

11

UTILISING BTTRACE VISUALISER AND LTL FORMULAE PATTERNS

FOR ANALYSING COUNTEREXAMPLE

Irene Ully Havsa

Formal Method in Software Engineering Laboratory, Faculty of Computer Science, Universitas

Indonesia, Kampus Baru UI, Depok, 16424, Indonesia

Email: irene.ully@gmail.com

Abstract

The aim of this paper is to demonstrate the utilisation of a Behavior Tree trace visualiser

called BTTrace and generalised LTL formulae patterns to help system analysts analyse

counterexamples and generate valuable ones. Counterexample generated by SAL model

checker from a Behavior Tree model and an LTL formulae is translated into a BTTrace file.

This file is rendered by BTTrace to visualise the counterexample on Behavior Tree diagram

in animated fashion. Generalised LTL formulae patterns are exploited using a particular

technique to assist analyst on constructing new yet meaningful property formulas. These

formulas are used to obtain different and valuable counterexamples for further analysis. It is

shown that BTTrace and LTL formulae patterns give significant support for analysing

counterexamples of Behavior Tree model.

Keywords: Behavior Tree, LTL, counterexample, visualiser

Abstrak

Tujuan dari makalah ini adalah untuk menunjukkan pemanfaatan dari visualisasi jejak

Behavior Tree yang disebut BTTrace dan generalisasi pola formula LTL untuk membantu

analis sistem menganalisis counterexample dan menghasilkan counterexample yang

berharga. Counterexample dihasilkan oleh SAL model checker dari model Behavior Tree

dan formula LTL diterjemahkan ke dalam sebuah file BTTrace. File ini kemudian di-render

oleh BTTrace untuk memvisualisasikan counterexample diagram Behavior Tree dalam

mode animasi. Pola formula LTL yang sudah digeneralisasi kemudian dieksploitasi dengan

menggunakan teknik tertentu untuk membantu analis untuk membangun formula properti

baru namun bermakna. Formula ini digunakan untuk mendapatkan counterexample yang

berbeda dan berharga untuk analisa lebih lanjut. Pada makalah ini ditunjukkan bahwa

BTTrace dan pola formula LTL memberikan dukungan yang signifikan untuk menganalisis

counterexample dari model Behavior Tree.

Kata kunci: Behavior Tree, LTL, counterexample, visualiser

1. Introduction

 This paper discuss a tool support and

formulae patterns to assist system analyst on

identifying system safety requirements,

specifically on analysing counterexamples. The

approach uses Behavior Tree (BT) notation [1] to

model system requirements and SAL model

checker
1
 to process the verification.

 Behavior Tree is a formal modelling

language that has the strengh among other

language on its graphical notation which has been

shown to be easy to understand by people who are

not formal method experts [2]. Furthermore, BT

1 http://sal.csl.sri.com/

notation has the ability to capture functions,

object states, and multi-threaded behavior in a

single modelling language [3].

 A BT model is constructed from system

requirement description, usually from functional

requirement. For verification purpose, this BT

model will be translated into SAL model using the

existing BT to SAL translator. The safety

requirement/property will be delivered in a form

of LTL formulae. To learn more about how to

build BT model from system requirement and

perform verification afterwards, please refer to

[3,4,5,6].

 LTL (Linear-Time Temporal Logic) provides

temporal operator to express assertion about paths

through the SAL model. G(P) means a proposition

12 Journal of Computer Science and Information, Volume 6, Issue1, February 2013

P holds globally (holds at each state), F(P) means

that P holds in the future (eventually will be held),

X(P) means P holds in the next step on the path,

and P U Q means that P always holds until Q

holds and Q does eventually hold. Formulae can

be built using standard propositional connectives,

for example: AND, OR, NOT, implies. For our

experiment we always use implication connective

since our focus is on modifying the antecedent to

restrict the possible paths as explained later. In

relation with Behavior Tree, atomic formulae

correspond to statements about what state a

component is in, the current value of an attribute,

or whether a particular message is available or

not.

 Given a SAL model and an LTL formulae,

SAL either returns proved (means the property

holds on all paths), times out (runs out of

computing resource), or returns a counterexample.

A counterexample is a sequence of executed

actions and resulting states which show the path

where the property does not hold.

 SAL only returns a single counterexample at

a time and will returns the same counterexample

in the next runs eventhough there is another

counterexample(s). One counterexample is

usually not enough to conclude a system behavior

that lead to property violation. To find more

counterexamples, the LTL formula should be

modified to eliminate from consideration the

particular condition that gave raise to the recent

counterexample. A technique for this

modification will be described later.

 A plain counterexample is not enough for

analysing error, we need to trace it back to a

sequence of steps on the BT model. This sequence

of steps illustrating a system behavior which

violates the property. Eventhough in [7] this work

is claimed as a simple matter, from our experience

on working on a similar project, it is shown as a

time-consuming activity, since the analyst need to

find a corresponding BT node for each executed

action in a counterexample. The problem is

increased when dealing with several

counterexamples or long counterexample(s). To

overcome this problem, a trace visualiser named

Behavior Tree Trace (BTTrace) [8] which

implemented in TextBE (Textual Editor For

Behavior Engineering) [9] is introduced.

 TextBE is a textual editor aiming to support

the construction of BT model. It is distributed as

Eclipse plugin
2
. Textual representation of a BT

model is stored in a single file with extension .bt,

which will be rendered by TextBE into a static

diagram. To enable visualisation in animated

2 http://code.google.com/p/textbe/wiki/InstallingTextBE

fashion on this diagram, we use an extension

named BTTrace.

 As a visualiser, BTTrace takes a file with

extension .btt defining visualisation sequence.

This file contains the execution order of nodes in

the diagram using format as depicted in Figure 1.

BT filename.bt

TRACE [node1][node2] ….

LOOP [nodeA][nodeB] ….

Fig. 1. The format of BTTrace file.

The first line define a corresponding BT textual

representation as a ”base” for visualisation. The

second line define a sequence of nodes that will

be visualised once. In BTTrace, each node in a BT

diagram has an identity number. This numbering

begin at 1, starts from the root node and continues

through the diagram in preorder traversal manner.

Therefore, [1] points to the first (root) node. The

node number can also be in a form [a,b]. For

example, [2,3] points to second node and gives a

shadow to third node. We will discuss about the

function of this format later. The third line

(optional) define a sequence of nodes that will be

visualised repeteadly to represent an infinite loop.

Once a BTTrace file is loaded in Eclipse text

editor, the visualisation will be executed

automatically.

 BTTrace shows the visualisation by high-

lighting one node at a time, means that this node

is executed at this step. The visualisation example

is depicted in Figure 2. At one time step, the

visualisation shows a scene as in Figure 2(a), then

in the next time step it will change to Figure 2(b),

Figure 2(c), and so on. In the BTTrace, this

sequence will be represented as

…[Btnode1][Btnode2][Btnode3]… and so on.

Similar animation will be applied on other BT

diagrams.

Btnode1

BTnode2

BTnode3

BTnode1

BTnode2

BTnode3

BTnode1

BTnode2

BTnode3

(a) (b) (c)

Fig. 2. BTTrace visualization example. (a), (b), and (c) are

shown simultaneously.

Irene Ully Havsa., Utilising BTTrace Visualiser And LTL 13

 In Behavior Tree, there are nodes which has a

role as reference to another node, they are

reversion, macro, and branch-kill node. These

nodes are called reference node and the

destination node is called target node. For

marking a target node through the visualisation,

BTTrace uses dim-light color as shown in Figure

3. Both of the reference node and the target node

is lighted at the same time. We represent this

visualisation in BTTrace file as

[referenceNode,targetNode]. Branch-kill node is

visualised in similar fashion with Figure 3(b).

Target Node

Reference Nodê Reference Node Target Node

alternative

branch

[]

. . .=>

(a) (b)

Fig. 3. High-lighting and dim-lighting when reaching (a)
reversion node and (b) macro node.

 To visualise a counterexample, we need to

create a BTTrace file representing the content of

the counterexample. The technique to create this

file automatically is described in the next section.

2. Counterexample Visualisation

 A counterexample describes a system

behavior as a sequence of steps. Each step

contains the name of executed action followed by

the value of variables after the execution. For

example, Figure 4 shows a snippet of

counterexample showing an execution of action

which in SAL model has a label A25.

 The implementation of translator from BT to

SAL model that we use merge the first node (or

atomic node) into initialisation step, then each

other node is translated into SAL action one by

one. The translated action has a label with format

Ai, where i is a number given on each translation.

For example, second node will be translated into

action A1. The traversal process is in depth-first

preorder manner, similar to the node numbering

sequence in BTTrace. The difference is only in

the first node, which does not counted in BT to

SAL translation. Therefore, we only need to

capture the action number and increment it by 1 to

get the node number in BTTrace and then arrange

it in BTTrace file.

….

Counterexample:

========================

Path

========================

….

Transition Information:

(module instance at [Context: model2, line(617),

column(13)]

 (label A25

 transition at [Context: model2, line(247),

column(4)]))

Step 6:

--- Input Variables (assignments) ---

extInMsg_dL_goes_down = true

….

Fig. 4. A snippet of a SAL counterexample.

 Counterexample file only is not sufficient for

generating visualisation file. For reference node

(reversion, macro, and branch-kill), action label

can only shows the reference node without telling

the target node. To complete the information, we

need to supply a file containing pairs of reference

and target node number, which we called

reference file. A snippet of an example of this file

is as below:

….

20 16

25 16

32 26

….

Fig. 5. A snippet of a reference file.

 The pair 20 16 means that the reference is a

node which translated into action A20 and the

target is node with action label A16. This file

should contains all of the pairs in a BT model. We

can omit this information by simply provide

empty file, but the visualisation will not be

smooth and confusing as the analyst might not be

prepared for the movement of visualisation from

one part to another part of the BT diagram.

 Once the counterexample file and reference

file is available, we can create a BTTrace file

automatically. For generating BTTrace file, in

Figure 6 we provide the algorithm.

14 Journal of Computer Science and Information, Volume 6, Issue1, February 2013

 1 store reference information from reference file into a set
 2 start trace
 3 FOR each line in counterexampleFile
 4 IF found keyword “label A”
 5 take the action number
 6 IF it is a reference node
 7 write the pair of reference node number and target node number
 8 ELSE
 9 write the node number
10 ELSE IF found keyword "Begin of Cycle"
11 start looping trace

Fig. 6. Algorithm for generating BTTrace file from SAL counterexample and reference file.

 SAL counterexample always has a keyword

“Counterexample:”, therefore in our

implementation, a BTTrace file will be generated

only if this word appear in the counterexample

file. Otherwise, a BTTrace file is generated, but it

is not a valid one since it only contains an error

message. There are two common mistake that lead

to generation of this invalid file, which is a proven

message file or a SAL error message is mistaken

as counterexample file.

 An example of generated BTTrace file is

depicted in Figure 7.

BT model2.bt

TRACE [1][2][3][17][18][19][26,17][18]

LOOP [19][26,17][18]

Fig. 7. An example of valid BTTrace file.

 The “base” BT model is defined in a file

named model2.bt. The visualisation starts by

high-lighting node number 1 (root node), number

2, number 3, and so on. When it reach [26,17],

node 26 will be high-lighted and node 17 will be

dim-lighted. The trace ended when it reach node

18, but then followed by sequence of nodes in

LOOP section which will be visualised repeatedly

until the analyst stop the visualisation.

 For a huge and complex BT model, analyst is

likely to obtain long counterexamples. Interesting

part of these counterexamples id usually only

appears as a short subsequence in the middle. It

would be more convenient for analyst to examine

this part only rather than exploring the entire

counterexample over and over again. BTTrace

support this issue as it provide a flexibility to

manipulate BTTrace file. At first, analyst watch

the entire counterexample to determine which part

is interesting. Then the analyst pick the

corresponding subsequence from the BTTrace

file, and remove the other subsequences. A new

trace will be create, which should showing the

interesting part of the counterexample, then the

analyst can focus on this trace.

3. Generating Different Counterexamples

 System verification process that use model

checking always exploit counterexample.

However, in the publication the generation of

counterexample usually put in background and

not explored. In this paper, we discuss in detail

about this aspect in a form of general technique to

ease the effort.

 After obtaining a counterexample, we often

need to obtain other counterexamples to support

our analysis. To generate different

counterexample, we need to modify the current

LTL formulae to eliminate a particular case that

invoke the counterexample. The process is

illustrated in Figure 8. This figure is a

modification and more detail version of a diagram

from the presentation of [6].

 There are various types of case that we can

eliminate depend on the model and the system as

a whole. We have found several types that will

generally appear in most BT model.

Model Checking

using SAL Tool

BT

Diagram

SAL

Code

LTL

Formulae

Counter-

example

Visualisation

using BTTrace

Analyse

Safety

Requirements

Functional

Requirements &

Failures

Fig. 8. Experiment flow diagram. The core experiment is

inside the box.

Irene Ully Havsa., Utilising BTTrace Visualiser And LTL 15

 External input and event in BT notation

described the environment and operator behavior

which a system does not has control over it.

System designer and analyst naturally expect the

external to behave as it should be, but in many

case counterexamples show the opposite. The first

case is an external input/event E should not occur

when a component C is in state s. Then if the

opposite condition appears in a counterexample

and we want to see what will happen if we

eliminate this possibility, the analyst can use this

pattern:

G(NOT(C=s AND E=true)) => initial formulae

 To prevent more than one external

input/event, i.e. E1 and E2, to occur, we can use

this pattern:

G(NOT(C=s AND (E1=true OR E2=true))) =>

initial formulae

 On the opposite, pattern below is suitable if

we want to explore a path that event E is always

available whenever component C is in state s, and

the event will be executed whenever possible.

G((C=s) => (E=true)) => initial formulae

 The analyst can use a combination of patterns

above to control the environment or user behavior

and creating a “perfect” condition. For each

external input/event controlled, we can derived

several conclusion and deliverables. An external

input represents operator behavior could be a

starting point to develop a standard operator

procedure which all operators should follow. A

path leading to execution of external input

representing unexpected user action should be

addressed by introducing an extension to handle

this behavior. Furthermore, if the external input or

event represents a component failure, which

cannot be predicted at all, we should addressed it

by enhance the design with a back up system to

substitute the component.

 Environment and user behavior are the most

important thing to concern about. Another thing

that can be explored is the different case on

system. For a system that has several modes,

options, or choices it is a good idea to explore

each possibilities. The result can then be analysed

to find a more specific case that lead to property

violation, or construct general case from all

possibilities.

 There are two types of system mode

determination, the first one is determined once in

initialisation phase and will remain the same

through entire execution, the second one is

determined in initialisation phase and can be

changed in the middle of execution. To explore

each case, we need to generate counterexample

for one case at a time.

? M = a1 ? ? M = a2 ? ? M = an ?

alternative

branch

[]

. . .

Fig. 9. Alternative branch with selection node as „guard‟ for

each branch.

 Cases in BT notation is illustrated as

alternative branch, which each child branch is

guarded by selection node as depicted in Figure 9.

Therefore to chose particular branch, we “force“

the model checker to traverse the selected case.

For a system that choice is only made in

initialisation, we can use this pattern:

(M=ai) => initial formulae

 If the choice eventually changes but analyst

want to explore one particular case only, we make

sure that the choice will be the same on the entire

execution by this pattern:

G(M=ai) => initial formulae

 If the analyst want to explore the behavior of

particular sequence of modes change, i.e. mode a1

then a2, the analyst use this pattern:

(M=a1) AND F(M=a2) => initial formulae

 Sometimes analyst need to explore what if

particular condition is remain the same until a

mode is chosen. To express that, use this pattern:

U(C=s, M=ai) => initial formulae

 The analyst can combine these pattern to

check specific case, until the most specific one.

But to keep in mind, analyst should check that a

particular case is really reachable by model

checking an LTL formula with this pattern:

G(NOT(M=ai))

This formula means that the mode ai will never

be chosen in any path. Different with checking a

property, this time we expect to get

counterexample. A counterexample means there is

at least one path which a1 is chosen. On the other

hand, if SAL returens proven then this formula is

16 Journal of Computer Science and Information, Volume 6, Issue1, February 2013

satisfied, which tells that mode ai is not possible

to occur.

4. Results and Discussion

 In our experience, analysis effort is decreased

significantly after utilising BTTrace. The most

important part is analyst can “watch” visualisation

of counterexample trace by just doing several

simple steps. The visualisation can be repeated

several times, which helps analyst to learn the

behavior faster.

 We find some weaknesses in BTTrace. For

large diagrams, we need to use large screen to

recognize each node easily. In current

implementation, BTTrace also does not give mark

on nodes that have been traversed. For a BT

model that has several pararel branch, it is hard to

remember how far is the progress of each branch

which makes analyst easy to lose track. We plan

to add this feature on the next development.

 The patterns for generating more

counterexample are generalised version of a real

LTL formulas that were used in a research on

Aerial Fire-fighting Management System case

study

[7]. The technique is proved to be effective

on finding various interesting counterexamples for

safety property evaluation analysis. However, this

technique still need to be evaluated on several

other case studies.

5. Conclusion

 The utilisation of BTTrace as counterexample

visualiser and generalised LTL formulae patterns

significantly increase the eficiency of

counterexamples analysis. BTTrace brings a huge

support on examining each counterexample with

its graphical and animated fashion, and also its

flexibility that allow analyst to examine only a

small part of a counterexample. On the other

hand, LTL formulae patterns assist analyst on

constructing new property formulae for generating

different valuable counterexample.

Acknowledgement

 This research is part of a research internship

held at School of ITEE The University of

Queensland on February - April 2012, supervised

by Prof. Peter Lindsay and Mr. Sentot

Kromodimoeljo. This internship is funded by a

grant for a research titled Assessment of the

Applicability of Behavior Tree Notation for Large

System with PIC Prof. Belawati H. Widjaja.

Reference

[1] R.G. Dromey, “From Requirements to

Design: Formalizing the Key Steps” In

Proceeding of 1st IEEE International

Conference on Software Engineering and

Formal Methods (SEFM), pp. 2-13, 2003.

[2] D. Powell, “Behaviour Engineering - A

Scalable Modelling and Analysis Method” In

Proceeding of IEEE International

Conference on Software Engineering and

Formal Methods (SEFM), pp. 31-40, 2010.

[3] P.A. Lindsay, “Behaviour Trees: From

Systems Engineering To Software

Engineering” In Proceeding of IEEE

International Conference on Software

Engineering and Formal Methods (SEFM),

pp. 21–30, 2010.

[4] T. Myers, R.G. Dromey, “From

Requirements to Embedded Software -

Formalising the Key Steps” in Proceedings

of the 2009 Australian Software Engineering

Conference (ASWEC'09), pp 23-33, 2009.

[5] P. Lindsay, K. Winter and N. Yatapanage,

“Safety Assessment Using Behavior Trees

and Model Checking” in 8th IEEE

International Conference on Software

Engineering and Formal Methods (SEFM

2010), 2010.

[6] L. Grunske, P.A. Lindsay, N. Yatapanage, K.

Winter, “An Automated Failure Mode And

Effect Analysis Based On High-Level

Design Specification With Behaviour Trees”

In Proceeding of International Conference

on Integrated Formal Methods (IFM), LNCS

vol. 3771, pp. 129–149, 2005.

[7] P. A. Lindsay, K. Winter, S. Kromodimoeljo,

“Model-based Safety Risk Assesment using

Behaviour Trees” In The System

Engineering, Test and Evaluation

Conference, 2012.

[8] F. Dolot, “Design And Implementation

Simulation Language For Requirement

Engineering In Form Of Behavior Tree

Animation in TextBE (Textual Editor For

Behavior Engineering), ” B.S Thesis,

Faculty of Computer Sciences, Universitas

Indonesia, Indonesia, 2011.

[9] T. J. Myers, “TextBE : A Textual Editor for

Behavior Engineering” In Improving Systems

and Software Engineering Conference, 2011.

