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Abstract

Irregular grid interpolation is one of the numerical functions that often used to approximate value on an
arbitrary location in the area closed by non-regular grid pivot points. In this paper, we propose a method
for achieving efficient computation time of radial basis function-based non-regular grid interpolation on a
cylindrical coordinate. Our method consists of two stages. The first stage is the computation of weights
from solving linear RBF systems constructed by known pivot points. We divide the volume into many
subvolumes. In the second stage, interpolation on an arbitrary point could be done using weights calculated
on the first stage. At first, we find the nearest point with the query point by structuring pivot points in a
K-D tree structure. After that, using the closest pivot point, we could compute the interpolated value with
RBF functions. We present the performance of our method based on computation time on two stages and its
precision by calculating the mean square error between the interpolated values and analytic functions. Based
on the performance evaluation, our method is acceptable.

Keywords: irregular interpolation, numerical method, RBF-based interpolation

Abstrak

Interpolasi grid non reguler merupakan salah satu fungsi numerik yang sering digunakan untuk memperkirakan
suatu nilai di sembarang tempat pada daerah yang dekat dengan titik acuan grid non reguler. Dalam penelitian
ini, kami mengajukan sebuah metode untuk mendapatkan waktu komputasi yang efisien dengan menggunakan
Radial Basis Function (RBF) untuk interpolasi dalam koordinat silinder. Metode yang diajukan terdiri dari
dua langkah. Langkah pertama adalah perhitungan bobot dari RBF linier dari titik acuan yang diketahui.
Langkah kedua adalah interpolasi dari titik sembarang yang dilakukan berdasarkan nilai bobot dari titik
yang telah dihitung pada langkah awal. Penenetuan titik terdekat pada langkah pertama dilakukan dengan
membuat struktur K-D Tree. Selanjutnya, dengan menggunakan posisi terdekat dari titik pusat, nilai dari
interpolasi RBF dapat ditentukan. Evaluasi kinerja dilakukan dengan cara menghitung waktu komputasi pada
dua langkah di atas dan dengan menghitung nilai mean square error dari nilai hasil interpolasi dengan nilai
hasil perhitungan menggunakan fungsi analitik. Berdasarkan hasil pengujian, metode yang diajukan dalam
penelitian ini mendapatkan waktu yang efisien dan nilai interpolasi yang dihasilkan cukup akurat.

Kata Kunci: interpolasi non reguler, metode numerik, interpolasi RBF

1. Introduction points. Methods of interpolation can be categorized
based on how the known data points arrangement. If
the arrangement of known data points is scattered,

Interpolation is a numerical method of estimating then we need the interpolation method on an irreg-

value on an in-between data point among known data

17


http://dx.doi.org/10.21609/jiki.v13i1.805

18 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

volume 13, issue 1, February 2020

ular grid. Distortion on known points arranged in a
regular grid at a cylindrical volume could cause the
movement of pivot points, and the arrangement of
pivot points become irregular.

There are several methods for multivariate irreg-
ular interpolation: nearest-neighbor interpolation, in-
verse distance weighing [1], kriging [2], and Radial
Basis Function (RBF) based interpolation [3|]. The
most widely used of irregular grid interpolation is
RBF-based interpolation. Depth on RBF definition
and application can be found in [3]. RBF-based
interpolation is a viable choice for approximating
interpolation on irregular geometry because it has
high order accuracy and computational stability for
large numbers of scattered data points even in high
dimension [4]. Previous studies show many imple-
mentation of RBF-based interpolation can be found
in various fields: reconstruction from scattered data
in computer vision and graphics [5], [6] and [7],
mesh deformation on electro-magnetic problem [§]],
and signal localization approximation [9].

Cylindrical-coordinate usually used in numeri-
cal/analytic approaches for many physics problems.
One of the problems is approximation charge dis-
tribution as a function at a hollow cylindrical de-
tector such as Time Projection Chamber (TPC) at
A Large Ion Collider Experiment (ALICE) CERN
[1O]. Assume we have regular pivot points at the
cylindrical volume when it is distorted due to space
charge [11], then the pivot points become irregular
grid. Hence, we need irregular interpolation methods
for function approximation at the cylindrical volume.
Interpolation in cylindrical volume methods and ap-
plication can also be found in thermal and mechani-
cal response analysis [|12], near-field milimeter-wave
cylindrical scanning [13]], and other problems, such
as [14]], [15], [[16]. Most of them provide interpola-
tion methods for regular grid interpolation. While
[15] presents a paper on the evaluation of seven
spectral methods for interpolation, differ with [15],
our main focus here is how to adapt RBF-based
interpolation on irregular grid pivot points.

In this paper, we present a method for imple-
menting RBF-based interpolation on largely known
data points set specifically in 3D cylindrical volume.
This problem arises when large regular data points
are deformed due to certain of the case, or the known
points are scattered in the volume. At the initializa-
tion phase, we first compute RBF weights for all
pivot points and its neighbor pivot points. We also
constructed a KD-tree structure from all pivot points
[17]. The KD-tree is used to find the nearest pivot
point of the point we want to interpolate. Once the
nearest point is found, we could apply interpolation
to approximate the function.

This paper is organized as follows: in Section
we present the definition of cylindrical coordinates,
KD-tree, and RBF-based interpolation, in Section E]
we present our proposed RBF-based interpolation on
an irregular grid in a cylindrical algorithm. Imple-
mentation and discussion on the performance of our
proposed algorithm are given in Section[d} The paper
is concluded with a conclusion given in Section
Bl Using KD-tree structure and RBF weights from
the initialization phase, we could approximate the
interpolation function in an arbitrary point P using
Equation 2. First, we find the nearest pivot point P
from the query point P. After that, invoke w from
w (calculated RBF-weights from Algorithm 2). Last,
we calculate P.

2. Definitions

In this section, we present the definition of
cylindrical coordinates, KD-tree structure, and RBF-
interpolation.

2.1. Cylindrical Coordinates

Our proposed method is to work in a cylindrical
coordinate. Cylindrical-coordinate is a generaliza-
tion of two-dimensional polar coordinates to three
dimensions by superposing a height (z) axis. It
provides a natural extension of polar coordinates to
three-dimension. In the cylindrical coordinate sys-
tem, a point in space is represented by an ordered
triple (r, 6, z) where (r, 0) represents the polar coor-
dinates of the point’s projection in the zy-plane and
z represents the point’s projection onto the z-axis.
Suppose there are two points in a cylindrical volume
Po = (7“0,90,20) and p; = (Tl,Hl,zl). Distance
between pg and p; is define as follows [|18]:

lpo — p1l|= 73 4+ 78 — 2r1rgcos(6; — ) + (21 — 20)

ey
We use distance definition in a cylindrical coordi-
nate given in Equation [l| extensively in RBF-based
interpolation.

2.2. KD-Tree Structure for Finding Nearest
Point

KD-tree is a data structure used for organiz-
ing points in K-dimensional space to perform a
nearest neighbor search. KD-Tree partitions each
point (called a node) in the dataset into axis-
aligned in a hierarchical manner. Once KD-tree con-
structed, finding the nearest pivot point has com-
plexity O(logn). More on how to construct KD-tree
and how to use KD-tree for finding the nearest pivot
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point based on a query point can be found in [19].
Several parallel solution have been done in [20] and
[21] to reduce the time complexity.

Pivot points (list of known points) in three-
dimensional space can be arrange in regular grids
or in irregular grids as given in Figure [I] and Figure
] Finding the nearest point in the regular grid is
straight forward, however in an irregular grid is
not so straight forward. One of the methods is to
construct a KD-tree structure as a look-up tree.

Fig. 1. Pivot points in regular grid.

Fig. 2. Pivot points in irregular grid.

2.3. Radial Basis Function-based Interpola-
tion

One of methods for multivariate interpolation
on scattered data is RBF-based interpolation. Radial
basis function ¢(|pg—p|) is a real function that based
only by distance from a pivot point. Some of RBF
functions shown in Table [1] [3]].

Assume we have a set of pivot points
{po, - ,pn} where p = (r,0,z) is a coordinate in
cylindrical volume. RBF-based interpolation use the
pivot points, distance function defined in Equation

TABLE 1
RADIAL BASIS FUNCTION

Type Equation
Multiquadric p(r) = \/1 + (22 +ro)
1

I se Multiquadri =1
nverse Multiquadric () NEC
Thin Plate Spline p(r) = 7»2[09%

2

—r
Gaussian p(r) = e

[[] and a selected RBF function. The interpolation
function is defined as following equation:

N
F) = wie(llp - pell) @)
k=0

where w is computed as such the interpolation func-
tion f(p) interpolate all pivot points. Hence, we have
to solve linear system in Equation

©(llpo — poll)

@(llp~v = poll)] [wo vo

(lpo — p ) (o —pn )] Lwn “g)

There are several ways for solving Equation [3] such
as using Singular Value Decomposition technique
such as in [22].

3. Irregular Grid Interpolation for Large
Data Points on Cylindrical Coordinate

In this section we present our proposed method
for implementation RBF-based interpolation in large
cylindrical volume. We divide our method into two
phases namely intitialization and interpolation. In
the first phase we construct a KD-tree structure
for looking-up nearest pivot point and calculated
weights of RBF-interpolation system as in Equation
[3]for all pivot points (where size of neighborhood we
choose as a parameter). In the following phase, we
can approximate any arbitrary point in the cylindrical
volume by using Equation [J] after a KD-tree is
constructed and weights is computed.

3.1. Initialization Phase

In the initialization phase, we compute the RBF-
based interpolation weights in Equation 3| by travers-
ing all pivot points in the cylindrical volume. At
first the neighborhood size of pivot points is chosen
(87, 89,5). Then, 1o which is used in the RBF func-
tion at Table (1] is calculated by GetRadiusORBF()
function. 7y is the average distance of all pivot
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Algorithm 1: InitRBFWeight

Result: w
begin
for k < Oto Ng do
for i <— O to N, do
{ for j < Oto N do
L ro + GetRadiusORBF (4, j, k)

By g,k
CalculateRBF Weight (i, j, k, sy, sg, sz, ()

points. After that, solution for Equation [3] for each
pivot points are invoked.

The algorithm for solving Equation [3]is given by
Algorithm [2] First, we construct the matrix A and
vector v, where A’s elements are RBF function of
the distance of pair of pivot points. A; ; = ¢(||p; —
p;ll). v is a vector of the interpolation function of
pivot points. Hence, we have a linear system Aw =
v with & is unknown.

Algorithm 2: CalculateRBFWeight

Result:

begin

m <+ 0

n<+ 0

for i < starty to startg + sg do

19 < 1 mod Ny

for j < start, to start, + s, do
for k < start, to start, + s, do
Pm = (T[jL Z[kL 9[29])

for i < starty to iig < 7
mod Ny

do

for jj < start, to
start, + s, do
for k < start, to
start, + s. do

Pn
(r[7], z[kk], 0[iio])

A —
o(llpm — pnll)
n<n+1
m<+—m-—+1
L vim =1(pm)

| Solve(Aw =v)

3.2. Interpolation Phase

Using KD-tree structure and RBF weights from
initialization phase, we could approximate the in-
terpolation function in an arbitrary point P =
(r,0,z) using Equation [2| First, we find nearest
pivot point p; ; ;. from the query point P. After that,
we invoke w; ;. from w (calculated RBF-weights

from Algorithm [2). Last, we calculate f(P) =
2= Wigk[nle(llpn — Pl

4. Experiment and Performance Analy-
sis

We implemented our method in C++ and com-
piled with GNU GCC. The experiment conducted at
a CPU based machine whose specification as follows
RAM 16 GB and a core of Intel-Xeon E5-2695 2.10
GHz. Purposes of the experiments are to evaluate its
error performance and its computation time for each
phase (initialization and interpolation).

4.1. Accuracy

We define the accuracy by defining residue
functions. Supposed we have an analytic function
fanalytic(r, 0, 2) and we choose a set of irregular
pivot points {po,---,pn} in the cylindrical vol-
ume. Then we choose a set of arbitrary points
g, -+ ,xr. We can define residue (error) as the
following equation:

fanalytic(zi) - fnumeric(mi” (4)

€abs =

|fanalytic (1'2) - fnumcric(xi) |

max({fanalytic(mo)v" yfanalytic(zm) })

&)

€rel =

Let we choose an analytic function as follows:
a(r* — (rg — r1)r® + rorir?) cos(b@)Ze_(j) (6)

where 79 and r; are inner radius and outer radius
of the hollow cylinder, respectively. We choose this
function because it represents many conditions, such
as polynomial, sinusoidal, and exponential function.
Hence, the performance will be more convincing if
the proposed method works in a variety of functions.
Function map of Equation [6] in xy-plane and rz-
plane is given by Figure [3] We conduct our experi-
ments in the six following steps.

1) Define pivot points in a regular grid
with size varied from (17,17,18) to
(129,129,144) where consecutively the
grid size in each direction (n,,n.,np)

2) Translate pivot points in random distance
for each direction. The result is the pivot
points would be arranged in irregular grid.

3) Set values for all pivot points using Equa-
tion

4) Do initialization phase for constructing KD-
tree structure of pivot points and look-up
table for RBF weights using Algorithm [2]
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5) Generate random points in the volume and
approximate its value using RBF-based in-
terpolation as in Equation [2]

6) Compute for each random point for its error
as in Equation [4] and [3]

o~ costpn)

[a]

20

25

[b]
Fig. 3. (a) zy-plane projection of the test function,
(b) rz-plane projection of the test function

After the initialization phase, we generate some
arbitrary points (in our case 1 x 109). For each point,
we calculate the value from test function and the
value from the proposed method. The difference be-
tween both values can be regarded as a residue/error.
One of the residue maps is given by Figure [
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[b]
Fig. 4. (a) xy-plane projection of residue between
the test function and approximation by interpolation,
(b) rz-plane projection of residue between the test
function and approximation by interpolation

Table [2] shows the results of our experiment for
the proposed method. In Table [2] we compare error
produced from an increasing number of grid size
and present mean, max, and deviation of residues
from all test points. We also include RBF-function
type such given by Table [I] Here we can deduce
that relative errors are smaller when the number of
points is increasing. However, we should make note

that our test function is smooth, and our pivot points
are uniformly distributed.

4.2. Computation Time

We conduct experiments to measure the CPU
time of the initialization phase by running a different
number of pivot points, as shown in Table [3] Ini-
tialization has two steps: (1) constructing KD-tree
structure and (2) solving RBF-weights as given in
Algorithm [I]and 2] Table [3| shows that RBF-weights
calculation has far more complexity than KD-tree
initialization. Complexity for constructing KD-tree
is N x O(NlogN) (average complexity), where N
is a number of pivot points. While the complexity
of computing RBF-weight for each pivot point is
depending on the size of the neighborhood. We can
formulate a number of FLOPS: N x O(m?) where
m is the size of the neighborhood of pivot point.

Computation time for the interpolation phase is
the sum of two steps: (1) finding the nearest pivot
point from the query point by using a KD-tree
structure, (2) applying the pre-computed RBF weight
to Equation 3] The complexity for finding the nearest
pivot point on the KD-tree structure is O(logN).
While applying Equation [3 has constant computation
time. Since step (1) and (2) always the same, the
computation time for the interpolation phase is rela-
tively short and constant of every query point. From
our measurement, the interpolation phase averagely
requires 6.17 x 10~3 second, which is very small.

5. Conclusion

In this work, we present a method for implement-
ing RBF-based interpolation for scattered data in
cylindrical coordinates. We use a KD-tree structure
as a helper for finding the nearest pivot point from
a query point. To handle a large volume of data,
we regard each pivot point and its neighbor as a
set of scattered data, which is approximate by the
RBF-based irregular interpolation defined on a pivot
point and its neighbor. Our experiment shows that
the average of residues of RBF-based interpolation
for a cylindrical coordinate is in the acceptable range
(has relative error below 1 x 1073). In the compu-
tation time aspect, our proposed method has rela-
tively constant computation time for interpolation.
However, in initialization time, it has complexity
N x O(m?), computation time extends in polyno-
mial time. Our further works would be two things:
(1) how to handle non-uniform distributed scattered
data as pivot points and (2) how to accelerate the
initialization phase. In the current form, we assume
that the scattered data is distributed uniformly in
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TABLE 2

RESIDUE BETWEEN ANALYTIC FUNCTION AND APPROXIMATION BY RBF-BASED INTERPOLATION

Grid Size RBF Max Mean RMS
(17, 17, 18) Multiquadric 268 x 10°T 1.14x10~3 3.83x 1073
INV Multiquadric  3.32 x 10-%  1.82 x 1073  5.56 x 10~3
Thin Plate Spline ~ 7.25 x 10! 6.29 x 1073 2.58 x 10~!
Gaussian 2.08 x 1071 747 x107* 2.10x 1073
(33, 33, 36) Multiquadric 823 x 1072 281 x107* 897x1074
INV Multiquadric ~ 1.24 x 1071 568 x 1074 1.51 x 1073
Thin Plate Spline ~ 1.17 x 10° 1.82x 1073 7.45x 1073
Gaussian 6.05 x 1072 246 x 107*  5.74 x 10~4
(65, 65, 72) Multiquadric 2.03x 1072 9.82x107° 2.74x107%
INV Multiquadric ~ 3.32 x 1072 2.69 x 1074  6.49 x 1074
Thin Plate Spline ~ 1.68 x 10° 1.27 x 1073 552 x 1073
Gaussian 228 x 1072 1.48 x 10~* 3.61 x 10~*
(129, 129, 144)  Multiquadric 8.09 x 1073 514 x107% 1.34x10~%
INV Multiquadric ~ 2.77 x 1072 1.96 x 1074 5.15 x 1074
Thin Plate Spline ~ 5.08 x 10! 1.11 x 1073 5.56 x 1072
Gaussian 1.88x 1072  1.18 x 10~* 3.21 x 104
TABLE 3
COMPUTATION FOR INITIALIZATION PHASE
Grid Size RBF KD-tree (s) RBF-weight (s) total (s)
(17, 17, 18) Multiquadric 0.01 1.9 1.91
INV Multiquadric ~ 0.01 2.31 2.32
Thin Plate Spline  0.01 3.14 3.15
Gaussian 0.09 2.62 2.71
(33, 33, 36) Multiquadric 0.09 12.04 12.13
INV Multiquadric ~ 0.09 14.45 14.54
Thin Plate Spline  0.08 15.53 15.61
Gaussian 0.33 11.93 12.26
(65, 65, 72) Multiquadric 0.32 85.63 85.95
INV Multiquadric ~ 0.72 96.28 97
Thin Plate Spline  0.33 116.57 116.9
Gaussian 3.27 89.31 92.58
(129, 129,144)  Multiquadric 3.81 663.43 667.24
INV Multiquadric ~ 4.44 737.39 741.83
Thin Plate Spline ~ 4.67 843.95 848.62
Gaussian 4.85 681.5 686.35

a large volume. Some methods can be considered,
such as RBF-based with a spectral method. There are
many options to accelerate the initialization phase
in our proposed method: multi-core, multi-CPU, or
even using an accelerator card such as GPU.
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