approaches.
Through analysis of existing literature, three major
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knowledge gaps have emerged. First, few studies
have truly tested the scalability of hybrid models
for larger numbers of classes (including e-waste,
medical waste, or multi-fraction categories).
Second, some studies have not emphasized
optimizing models for deployment on limited-
resource devices, even though real-world
applications  increasingly require on-device
inference with low latency. Third, many studies
focus on adding modules to boost accuracy yet give
less attention to adaptive fine-tuning or continuous
learning methods, both of which are pertinent for
handling dynamic waste data.

Based on this review, a hybrid CNN-ViT
approach has the potential to be a comprehensive
solution for overcoming the challenges of local
versus global feature understanding in waste
classification. Although previous research has
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scope requires a model that is more efficient and
robust against waste diversity. Therefore, this study
focuses on designing and evaluating a hybrid
CNN-ViT architecture that emphasizes scalability,
reliable performance under various data
conditions, and computational optimization to be
feasible for real-time or limited-resource scenarios.
Thus, the proposed solution is expected not only to
excel in accuracy, but also to be practically relevant
for industries and public facilities that require
modern and adaptive waste classification systems.

3. Method
3.1 HR-ViT Model

This study proposes HR-ViT, a hybrid architecture
that combines the Vision Transformer (ViT) and

largely been limited to four classes, the dataset in ResNet50 to enhance image classification
this study covers six categories (batteries, plastic, performance (see Figure 1).
paper, metal, organic, and glass). This broader
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In the ResNet50 component, we fine-tuned the last
ten layers to learn domain-specific local
characteristics without modifying the pretrained
weights in the earlier layers. To determine the
optimal depth of fine-tuning, we conducted an
experiment by unfreezing 10, 15, and 20 layers of
the ResNet50 backbone. After these experiments,
we found that unfreezing the last ten layers offered
the best balance between preserving foundational
weights (capturing general features such as edges
and textures), adapting waste-specific features,
computational  efficiency, and  overfitting
mitigation. This strategy preserves training
stability while maximizing the adaptation of local
features [70]. Meanwhile, ViT is used without
further modifications to capture the global context
through its self-attention mechanism, which
partitions an image into smaller patches and
analyzes their global relationships [24].

-  Feature Extraction with ResNet50

The first step in HR-ViT is feature extraction
using ResNet50, which processes an input image x
of dimension (H,W,3) into a feature tensor
fresner (x) with dimension (H', W', €). Through a
series of residual blocks, local features such as
edges, texture patterns, and basic shapes are
extracted using convolutional strides and pooling,
gradually reducing the spatial dimensions H and W
to H' and W'. The output channel count, C, is
typically 2048 in the final layer before global
pooling. This feature tensor provides a high-level
of representation of the image, making it an ideal
input for the subsequent stage.

fresnet(X) = ResNet50(x) € RHW'x0) @)

- Converting to Patches

Next, the tensor fresner (x) from ResNet50 is
transformed into a series of patches. At this stage,
the spatial dimensions (H', W") are combined into
N = H' X W', representing the number of patches.
Each patch retains a channel dimension C, which is
the output from ResNet50. This process
reorganizes the spatial features produced by
ResNet50 into a two-dimensional vector X, which
is then ready for further processing by the Vision
Transformer. Effectively, each spatial location in
the image is mapped into a distinct feature vector.

Xp = Reshape(fresnee (X)) € RO, N = H' x W' (2)
- Linear Projection of Patches into
Embedding Space
Each patch in X, is linearly projected into a

lower-dimensional embedding space D using a
matrix E € RWV*D), Matrix E is a trainable

parameter that maps the ResNet features into the
Transformer’s embedding space. This projection
reduces dimensionality while preserving essential
information from the features, resulting in an
embedding Z of dimension(N X D). This
representation allows the Transformer to treat each
patch as an individual input token.

Z =X, E € RWxD) (3)

- Adding the Class Token and Positional

Embedding

A class token (X455 € RO*P)) is prepended
to the sequence of embeddings Z to capture global
information from all patches. Additionally, a
positional embedding (E,os € RVFD*D)) g
added to provide position information for each
patch. Positional embedding is crucial because the
self-attention mechanism in the Transformer is
order-agnostic, necessitating an explicit spatial
relationship signal among patches. This combined
representation, Z', is then ready for processing by
the Transformer Encoder.

Z' = [Xasss Z] + Epos € RUN+1)xD) (4)

- Processing by the Transformer Encoder

The Transformer Encoder processes Z' using
multi-head self-attention and a feed-forward
network. Self-attention enables the model to
capture global relationships among patches, while
the feed-forward network deepens the feature
representation. The outcome is Z'', where the class
token (Z;) now contains the global information
necessary for classification. This step ensures that
the model fully grasps the global context of the
input image.

Z" = TransformerEncoder (Z") € R(W+1DxD) 5

- Final Classification

The class token (Zy) from the Transformer
Encoder output is used for classification. This class
token representation is projected through a weight
matrix W and activated via the softmax function on
to yield a probability distribution over the classes.
This distribution reflects the model’s confidence in
each target class, allowing for the final decision in
image classification.

y = Softmax (W.Zg) (6)

3.2 Model Parameters
Balancing computational efficiency with
improved accuracy during training is the primary

focus; therefore, the HR-ViT model parameters are
carefully designed to optimize both modeling
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capacity and training stability. Table 1 summarizes
the key parameters used in this study, such as the
embedding dimension, number of heads, and feed-
forward network size. These parameter values were
selected based on a series of preliminary
experiments, including manual tuning strategies,
considering hardware limitations, and the need for
efficient inference.

Table 1. Model parameters.

Parameter Value Description
d_model 192 Embedding dimension
head 6 Number of heads in Multi-
n_heads Head Attention
Hidden layer size in the Feed-
d_ft 768 Forward Network (FFN)
Dropout rate in the
dropout_rate 0.15 Transformer Encoder
| 4 Number of layers in the
n_fayers Transformer Encoder

Hidden layer size in the MLP
for the classification head
Patch size (1 X 1) from the
ResNet backbone output

mlp_head_size 192

patch_size 1

battery dass

battery gass

In some cases, values were also informed by
configurations from prior state-of-the-art studies,
particularly those involving vision transformers for
similar classification tasks [71]. Additionally, the
patch size was set to 1 X 1, representing the
transformation of the ResNet50 output into
individual tokens, thus providing a patch
representation for each specific spatial location.

3.3 Dataset

This study used a six-class waste dataset
containing plastic, paper, organic, metal, glass, and
batteries, totaling 4,650 images. Each class had 775
images, ensuring a balanced distribution and
minimizing model bias. Figure 2 shows the sample
images for each category. The dataset was sourced
from two repositories [19], [50], which were
combined and standardized to offer more
comprehensive class coverage than TrashNet [20],
[52], [72].

organic

organic

Figure 2. Samples of each class.

3.4 Data Preprocessing

All images were resized to 224x224 pixels,
following the standard input dimensions of
ImageNet-pretrained models, such as ResNet50.
Pixel values were normalized to the range [—1,1] to
stabilize the weight updates [73]. We also
performed on-the-fly data augmentation (rotation,
translation, shear, zoom, horizontal flip, fill mode
set to “nearest”) to increase the example diversity
[74], [75]. Table 2 lists the augmentation
parameters. This strategy is expected to improve
the robustness of the model to variations in object

position, orientation, and scale.

Table 2. Data augmentation parameters.

Technique Value
Rotation 30°
Width Shift 0.3
Height Shift 0.3
Shear Transformation 0.3
Zoom 0.3
Horizontal Flip True
Fill Mode Nearest
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After preprocessing and augmentation, the
entire dataset (4,650 images) was split into training
(80 %), validation (10 %), and testing (10 %)
subsets  using  stratified sampling  with
random_state=42 to preserve class proportions and
ensure reproducibility. The training set (3,720
images) was used for model fitting; the validation
set (465 images) guided hyperparameter selection
and early stopping; and the testing set (465 images)
provided an unbiased estimate of final
performance.

Table 3 details the per-class distribution across
all subsets, confirming that each of the six waste
categories remains evenly represented and that
sampling bias is minimized. This approach aims to
maintain the data balance while improving the
generalization capability of the model prior to
further training and optimization.

Table 3. Dataset split distribution.

Class TraSl:tmg Valléieattlon Te;gtng Total
organic 620 77 78 775
metal 620 77 78 775
paper 620 77 78 775
glass 620 78 77 775
plastic 620 78 77 775
battery 620 78 77 775
Total 3.720 465 465 4.650

3.5 Model Training and Optimization

Training aims to minimize the loss function
while maximizing the predictive accuracy on the
validation set [76]. We chose categorical cross-
entropy to handle multi-class classification [77].
For weight optimization, we used the Adam
optimizer due to its stability and rapid convergence
in complex architectures [78]. The initial learning
rate was set to 1x 1073, selected based on
preliminary experiments which indicated better
stability and convergence behavior at lower rates,
particularly for transformer-based models.

The batch size was limited to 16 due to
hardware constraints, as larger batch sizes (e.g., 32)
led to memory exhaustion during training. To
enhance generalization and avoid overfitting, early
stopping was applied with a patience of 10 epochs,
which was found effective during our internal
testing to balance training duration and model
performance. Furthermore, the learning rate was
adaptively halved when the validation loss
plateaued for 5 consecutive epochs, down to a
minimum of 1 X 107°, allowing the model to
refine weights more cautiously during the later

stages of training. These values were selected
based on iterative experimentation and are also
commonly recommended in related transformer-
based classification studies. Finally, model
checkpoints were saved based on the lowest
validation loss to ensure the best-performing
weights were used for evaluation. Table 4
summarizes the primary training parameters used
in this study.

Table 4. Training parameters.

Parameter Value
Optimizer Adam
Learning rate 1x1075

Loss function Categorical Cross-Entropy

Metrics Accuracy
Batch Size 16
Maximum Epoch 100
Early Stopping
Patience 10 epoch
Learning Rate Factor 0.5, Patience = 5,
Reduction Minimum: 1 X 107°
Model Chgckpomt Validation Loss
Monitor

3.6 Cloud-Mobile Integration

This research not only focuses on HR-ViT
development but also on its large-scale deployment
using a cloud—mobile architecture. Flask was
chosen as the backend framework due to its
flexibility in handling Python-based machine
learning libraries [79], [80]. This approach
facilitates the design of a REST API for server-side
model inference requests.

To address the limited resources of mobile
devices (computing power and storage),
classification runs on an AWS-hosted server,
optimizing scalability and uptime [67], [81]. To
ensure cost efficiency, the backend was activated
only during the study period. On the front-end,
React Native supports cross-platform mobile
application development, ensuring a responsive
user interface compatible with various operating
systems [82].

Figure 3 illustrates the system’s workflow, from
uploading an image via the app and invoking the
Flask API for cloud-based model inference to
returning the classification results to the phone. By
placing computationally intensive tasks (training
and inference) in the cloud, mobile devices
primarily handle user interfaces and server
requests. This strategy reduces user-side latency
but requires a stable internet connection for real-
time performance.
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Figure 3. System architecture.

4. Result and Discussion
4.1 Model Training and Validation

This study was conducted in a Python
environment under Anaconda to ensure
experimental compatibility and reproducibility.
The HR-ViT model was trained on an Intel Core i9-
12900H with 16 GB DDRS RAM, 512 GB NVMe
SSD, and an NVIDIA GeForce RTX 3060 GPU (6
GB GDDR6). GPU acceleration is crucial because
HR-ViT employs real-time data augmentation and
requires intensive exploration of the network
parameters [83]. TensorFlow 2.10.1 was chosen as
the main framework, combining the Vision
Transformer (ViT) with ResNet50 as the backbone.
Keras was used modularly, and libraries such as
NumPy, Pandas, and Matplotlib facilitated
numerical operations, data manipulation, and result
visualization.

The training exhibited rapid convergence

Training and Validation Accuracy

] //\/\/\/\/—A/\/_\
0.95 4 /
0.90 4
0.85 4
0.80

—— Training Accuracy
0.75 Validation Accuracy

0 5 10 15 20 25 30

(2)

within the first 13 epochs: at epoch 1, training and
validation accuracies were 75.32 % and 91.83 %
with losses of 0.737 and 0.286, respectively. By
epoch 4, accuracy rose to 94.68 % (train) and 93.12
% (val) with corresponding losses of 0.167 and
0.181. Continued training reduced the training loss
to 0.044 and increased accuracy to 98.71 % by
epoch 13, when the minimum validation loss of
0.088 was attained (val accuracy = 97.63 %). We
applied early stopping with a patience of 10 epochs
and halved the learning rate after 19 stagnant
epochs. Between epochs 14-33, wvalidation loss
fluctuated modestly between 0.0785 (epoch 23)
and 0.1197 (epoch 14), while validation accuracy
remained within 96.56 %-98.28 %, confirming
robust generalization and absence of overfitting.
The loss and accuracy curves (Figure 4a—b) further
substantiate the effectiveness of our training
schedule.

Training and Validation Loss

—— Training Loss
0.7 Validation Loss
0.6
0.5 1
0.4 1
0.3 9
0.2 4
N\
0.0 1
0 5 10 15 20 25 30
(b)

Figure 4. Training and validation accuracy (a) vs. training and validation loss (b).



270 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,

issue 2, June 2025

4.2 Testing Results

The performance of the HR-ViT model was
evaluated using 465 test samples distributed across
six waste categories: battery, glass, metal, organic,
paper, and plastic. As shown in Figure 5, the
confusion matrix exhibits strong diagonal
dominance, indicating high classification accuracy.
The model achieved perfect predictions for
“battery” (77/77) and “organic” (78/78). For the
“glass” class, four samples were misclassified: one
as “metal,” one as “paper,” and two as “plastic.”
The “metal” class included two errors,
misclassified as “glass” and “plastic,” while
“paper” had one instance predicted as “metal.” The
“plastic” class showed one misclassification into
“paper.” These errors were isolated and did not
significantly impact the overall distribution,
affirming the model’s ability to distinguish
between classes with minimal overlap.

Confusion Matrix

battery

glass

metal

True Label

organic

paper
°
°
°
°
~
S

0 0 0 0 1

plastic

battery glass metal organic paper plastic
predicted Label

Figure 5. Confusion matrix HR-ViT.

Table 5. Classification report HR-ViT.

Class Precision  Recall F1-Score  Support
Battery 1.00 1.00 1.00 77
Glass 0.99 0.95 0.97 77
Metal 0.97 0.97 0.97 78
Organic 1.00 1.00 1.00 78
Paper 0.97 0.99 0.98 78
Plastic 0.96 0.99 0.97 77
Accuracy 0.98 465
Macro 0.98 0.98 0.98 465
Avg
Weighted 0.98 0.98 0.98 465
Avg

Quantitative evaluation results are presented
in Table 5. The overall classification accuracy
reached 98%, with macro-average and weighted-
average precision, recall, and Fl-scores of 0.98.
The “battery” and ‘“organic” classes achieved
perfect scores (1.00) across all metrics. The “glass”
class reported the lowest recall at 0.95 due to the

aforementioned misclassifications, while “metal,”
“paper,” and “plastic” achieved F1-scores ranging
from 0.97 to 0.98. These results confirm that the
proposed HR-VIiT model maintains reliable and
balanced classification performance across all
categories, despite minor inter-class confusion.

4.3 Application Implementation Results

To test the performance of the mobile-cloud
application, five real-world samples were used to
ensure both diversity and model robustness. An
internet connection with 50 Mbps bandwidth and a
1:1 upload-to-download ratio was maintained
throughout. Users captured waste images via the
in-app camera or selected them from the device
gallery, then uploaded the images to a back-end
server, which returned the classification results to
the device. Table 6 summarizes the test data: image
source, resolution, file size, and application
response time.

Table 6. Characteristics of test data and application response.

Image Image Image  Response
No Sourgce Resolution Size Time
(px) (MB) (ms)
In-app 2448 x
! camera 3264 1,29 1500
In-app 2448 x
2 camera 3264 1.21 1400
Gallery
3 (reduce 1224 x 411 800
. 1632
resolution)
Gallery
4 (another 6120 x 4,11 4000
8160
source)
Gallery
3472 x
5 (another 4624 5,63 4700
source)

The application achieved an average response
time of 2,480 ms (milliseconds), with a minimum
of 800 ms and a maximum of 4,700 ms. As
expected, higher-resolution images incurred
greater latency: the 6,120 x 8,160 px (4.11 MB) file
required 4,000 ms, whereas the down-sampled
1,224 x 1,632 px (0.41 MB) image completed in
800 ms. These findings confirm that delegating
inference to the cloud enables efficient
classification without taxing the user device,
provided network quality remains consistent. The
separation of front-end Ul and back-end processing
further enhances scalability, although reliable
connectivity remains essential to maintain low
latency across deployment environments [84] [85].

By contrast, highly optimized on-device
networks can perform pure inference in only a few
milliseconds: for instance, EfficientFormer-L1
achieves 1.6 ms on an iPhone 12 [86], and
MobileOne-S4 runs under 1 ms on the same
hardware [87]. While these figures exclude
network overhead, our end-to-end average of 2,480
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ms aligns with reported latencies for cloud-based
vision pipelines, which typically span sub-second
to multi-second ranges under realistic conditions.
Taken together, these results demonstrate that HR-
ViT, when deployed as a mobile—cloud service,
achieves a latency profile that is competitive with

1076 8 ®

existing lightweight architectures while offloading
all intensive computation to the cloud and thus
minimizing device-side resource consumption.
Figure 6 illustrates the application workflow and
system responses.

1086 8 &

Figure 6. Implementation results.

4.4 Discussion

The HR-ViT model integrates ResNet50 and
Vision Transformer (ViT), combining localized
spatial feature extraction with global semantic
representation. To enhance generalization, training
incorporated  real-time data  augmentation
techniques, including random rotation, scaling,
flipping, and translation along with fine-tuning of
the last 10 ResNet50 layers with parameters
d model = 192, n_heads = 6, d_ff = 768, and
dropout_rate = 0.15. Under these settings, the final
evaluation yielded a test loss of 0.0579 and a test
accuracy of 0.9827, confirming the model’s strong
ability to generalize unseen waste images. The
training curves also exhibited stable convergence
with no signs of overfitting. The hybrid
architecture leverages pretrained weights to
minimize parameter redundancy while maximizing
feature discrimination, resulting in efficient
representation learning.

To assess the impact of augmentation, an
ablation study was conducted using identical
settings with and without it. As shown in Table 7,
augmentation improved accuracy from 97% to
98%, and all key metrics (precision, recall, and F1-
score) increased from 0.97 to 0.98. These gains
highlight augmentation's role in mitigating
overfitting and enhancing intra-class robustness,
justifying its adoption as an integral part of the HR-
ViT training pipeline.

Table 7. Comparative performance with and without data
augmentation.

Metric No Aug. With Aug. Improvement
Accuracy (%) 97 98 +1.00
Precision 0.97 0.98 +0.01
Recall 0.97 0.98 +0.01
F1-Score 0.97 0.98 +0.01

Table 8 compares the classification results
reported in previous studies with those of our
proposed HR-ViT, evaluated on the same datasets.
Quy [51] evaluated a Vision Transformer on the
Garbage Classification dataset (12 classes),
reporting 92% across all major metrics. Alrayes et
al. [14] tested VI-MLH-CNN on the TrashNet
dataset, achieving 95.8% accuracy, though
precision, recall, and F1-score were not reported.
Wang et al. [18] evaluated Garbage FusionNet
(GFN) on both TrashNet and a 10-class Garbage
Dataset, achieving 94.21% and 96.54% accuracy,
with  Fl-scores of 94.24% and 96.56%,
respectively.

To ensure a fair and consistent comparison, we
re-implemented HR-ViT using the same datasets
and applied consistent preprocessing,
augmentation strategies, and 10-layer fine-tuning.
Our model achieved 96.04% accuracy on
TrashNet, 96.56% on the Garbage Dataset, and
97.80% on the Garbage Classification dataset.
Furthermore, HR-ViT yielded improvements
across all key metrics (precision, recall, F1-score),
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reaching 97% uniformly on the 12-class dataset,
outperforming the baseline Vision Transformer by
Quy [51] by 5% in each metric. All HR-ViT results
were generated through controlled experimentation
and reflect consistent performance gains across
diverse benchmark datasets.

Although the model demonstrates strong
classification performance, this study has some
limitations. The dataset contains single-object
images with relatively clean backgrounds, which
do not fully represent complex waste disposal
environments. Additionally, performance in a
cloud—mobile system depends on network quality;
latency may be affected under low-bandwidth

issues through domain adaptation, synthetic data
generation, and Transformer-based object detectors
(e.g., DETR) to enable real-time multi-object waste
detection in diverse environmental contexts.

From an application perspective, HR-ViT is
well-suited for smart recycling bins, mobile
environmental ~ monitoring  systems,  and
educational tools. Its hybrid design supports both
accuracy and deployment flexibility, enabling
scalable implementation across various hardware
platforms. Academically, the model affirms the
efficacy of combining CNN and transformer
structures in visual classification tasks, paving the
way for further hybrid solutions in computer

conditions. Future work should address these vision.
Table 8. Comparison with previous studies on waste classification.
Accuracy TSN o F1 Score
Study Dataset Model (%) Precision (%) Recall (%) (%)
Qu Garbage
y Classification Vision Transformer 92 92 92 92
[51]
(12 class)
Alrayes
etal. Igaslee)‘ VT-MLH-CNN 95.8 - - -
[14] class
TrashNet
Wang et (6 class) Garbage FusionNet 9421 9431 9421 9424
al. [18] Garbage Dataset (GFN) 96.54 96.65 96.54 96.56
(10 class)
TrashNet
(6 class) 96.04 96 96 96
Garbage
Ours Dataset (10 HR-ViT 96.56 96 96 96
class)
Garbage
Classification 97.80 97 97 97
(12 class)
5. Conclusion of hybrid approaches for waste classification and
establishes a foundation for future research on
This study presents HR-VIT (Hybrid computational optimization and adaptation to more

ResNet50-ViT), effectively integrating ResNet50's
residual learning with ViT's self-attention to
classify six types of waste (plastic, paper, organic,
metal, glass, and batteries) with 98.27% accuracy
in testing, significantly outperforming previous
models and achieving an average precision, recall,
and F1-score of 0.98. This superior performance is
attributed to fine-tuning the final ResNet layers,
optimizing the ViT parameters, and incorporating
diverse data augmentation to expand the training
sample variety. However, this study primarily
addresses single-object classification on simple
backgrounds, whereas real-world waste conditions
often involve complex multi-object arrangements.
This limitation necessitates methods such as
Transformer-based detection networks (e.g.,
DETR) for enhanced robustness. Additionally,
mobile—cloud implementation relies heavily on
stable internet connectivity, emphasizing the need
for reliable infrastructure to maintain low latency.
In conclusion, this study underscores the potential

complex datasets.
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