
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information). 9/1 (2016), 43-51
DOI: http://dx.doi.org/10.21609/jiki.v9i1.365

PERFORMANCE COMPARISON OF USART COMMUNICATION BETWEEN REAL TIME
OPERATING SYSTEM AND NATIVE INTERRUPT

Novian Habibie1, Machmud Roby Alhamidi1, Dwi M J Purnomo1, and Muhammad Febrian

Rachmadi2

1Faculty of Computer Science, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia

2School of Informatics, The University of Edinburgh, 11 Crichton Street, Edinburgh EH8 9LE, United
Kingdom

E-mail: novian.habibie@ui.ac.id1, s1467961@sms.ed.ac.uk2

Abstract

Comunication between microcontrollers is one of the crucial point in embedded sytems. On the other
hand, embedded system must be able to run many parallel task simultaneously. To handle this, we need
a reliabe system that can do a multitasking without decreasing every task’s performance. The most
widely used methods for multitasking in embedded systems are using Interrupt Service Routine (ISR)
or using Real Time Operating System (RTOS). This research compared perfomance of USART
communication on system with RTOS to a system that use interrupt. Experiments run on two identical
development board XMega A3BU-Xplained which used intenal sensor (light and temperature) and used
servo as external component. Perfomance comparison done by counting ping time (elapsing time to
transmit data and get a reply as a mark that data has been received) and compare it. This experiments
divided into two scenarios: (1) system loaded with many tasks, (2) system loaded with few tasks. Result
of the experiments show that communication will be faster if system only loaded with few tasks. System
with RTOS has won from interrupt in case (1), but lose to interrupt in case (2).

Keywords: embedded system RTOS, interrupt, USART, performance analysis

Abstrak

Komunikasi antar mikrokontroller adalah salah satu hal krusial dalam sebuah embedded system. Di sisi
lain, embedded system juga harus dapat menangani beberapa task/pekerjaan dalam satu waktu. Untuk
itu, diperlukan sebuah sistem yang dapat melaksanakan proses multitasking tanpa mengganggu per-
forma dari masing-masing task yang ada. Ada dua metode multitasking yang populer digunakan pada
embedded system, yaitu menggunakan Interrupt Service Routine (ISR) dan menggunakan Real Time
Operating System (RTOS). Penelitian ini membandingkan performa komunikasi USART pada mikro-
kontroller dengan RTOS dengan yang hanya menggunakan interrupt. Uji coba dilakukan pada dua
development board XMega A3BU-Xplained dengan sensor internal (cahaya dan temperatur) dan men-
jalankan sebuah servo. Uji performa dilakukan dengan menghitung waktu ping, yaitu waktu yang dibu-
tuhkan untuk mengirim satu karakter data ke board tujuan dan menerima balasan satu karakter sebagai
tanda bahwa data telah diterima oleh board tujuan. Skenario yang digunakan adalah (1) sistem memiliki
banyak task, dan (2) saat sisem memiliki sedikit task. Berdasarkan eksperimen yang dilakukan, secara
umum proses komunikasi akan berjalan lebih cepat jika sistem hanya mempunyai sedikit task. Sistem
dengan RTOS akan memiliki waktu ping yang jauh lebih cepat dari yang menggunakan interrupt pada
kasus (1), namun sistem dengan interrupt akan lebih cepat dari sistem dengan RTOS pada kasus (2).

Kata Kunci: embedded system, RTOS, interrupt, USART, analisa performa

1. Introduction

Nowadays the usage of embedded systems are
widely spread in every aspects of our life. It is
because embedded systems are the right solution to
implant an automatic behaviour or responses into
physical world which is small, low-powered, and
specific to one dedicated purpose. Implementation
of embedded system are everywhere, start from
daily utensils like refrigerator, television, calcula-

tor, until many device that runs daily life like traffic
light, automatic gate in the railstation, etc.

Although one embedded systems can be only
dedi-cated to specific purposes, its purposes itself
may contain some tasks. Because of that, one of a
capability that embedded system must have is an
ability to handle multiple tasks without fail. To do
that, the system that can handle parallel compu-
tation in small and low computational ability is
urgently needed. One of the solution by using Inter-

43

mailto:novian.habibie@ui.ac.id
mailto:s1467961@sms.ed.ac.uk

44 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
1, February 2016

rupt Service Routine (ISR) to run tasks as a process
that interrupting its main program simultaneusly.
Another solution is Real Time Operating System
(RTOS), a tiny operating system that can fit into
embedded system’s device and run processes as
tasks that run in specific time slice. Either interrupt
or RTOS have its own advantages and disadvantag-
es, depends on needs of the system.

Another crucial point for embedded system is
an ability to communicate and exchange data from
one microcontroller to another. With communica-
ting each other, the functionality of the system can
be increased and can be made as a wider system
that can coordinate each other. There is many me-
thods to do a communication between device, one
of them is communication using USART (Univer-
sal Synchronous Asynchronous Receiver Transmi-
tter) method.

Communication between system usually fol-
lowed with another tasks that run in parallel, e.g.
sensor reading or move an actuator. However, so-
metimes comunication process disturbed by ano-
ther task, so in result communication process can
be slower than expected and/or occurred an error
that cause data loss. To overcome that, the system
that capable to run parallel processes without re-
duce any process’s performance is needed.

Several research about embedded system and
RTOS have been conducted in recent years. The
latest one, Manju Nanda et al. [1] conducted re-
search about qualifying RTOS for use in safety cri-
tical applications using formal methods due to ef-
fectiveness and preciseness. Manju Nanda et al [4]
provides guidelines for development and imple-
mentation of formal approach to qualify a Comm-
ercially off the Shelf (COTS) RTOS as per the civil
aerospace standard RTCA DO-178C.

Yonghyun Hwan et al. [2] present an accurate
timed RTOS model within transaction level models
(TLMs). There are two key features used in this re-
search. The RTOS behavior model provides dyna-
mic scheduling, IPC (inter-process communicati-
on), and external communication for timing anno-
tated user applications. The RTOS overhead model

has processor to specific pre-characterized over-
head information to provide cycle approximate es-
timation. To demonstrate the model, Yonhyun Hw-
an et al [2] used a multicore platform executed a
JPEG encoder and provide results that RTOS mo-
del present high accuracy.

Su-Lim TAN and Tran Nguyen Bao Anh [3]
present a research about RTOS for small microcon-
troller. Su-Lim TAN and Tran Nguyen Bao Anh [3]
used 16 bit microcontroller to perform RTOS mul-
titasking. To demonstrate the ease of RTOS plat-
form migration, the mTKernel RTOS is chosen for
porting to the H8S/2377 16-bit microcontroller.

Ji Chan Maeng et al [4] present a research ab-
out produce an RTOS specific code using an auto-
mated tool and model-driven approach embedded
software development. Generic RTOS APIs was
defined to capture most of typical RTOS ser-vices
and for describing application’s RTOS related be-
haviour at an early stage. Generic RTOS APIs have
been transformed into RTOS specific APIs using an
automated transformation tool.

Fabiano Hessel [5] present a research about
abstract RTOS model that allows refining the ab-
stract model to an implementation model at lower
abstraction levels. Fabiano Hessel [5] used C lang-
uage with some extension to build the model and
as a results fifty task with four priority levels shows
the usefulness of this model.

Our previous research [6], do a comparison
between RTOS and Interrupt using ultrasonic sen-
sor and rack movement mechanism where it will
move from distance 0 cm to 10 cm repeatedly. De-
fined threshold at a certain distance that is begin-
ning, middle and end. Ultrasonic sensor will indi-
cated “HIT” if distance between assigned threshold
and rack movement is equal. Result shows that
RTOS has higher accuracy performance than Inter-
rupt butlesser precision.

Figure 2. Schematic of RTOS scheduling.

Priority

High

Low

time

Task 1 Task 1

Task 2 Task 2

Task 3

Preemption Task Completion

Figure 1. Schematic of interrupt

Microprocessor

Instruction 1

Stack Register

Instruction 3

Instruction 2
finished

Instruction 2

Interrupt active

Novian Habibie, et al., Performance Comparison of USART Communication 45

In this research, the peformance comparison
between RTOS and native interrupt will be inves-
tigated in the case of serial communication betwe-
en microcontroller. This research will test perfor-
mance of USART communication while undergo-
ing another some other tasks.

The rest of this paper is organized as follows.
Section 2 describe the methodology used in this re-
search. Section 3 presents results and analysis of
experiment. Finally, section 4 presents conclusions
of this paper.

2. Methods

This research focused on testing the performance
of USART communication on various multitasking
environment. Performance in this research measu-
red by two aspects: (1) communication speed, and
(2) communication reliability. Experiments con-
ducted on two multitasking system which connec-
ted each other with USART communication. Each
board have an identic environment and specifica-
tions, either hardware or software.

Communication speed can be measured by
obtaining data of amount of elapsed communica-
tion time. This aspect tested by conduct “ping” pro-
cess and count its elapsed time. Similar to ping in
networking [7], ping is a process to check a reacha-
bility of destination device. Ping conducted by sen-
ding a packet of data to destination device and get
a reply data as a sign that the data has been recei-
ved. For experiment on this research, ping conduct-
ed as character sending and receiving process. Ping
function transmit character ‘t’ to destination board,
and the destination board will reply with character
‘r’. Elapsed time obtained by count the time diffe-
rences between data sending and receiving process.
For each experiment, ping conducted several times
and the mean of ping time become the result. Detail
of experiment process explained in sub-section 2.2,
on experiment scenarios subsection.

Reliability of communication conducted to
see how much error occurred when USART runs
on various condition. To see the system’s error, ex-
periment still use the same process as ping does,
but it now focused on the amount of data that trans-
miited and received. As explained above, each ex-
periment conducted ping several times. To check
reliability of the system, this experiment will count
the differences between the amount of data which
is received and retransmitted. This aspect obtained
in each board separately. The amount of received
ping accumulated on the destination board, and the
amount of obtained reply data that comes from des-
tination board accumulated in source board. The
amount of differences between received ping and
received reply become amount of packet that loss
on ping process. From amount of loss packet, relia-

bility of the system can be measured and analyzed.
Detail of this aspect explained in section 4, sub-
section experiment scenarios.

RTOS and Native Interrupt

RTOS is a new approach as an alternative of inter-
rupt in microcontroller world. Its capability of un-
dertaking multitask performance better than native
interrupt has become an attraction for many of re-
searchers. RTOS eminences comprise flexibility of
architecture can be empowered, reliable for many
tasks, actively developed, simple, and many others
[8].
 The main difference between RTOS and nati-
ve interrupt is illustrated in Figure 1 and Figure 2.
Figure 1 shows the task management in RTOS. If
there is task whose higher priority, the lower prio-
rity task will be suspended and the high priority ta-
sk will be executed. Whereas in native interrupt,
the task which is inside the interrupt cannot be inte-
rrupted by another task before the previous task fi-
nished (Figure 2).
 The utilization of RTOS (in this research
free-RTOS was employed) due to its capability of
multi-tasking. Multitasking is highly related to
setting the priorities of tasks. In the freeRTOS the
priorities of tasks can be determined by utilizing
FreeRTOSConfig.h. The aforementioned priorities
are ranging from 0 to (configMAX_PRIORITIES-
1) [9]. The value of (configMAX_PRIORITIES-1)
could be defined freely, as long as it does not ex-
ceed the RAM capacity. However, if the chosen va-
lue is 1 (one) for configUSE_PORT_OPTIMISED
_TASK_SELECTION in the FreeRTOSConfig.h,
the value of configMAX_PRIORITIES is limited
to 32. Whereas the task whose priority of 0 is called
tskIDLE_PRIORITY.
 In this research, native interrupt was also em-
powered to be compared with RTOS. The priorities
of the above mentioned interrupt are listed in the
microcontroller datasheet [10]. To cite an instance,
RESET whose the highest priority. To assign the in-
terrupt, Interrupt Service Routine (ISR) must be
written in the source code. Further-more, to active-
te the global interrupt in order to make the interrupt
executed, macro sei() was assigned.
 Interrupt employed to the system by activate
the timer interrupt feature. Timer interrupt will in-
terrupt main program with specific task in a spe-
cific time slice. Timer interrupt will execute the ta-
sk after the timer is overflow. The amount of tick
required (TC) to make timer overflow can be deter-
mined by put a value to the Timer Counter Register
(TCCR) from equation(1) as follows:

𝑻𝑻𝑻𝑻 = 𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓
𝑻𝑻𝑻𝑻𝑪𝑪𝑪𝑪

− 𝟏𝟏 (1)

46 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
1, February 2016

Which 𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓 is actual amount of time required (in
second), and 𝑻𝑻𝑻𝑻𝑪𝑪𝑪𝑪is clock time period of the mi-
crocontroller. 𝑻𝑻𝑻𝑻𝑪𝑪𝑪𝑪 = 𝒑𝒑𝒓𝒓𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒓𝒓𝒓𝒓/𝒇𝒇_𝑻𝑻𝑪𝑪𝑪𝑪 , where
𝒇𝒇𝑻𝑻𝑪𝑪𝑪𝑪 is clock of microcontroller and prescaler is
divider of real frequency depends on how long ti-
mer defined. Prescaler defined as a value of the po-
wer of two, e.g. 1,2,4,8, etc.

USART

Communication between devices in embedded sys-
tems have two different forms, parallel and serial
communication. Parallel communication employs
transmitting and receiving data via multiple GPIO
port, which each port represent one bit of data. On
the other hand, serial communication transmit or
receive data in one port only, and data transmitted
sequentially in a form of data packet. Each parallel
or serial communication have its own advantages
and disadvantages. Parallel communication can ha-
ve a faster speed because it can transmit/receive
multiple data at one time because it use multiple
ports. However, the usage of multiple port itself be-

came its disadvantages because it’s too costly and
give extra complexity to the system. Nowadays, se-
rial communication is commonly used because it
use less port and transmit data in a form of packet.
Illustration of differences between parallel and se-
rial communication can be seen on Figure 3.
 Universal Synchronous Asynchronous Rece-
iver Transmitter (USART) is one of a serial com-
munication protocol. In general it uses two ports,
one for transmitting data (TX port), and another
one is for receiving data (RX port). If necessary, it
can use one additional port as a clock for sync-
hronous communication. USART can be activated
via USART register in microcontroller. USART ha-
ve three modes, asynchronous normal mode, asyn-
chronous double speed, and synchronous mode.
 Similar to interrupt, performance of USART
depends on system clock and baud rate. System
clock can be defined based on specification of mic-
rocontroller used on the system. Baud rate is a term
of how many data/symbol can be transmitted in one
time, which one symbol can contain more than one
bit.
 If N is an amount of bits in one symbol, re-
quired symbol to be sent is 𝑺𝑺 = 𝟐𝟐𝑵𝑵. Baud rate can

Figure 3. Illustration of comparison between parallel and
serial communication

 TABLE 1
SPECIFICATION OF ATXMEGA256A3BU-AU

Specification Value
Flash 256KB + 8KB
EEPROM 4KB
SRAM 16KB
Max Speed 32 MHz
Power Supply 1.6-3.6 V

TABLE 2

PORT CONNECTION
Component/Feature Chip Port / Board Port

USART Transmit Port
(TX)

J1-PIN3 / PC3

USART Receive Port
(RX)

J1-PIN2 / PC2

Servo Motor Data J1-PIN0 / PC0
GPIO to Arduino J1-PIN4-5 / PC4-5

Servo Data (to Xmega port C0)

USART (RX port C2/TX port C3)

Xmega A3BU XplainedXmega A3BU Xplained

Servo Data (to Xmega port C0)

Digital Data
(From Xmega port C5,C6 to Arduino port 4,5)

Arduino Uno R3

Figure 4. Schematic of system board images via

atmel.com

TABLE 3
TASK DESCRIPTION

Task
Name

Description Executed
Every

LCD Print system’s status
and data from sensor

2 s

Servo
Motor

Repeatly move servo’s
shaft left and right

1 s

Temperat
ure

Sensor

Read temperature from
environment

300 ms

USART:
Receive

Standby to receive
data form another

board

~1 ms

USART:
Transmit

Repeatly send data to
another board

~1 ms

Novian Habibie, et al., Performance Comparison of USART Communication 47

be converted as bit rate by counting 𝑹𝑹 = 𝒃𝒃𝒑𝒑𝒃𝒃𝒃𝒃 𝒓𝒓𝒑𝒑𝒕𝒕𝒓𝒓
𝒙𝒙 𝒑𝒑𝒍𝒍𝒍𝒍𝟐𝟐𝑺𝑺. Correlation of system clock and baud rate,
known as BSEL, used as input value to UBBR reg-
ister. For example, the value for UBBR in USART
asynchronous normal mode can be obtained from
equation(2).

𝑩𝑩𝑺𝑺𝑩𝑩𝑩𝑩 = 𝒇𝒇𝑪𝑪𝑩𝑩𝑹𝑹
𝟐𝟐𝑩𝑩𝑺𝑺𝑻𝑻𝑺𝑺𝑩𝑩𝑩𝑩.𝟏𝟏𝟏𝟏𝒇𝒇𝑩𝑩𝑺𝑺𝑪𝑪𝑩𝑩

− 𝟏𝟏 (2)

Which 𝒇𝒇𝑪𝑪𝑩𝑩𝑹𝑹 is clock of microcontroller, 𝑩𝑩𝑺𝑺𝑻𝑻𝑺𝑺𝑩𝑩𝑩𝑩
is parameter to tune 𝑩𝑩𝑺𝑺𝑩𝑩𝑩𝑩 to make it as close as its
real value, and 𝒇𝒇𝑩𝑩𝑺𝑺𝑪𝑪𝑩𝑩 is a desired value of baud
rate. Common used baud rate are 4800, 9600,
19200, and so on.

Experiment Environment

Hardware
Experiments run on development board Xmega
A3BU-Xplained, which use microcontroller ATX-
mega A256A3BU manufactured by Atmel. Full
specification of the board can be seen on Table 1.
Internal components from the development board
such as button, LED, monochrome LCD, and inter-
nal sensor (light sensor and temperature sensor)
have been used as the components to simulate the
multitasking system. Experiments use two identi-
cal development board powered with USB cable
and connected each other with USART communi-
cation, which use port Rx (receiver) and Tx (trans-
mitter). For external components, servo motor is
connected to each board in port SDA to use PWM
feature from the microcontroller. To count ping ti-
me from the system, one of the development board
connected to Arduino Uno board via GPIO. Ardui-
no will connected to the destkop computer via USB
serial. Arduino Uno acts as a timer to count elapsed
time for ping time
from XMega board. For further hardware details,
schematic diagram is on Figure 3, and external
components port connection table on X Mega boa-
rd is on Table 2.

Software
Program that used in this research for XMega boa-
rd was developed on Atmel Studio 7 IDE, MinGW
C compiler, and firmware downloader FLIP from
atmel. The program use Atmel Software Framewok
(ASF) library as main library to use various featu-
res of development board Xmega A3BU-Xplained.
For Arduino Uno board, the program developed on
Arduino IDE with standard Arduino Library.
 RTOS which is used in this research is Free-
RTOS, an open source RTOS for various microcon-
troller. Raw FreeRTOS source code obtained from
its official website, http://freertos .org. Raw source
code has been configured to be compatible with

Xmega board and only use a required features.
However, current FreeRTOS version is not compa-
tible to Xmega-family microcontroller yet. To ov-
ercome this, the additional configuration from [11]
has been used in configur-ation file of Free-RTOS.
Timer counter used as data logger in arduino was
Timer1 library from Arduino Library[12]. Timer1
provide library for timer counter in mili-second up
to two decimal places.

Multitasking Configurations
This reseach conduct two type of multi-tasking sys-
tem: (1) system with primitive Interrupt Service
Routine (ISR) and (2) system with RTOS. Both
system loaded with five parallel tasks : LCD dis-
play, servo, temperature sensor, USART receive
process, and USART transmit process. Each of th-
em scheduled in specific time. Detail of parallel
tasks described in Table III.

This experiment use interrupt library from
Atmel Software Framework (ASF): Programmable
Multi-level Interrupt Controller (PMIC) module,
specifically use timer interrupt. Based on feature of
XMegaA256ABU, microcontroller used for this
experiment provide four timer/counter register: C,
D,E,F with each of them have two channel, channel
0 and 1. For this experiment, timer counter used for
parallel task are C1 (USART: transmit), D0 (LCD),
D1 (Temperature Sensor), E0(servo), E1 (USART:
receive).

Configuration used in this research followed
the standard of FreeRTOS, which configuration of
system is defined in FreeRTOSConfig.h file and
when the task is created via the xTask-Create()
function. For this research, every task is configured
with the identical settings. Each task assigned to
the same priority (priority 0) to assure they have
the same amount of time slice. Moreover, each task
have the same depth of stack, 500.

Software Interface Configurations
System used for experiment have sensor as input
simulation and display and actuator as output simu-
lation. For software driver, system use ASF modul-
es to simpify implementation process. Internal tem-
perature sensor from XMega board used to simula-
te input via Analog to Digital Converter (ADC)
module, which connected to ADC register A. Sys-
tem also use GFX Monochrome module to print
data from system. PWM used in this system run via
direct register access on register C0.

USART Configurations
USART for this experiment also use ASF’s imple-
mentation, which need some parameters to specify
its feature. This experiment use two values for baud
rate, 4800 and 9600, which will be explained in ex-
periment scenario. As the system would transmit

48 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
1, February 2016

and receive data in character form, capacity of data
for each packet is 8-bit length. USART for this ex-
periment not use any parity bit and stop bit.

Experiment Scenarios

The experiments are divided into two main scenari-
os: (1) count and compare elapsed time of USART
communication between two board, and (2) com-
pared USART’s reliability by comparing transmit-
ed and received data in the destination board. Sce-
nario (1) itself also have two sub-scenarios: count
time when system is (1.a) heavy-loaded (run many
tasks) and (1.b) light-loaded (only run fewer tasks
than first scenario). Scenario (2) has two compo-
nents: (2.a) check differences of on amount of sent
data with amount of received data and (2.b) send
and receive string as sequence of characters. Table
4 shows scenario conducted in this research. Table
5 shows experimental parameter used in the scena-
rio.

In details, scenario (1) counts ping time. For
each experiment, ping is performed 100 times. Ping
time obtained from total 100 ping time divided wi-
th 100 as a mean time. For scenario (1), both sys-
tems with RTOS and interrupt use same process

and same amount of tasks. For sub-scenario (1.a),
system is loaded with 5 different tasks: LCD, but-
ton, light sensor, temperature sensor, and servo,
and in subscenario (1.b), system is only loaded wi-
th button and LCD with minimum display. See Ta-
ble III for detail of task descriptions.

Scenario (2) will test data transmission and
reception realibility. As same as scenario (1), each
sub-scenario, (2.a) and (2.b) tested with three con-
figurations: heavy-loaded, light-loaded and hybrid
(heavy-light) loaded. Scenario (2.a) counts and co-
mpares amount of data received on destination bo-
ard respect to replied data received on sender boa-
rd. Scenario (2.b) tests data consistency by sending
string as sequence of characters. Received string on
destination board will be compared to sent string
on source board to find whether any error or not.

3. Results and Analysis

Figure 5 shows the ping time comparison between
RTOS and Interrupt if multitasking is run in heavy
loaded system or light loaded system in baud rate
4800. The RTOS in light loaded outperformed the
Interrupt. On the contrary, the Inter-rupt shows bet-
ter performance in heavy loaded task. In RTOS,
multitasking will be done within the specified time,
which means that each task will be done when the
specified time arrives. On the other hand, at the In-
terrupt task will be done by interrupting main pro-
cess.

Results from the experiments show that ave-
rage ping time for the RTOS in heavy loaded is
74.011 ms and the Interrupt in the same configur-
ation is 33.249 ms. In light loaded experiment, the
average ping time for the RTOS is 3.912 ms and the
Interrupt is 11.943 ms.

TABLE 4
EXPERIMENTAL SCENARIO

Scenario/ Parameter Baud Rate Task
Load

Ping Time V V

Data Loss V V

TABLE 5

EXPERIMENTAL PARAMETER
Baud Rate
/ Loaded

Hybrid
Loaded

Heavy
Loaded

Light
Loaded

4800 V V V

9600 V V V

Figure 5. Ping time comparison between RTOS and
Interrupt in Baud Rate: 4800

0

10

20

30

40

50

60

70

80

RTOS
heavy

RTOS light Interrupt
Heavy

Interrupt
light

Pi
ng

 T
im

e
(m

s)

Multitasking Loaded

Mean

Std Dev

Figure 6. Ping time comparison between RTOS and
Interrupt in Baud Rate: 9600

0

10

20

30

40

50

60

70

80

RTOS
heavy

RTOS light Interrupt
Heavy

Interrupt
light

Pi
ng

 T
Im

e
(m

s)

Multitasking Loaded

Mean

Std Dev

Novian Habibie, et al., Performance Comparison of USART Communication 49

Figure 6 shows the ping time comparison bet-
ween RTOS and Interrupt if multitasking is run in
heavy loaded system or light loaded system in baud
rate 9600. Similar to previous experiment which
used baud rate 4800, RTOS gives slower communi-
cation than interrupt in heavy-loaded task but runs
faster in light-loaded system (RTOS heavy-loaded
= 74.357 ms; light-loaded = 3.884ms, Interrupt
heavy-loaded = 27.923 ms; light-loaded = 11.91
ms).

From experiments above, we can infer that
communication’s performance in RTOS depends
on how many tasks loaded into the system. Figure
7 shows data loss comparison between RTOS and
Interrupt if multitasking is run in heavy loaded sys-
tem or light loaded system in baud rate 4800. The
Interrupt both in heavy and light loaded systems
shows better performance than the RTOS. This is
due to multitasking in RTOS which would be done

within the specified time. It means that each task
would be done when the specified time arrives. It
could cause a loss of data when the task has not yet
completed but had moved on to another task. On
the other hand, a task will be done by interrupting
another task and do not swich to another task until
that task was completed in the Interrupt.

From the experiment, we show that average
data loss for the RTOS in heavy loaded is 7.7% data
whereas the Interrupt in the same loaded is only
0.7% data. In light loaded experiment, the average
data loss for the RTOS is 3.4% data and the Inter-
rupt is 0.4% data.

Figure 8 shows data loss comparison between
RTOS and Interrupt if the multitasking is run in he-
avy-loaded system or light loaded syste, in baud
rate 9600. The Interrupt in heavy or light loaded
experiment shows better performance than RTOS.
Results the experiments shows that average data

Figure 7. Data loss comparison between RTOS and
Interrupt in Baud Rate: 4800

0

1

2

3

4

5

6

7

8

9

RTOS heavy RTOS light Interrupt
Heavy

Interrupt
light

D
at

a
L

os
s (

pe
r

10
0

da
ta

)

Multitasking Loaded

Mean

Std Dev

Figure 8. Data loss comparison between RTOS and
Interrupt in Baud Rate: 9600

0

1

2

3

4

5

6

7

8

9

RTOS heavy RTOS light Interrupt
Heavy

Interrupt
light

D
at

a
L

os
s (

pe
r

10
0

da
ta

)

Multitasking Loaded

Mean

Std Dev

TABLE 6
PING TIME SCENARIO RESULTS FOR HYBRID LOADED

Baud Rate

RTOS Interrupt

Light x Heavy Heavy x Light Light x Heavy Heavy x Light

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

4800 68.045 1.7005 69.578 1.43418 17.008 3.23858 18.042 2.93538

9600 67.918 1.90209 68.645 1.77053 16.842 3.29598 16.654 3.40705

TABLE 7
DATA LOSS SCENARIO RESULTS FOR HYBRID LOADED

Baud Rate

RTOS Interrupt

Light x Heavy Heavy x Light Light x Heavy Heavy x Light

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

4800 0 0 1261.5 13.2686 3.6 0.96609 3.5 1.08012

9600 0 0 1254.2 11.2822 3.5 0.84984 3.7 0.67495

50 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
1, February 2016

loss for the RTOS in heavy-loaded is 7.2% data
whereas the Interrupt in the same loaded has data
loss of 0.3% of data. In light loaded experiment, the
average data loss for the RTOS is 8.1% data and the
Interrupt is 1.1% data.

Table 6 shows experiment results of ping ti-
me scenario in hybrid loaded task. Ping time results
show that light loaded task combined with heavy
loaded task in interrupt method is the best in all
baud rate. In details, if transmitter is light-loaded
and the receiver is heavy-loaded then the ping time
is faster than in reverse configuration. This result
occurred because communication perf-ormance fo-
llows the heaviest side of the system, in this case is
heavy-loaded side. Because of that, performance in
hybrid configuration is almost similar for each
configuration. However, just like the previous sce-
nario, RTOS in heavy-loaded conf-iguration gives
the worst result. From these results, we can say that
both cases is not good for RTOS. However, RTOS
in heavy loaded task combined with light loaded
task gives the best standard deviation in all baud
rate.

Table VII shows experiment results of data
loss scenario in hybrid loaded task. The results sh-
ow us that RTOS in light loaded combined with
heavy loaded task gives the best performance with
no loss of data. In contrary, RTOS in heavy loaded
combined with light loaded task gives the worst
performance with more than 1000 data loss. Recei-
ved data from RTOS with heavy loaded task will
be responded quickly in RTOS with light loaded ta-
sk due to there is no other task interfere. Because
of that, each response in RTOS with light-loaded
configuration will be counted as data res-ponse and
it will made data loss in the system. In contrary,
transmitted data from RTOS with light loaded task
will be responded slowly in RTOS with heavy load-
ed task due to there are many tasks pro-cessed in
the system. So, RTOS with light loaded task will be
waiting data response from RTOS with heavy load-
ed task and it made no loss of data. From Table 7,
the Interrupt shows stable performan-ce with just
3.5 data loss in every baud rate and light-heavy lo-
ad hybrid systems.

4. Conclusion

Inter-microcontroller communication is one of the
crucial aspects in embedded systems. To do fast
and reliable communication, the system have to
manage its resources and do a simultaneus proces-
ses without interfering another tasks. Methods that
can be used to manage the microcontroller’s reso-
urces are Interrupt Service Routine (ISR) and Real
Time Operating System. Interrupt and RTOS have
different system workflows, so they have their own
advantages and disadvantages.

From experiments conducted in this research,
the results show that interrupt and RTOS give a
competitive performance, either in communication
speed and data reliability. In details, interrupt give
better result in speed and data reliability than RTOS
if loaded with many tasks. However, if the task load
is minimum, RTOS give the best result in term of
speed but still lose in data reliability. It is because
each task in RTOS assigned its resource to the main
CPU, so If the system contains combined task load
(heavy-loaded board connected with light-loaded
board), interrupt is the most stable system form
speed and reliability. Specific in RTOS, data loss of
the system which placed heavy system as trans-
mitter will give the worst result, but in vice versa it
give the best data accuracy.

In the end, speed and reliability of multi-task-
ing system to conduct inter-microcontroller com-
munication depends on the task load of the system.
Interrupt give better if the system want to focus on
communication. However, interrupt only can han-
dle a small amount of tasks because the limited am-
ount of available timer counter register. If the main
purpose of the system is to run a large amount of
tasks, then RTOS is recommended.

Acknowledgement

This work was supported by Directorate Research
of Universitas Indonesia funding in 2015. The title
of the research is Laboratory Infra-structure. This
grant number is 1831/UN2.R12/ HKP.05.00/2015.

References

[1] M. Nanda, S. Dhagem and J.Jayathi, "An

Approach to Formally Qualify Commercial
RTOS for Safety Application," in Internatio-
nal Conference on Computing for Sustain-
able Global Development, 2015.

[2] Y. Hwang, G. Schirner, S. Abdi and D. G.
Gajski, "Accurate Timed RTOS Model for
Transaction Level Modeling," in Design, Au-
tomation & Test in Europe Conference & Ex-
hibition (DATE), 2010.

[3] S.L. TAN and T. N. B. Anh, "Real-time ope-
rating system (RTOS) for small (16-bit) mic-
rocontroller," in The 13th IEEE International
Symposium on Consumer Electronics (ISCE
2009), 2009.

[4] J. C. Maeng, J.-H. Kim and M. Ryu, "An
RTOS API Translator for Model-driven Em-
bedded Software Development," in the 12th
IEEE International Conference on Embed-
ded and Real-Time Computing System and
Applications, 2006.

[5] F. Hessel, V. M. d. Rosa, I. M. Reis, C. A. M.

Novian Habibie, et al., Performance Comparison of USART Communication 51

Marcon and A. A. Susin, "Abstract RTOS
Modelling for Embedded Systems," in the
15th IEEE International Workshop on Rapid
System Prototyping, 2004.

[6] D. M. Purnomo, M. R. Alhamidi, G. Jati, N.
Habibie, B. Hardjono and A. Wibisono,
"Comparative Study of RTOS And Primitive
Interrupt In Embedded System," Jurnal Ilmu
Komputer dan Informasi Volumne 8 Issue 1,
pp. 36-45, 2015.

[7] T. Inc, "Techopedia," 2016. [Online]. Avail-
able: https://www.techopedia.com/definition
/2452/ping.

[8] R. Barry and R. T. E. Ltd, "Free RTOS,"
2016. [Online]. Available: http://www.free
rtos .org.

[9] R. Barry and R. T. E. Ltd, "RTOS Task Prio-
rity," 2016. [Online]. Available: http:// www.
freertos.org/RTOS-task-priority.html.

[10] A. Corp, "Atmel 8155D AVR Atmega 32A
Datasheet," Atmel, 2014.

[11] Yuriykulikov, "FreeRTOS On XMEGA,"
2012. [Online]. Available: https://github.com
/yuriykulikov/FreeRTOS-on-XMEGA.

[12] Arduino, "Timer," 2016. [Online]. Available:
http://playground.arduino.cc/Code/Timer1.

http://www.free/
http://www.freertos.org/RTOS-task-priority.html
http://www.freertos.org/RTOS-task-priority.html

