
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
15/1 (2022), 55-67. DOI: http://dx.doi.org/10.21609/jiki.v15i1.1066

SGCF: Inductive Movie Recommendation System with Strongly
Connected Neighborhood Sampling

Jatmiko Budi Baskoro1, Evi Yulianti2

Faculty of Computer Science, University of Indonesia, Indonesia

Email: jatmiko.budi.personal@gmail.com1, evi.yulianti@cs.ui.ac.id2

Abstract

User and item embeddings are key resources for the development of recommender systems. Recent works has
exploited connectivity between users and items in graphs to incorporate the preferences of local neighborhoods
into embeddings. Information inferred from graph connections is very useful, especially when interaction
between user and item is sparse. In this paper, we propose graphSAGE Collaborative Filtering (SGCF), an
inductive graph-based recommendation system with local sampling weight. We conducted an experiment to
investigate recommendation performance for SGCF by comparing its performance with baseline and several
SGCF variants in Movielens dataset, which are commonly used as recommendation system benchmark
data. Our experiment shows that weighted SGCF perform 0.5% higher than benchmark in NDCG@5 and
NDCG@10, and 0.8% in NDCG@100. Weighted SGCF perform 0.79% higher than benchmark in recall@5,
0.4% increase for recall@10 and 1.85% increase for recall@100. All the improvements are statistically
significant with p-value < 0.05.
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1. Introduction

Recommendation system is a mechanism that
helps users discover relevant items for them [1]. It
has been used in business as a part of marketing
strategy. One key strategy to increase online sales
is to recommend customers with a short list of
items that is relevant to their preferences [2]. This
recommendation process can be automated using
several approaches, such as content-based methods
and collaborative filtering [3], and usually involving
computation of user and item vectors that serve as
a basis for predicting the extent to which a user
prefers a particular item [4]. Recent development
in recommender system suggests that relationships
between users are useful for determining user and
item vectors [5].

Graph-based recommendation system has
emerged to utilize information connection
represented in the graph [6] [7].

It utilizes connectivity between nodes to infer
similarities between nodes and utilize it to generate
vector representation for each node. There are dif-

ferences in generating vector representations when
graph data is used. For example, in collaborative
filtering approach without graph data, similar user
preferences are represented as latent vectors that
close to each other. Compared to graph-based recom-
mendation system, user that have similar preferences
are directly represented as 2 connected nodes. The
advantage of this approach is that the representation
has less restriction defining similarities.

Graph embedding is an approach to encode in-
teraction between nodes into vector space. [8] de-
velop graph neural networks with nodes being repre-
sented as vectors computed from convolution opera-
tions. [8] further argue that the proposed convolution
mechanism is able to capture the underlying graph
structure and the connectivity between nodes

Graph embedding is one of many approach to
encode interaction between data point into vector
space in graph data. In graph neural network ap-
proach for example, nodes are represented as vector
derived from convolution operation. The convolution
operation are able to capture the graph structures and
connectivity information between the nodes. This
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convolution operation is used in [8] work. However,
convolution operation in [8] is transductive, mean-
ing that the learned latent vector may not able to
generalize unseen data. This issue may cause the
recommendation system need to be retrained when-
ever batch of new data come. To solve this prob-
lem, some research has proposed inductive graph
embedding such as GraphSAGE [9] and PEAGNN
[10]. However, neighborhood sampling is conducted
uniformly, which may introduce noise or irrelevant
neighbors into the aggregation process. In this pa-
per, we aim to solve the problem by adding local
neighborhood weights. These weights will alter the
sampling distribution so that relevant neighbors has
higher probability to get sampled.

In this paper, we build the model specifically
for movie recommendation. The task in this work
is defined as item ranking task where historical user
interaction with items represented as pair (User ID,
Item ID) with ratings ranged from 1-5 as label
that represent user preference towards items used
as input. The output will be list of ranked items
that fit user taste for all user in the input. This
work addresses the problem of using inductive-based
embedding generation method for computing user
and item vectors. Graph based embedding generation
model is used to generate embedding for each entity
in inductive manner. Our contribution in this work
is proposing inductive graph embedding and adding
connection weight to alter neighborhood sampling
distribution.. In this paper, 1 research question is
proposed:

1) How does proposed user and items graph
embedding with weights affect recommen-
dation system performance?

2. Related Works

This work is related to the graph embedding
approach and previous neural network-based rec-
ommendation systems. Previous work that utilizes
graph structures for recommendation systems is dis-
cussed in this section.

2.1. Matrix Factorization Approach

Matrix factorization technique proposed by [4]
predicts user and item into latent vector space U and
V . Suppose we have rating matrix R where each cell
rui ∈ R represent user ui ∈ U rating towards item
vj ∈ V . Matrix factorization technique predicts user
rating towards item by applying dot product of user
latent vector U and item latent vector V . Other work
such as [11] use matrix factorization technique to

capture social network context for recommendation
system.

With the emergence of deep learning techniques
in recent years, deep learning-based recommenda-
tion systems have emerged to improve latent vector
generation.

2.2. Neural Embedding approach

Collaborative filtering approach represent users
and items as latent vector U and V , with simi-
lar objective function as matrix factorization-based
recommendation system [12]. Neural collaborative
filtering [13] predicts rating by concatenating user
latent vector U and user latent vector V and passed
into fully connected feed forward neural networks to
generate recommendation. Similar method for item-
based collaborative filtering proposed by [14] use
deep learning to generate top-n recommendations.
Other methods such as [15] [16] utilize deep learning
approach to generate user and item latent vector.

Deep learning models proposed by [15] are able
to attain maximum a posteriori estimates (MAP),
which the authors claims as an advantages of this
model. Other deep learning models in [16] utilize
convolutional neural network (CNN) to generate la-
tent vector representations and implement attention
mechanism to predict user rating towards an item.
Recent works [5] in deep learning-based recommen-
dation system has utilized graph to generate latent
vectors and shows promising results.

2.3. Graph Embedding Approach

A graph is a data structure that contains re-
lational information between data points (nodes).
However, utilizing information within large graph
in adjacency matrix form is challenging, so graph
embedding is developed to represent relational data
within the graph as vector representations [8]. In
recent years, other work has explored graph-based
deep learning models to generate latent vector rep-
resentations. For example, graph convolution net-
work [8] and [17] has been proposed to generate
embedding matrix of graph data by applying con-
volution definition. Other works such as [9] stated
that convolution operation in graph proposed by
[8] is transductive process that may not be able to
generalize towards unseen data.

Before we discuss graph convolution networks,
first we discuss convolution operations in graphs.
Consider a graph G = (V,E) where V is a set of
nodes and E is a set of edges. Also consider attribute
matrix of X |V |×F where X is matrix contains user
with F attributes. A graph convolution will summa-
rize value of x ∈ X based on x neighbors.
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Graph convolution neural network (GCN) is pro-
posed in [8] for node classification purpose. The
authors stated that GCN can be used for other tasks
besides classification. Graph convolution operation
is further improved by [17] [18]. The authors im-
plemented low-pass collaborative filtering with im-
proved GCN. The success of GCN to generate latent
vector still need to be improved, as stated by [9] .
The authors stated that graph convolution operations
are transductive processes which may not be able to
generalize unseen data.

In [9], node embedding is generated by sampling
and aggregating node attributes. The aggregation
operation can be represented by a differentiable
model or aggregation operation such as maximum
and pooling operation. In graphSAGE, the node’s
neighbors are uniformly sampled; the node’s vector
representation is predicted by the sampled neighbors.
The mechanism of generating inductive latent vector
using graph data has also been proposed by [5].

Other graph-based approach using neural collab-
orative filtering framework has also been proposed
by [19]. This work used a transductive Graph Convo-
lutional Network (GCN) to create user-item embed-
dings in one graph and then passed the embedding
to a multi-layer perceptron (MLP) and predicted
the relevance scores. This work approach is nearly
identical to our work; the difference is we use in-
ductive graph embedding and we alter the sampling
distribution by adding connection weights both in
the user graph and item graph.

Meta-path graph such as PEAGAT [10] has also
been proposed to fuse information on each user
and item nodes. PEAGAT uses a single graph that
contains user-item relationship where user node and
item node have linked information node which will
be aggregated as meta-path. PEAGAT uses inductive
graph embedding. However, the graph used in PEA-
GAT differs from this work where we separate user
and item embeddings.

In this work, latent vectors generated by neural
diffusion networks are used to generate recommen-
dations. Compared to this work, our work utilize
both user and item relation information, whereas in
[5] only user relation information is utilized. We also
modified the neighborhood sampling method in the
graph embedding.

3. Proposed Networks

In this section, we discussed problem formu-
lations and built recommendation systems using
graphsage on both user network and item network.
We start by defining the problems and constructing
graphs for both users and items and our reasoning

User ID, Item ID

Inputs

User Embedding
Predictor

Item Embedding
Predictor

Embedding Concatenate

MLP

P

Rating Prediction of UserID
towards Item ID

Concatenated Embedding

Item IDUser ID

Item Embedding
User

Embedding

Figure 1. SGCF Computation flow. The input is a pair of
user id and item id. Each id will be fed to corresponding
embedding and then used to predict user’s rating towards
the item

behind construction rules. The graph embedding for
both user and item is discussed next. Finally, the
overall architecture with neural network classifiers
will be discussed to generate the recommendation
system.

3.1. Problem Formulations

The task is defined as ranking task where histor-
ical user interaction with items represented as pair
(User id, Item id) with ratings ranged from 1-5
as label that represent user preference towards items
used as input. The output will be list of ranked items
that fit user taste for all user in the input.

To formalize the task, let recommendation input
as set of pair of user U and item V pair S(U, V )
with user feedback toward item in the pair R. Let
recommendation system be F (U). Given user id, the
recommendation system F (U) will give a set of k
ranked item [v1, v2, ..., vk] where the top n item,
n ≤ k is the most relevant item to user u. This
problem is formulated as ranked problem. The task
is illustrated in figure 1

Figure 1 illustrate the model flow from input to
its final output. The final output is a rating prediction
which will be used to construct the recommendation
list.
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In the implementation, we didn’t directly opti-
mize to rank list of item for every user in dataset.
Instead, we use regression approach to let the model
predict relevancy score for each user item pairs. This
information produced by the model will be used to
sort the item-based on specific user’s preferences.

3.2. Graph Construction

Our works utilize graph structured data to gen-
erate recommendation. Previous works models user
and item similarity using matrix factorization tech-
nique and embedding technique where bot approach
let the machine determine the similarity of users-
based on user-item interaction history. In our case,
we directly provide similarity information between
users and items by connecting them. For example,
consider a pair of item i1 and i2 with n attributes
{x1

1....x
1
n}, {x2

1....x
2
n}.

To build user graphs, historical user-item inter-
action similarity is used to determine whether or not
two users are connected. To illustrate this, consider
user u1, u2 with historical interacted items {i1...ik},
{i1...il} where k ≤ m & l ≤ m, m is the number
of items. User u1 and u2 are connected when both
users has interacted with at least 1 similar item. The
similarity of an item are able to be determined by a
function that yield similarity metrics which able to
freely defined to suit certain use case.

Similar mechanism also applied in building item
network. A pair of items i1 and i2 are connected if
item i1 is similar to item i2. This item similarity is
measured the same way with function that we men-
tioned. This approach allows the model to generate
representation where similar user and items are close
to each other.

3.3. Feature Extraction

In this section, we discuss user and item features
used to generate latent vector for both item and
user and how the we calculate the edge weights.
User features are calculated by averaging user rating
over all possible genre. Min max normalization is
then applied so that the values range between 0 and
1. Movies features binary vector of it’s genre. The
feature’s value is 1 if the movie belong in a genre.
If a movie has more than one genre, then the feature
value that represent the genres are 1 and the others
is 0. This feature will be used to predict the user
and item vector representation from graph.

There are 19 different movie genre available in
MovieLens data. Each category is represented as
one hot encoding for item graph. In user graph,
each movie that user interacted with will be used as

user’s movie preference attributes. Let Xm be one
hot encoded movie m genres and Rmu be rating
that user u give to movie m. The user attribute Zu

is calculated in equation 1

Zu =

∑
(xm)(Rmu)

|Ru|
, (1)

for each user u, we calculate the user attributes
in training data to prevent data leakage. In graph
construction, we add weight to represent connection
strength between entities.The weight between users
are calculated by measuring the cos distance of users
attribute Zu. The movies weight are calculated by
counting the number of similar genres. Note that
the user and item connections are build by sampling
the potential neighbor of each users and item. The
objective of this sampling mechanism is to reduce
the number of edges and reduce the computational
cost. The weight in each graph will be used for local
neighborhood sampling.

3.4. Overall Architecture

In this section we discuss the model used to
generate the recommendation. The item graph and
user graph are treated as different entity and will
have vector representation independent from user.
We call our proposed model graphSAGE Collabora-
tive Filtering (SGCF). SGCF has similar framework
with neural collaborative filtering, the embedding
result of both user and item will be concatenated and
fed to dense neural network. The graph embedding
of SGCF is trained with edge weights, changing its
neighbor sampling distribution. If the edge weight is
uniform, all node neighbor will have uniform sam-
pling probability distribution. Changing the weight
will shift the sampling probability distribution to
neighbors that has larger weight. In our case, the
weight represent user taste similarity and item sim-
ilarity, therefore the most similar item and user will
have higher probability to be sampled.

In this paper, SGCF is trained with link pre-
diction and regression problem formulation. First
the the embedding for item graph and user graph
are trained. Then the recommendation system neural
network is trained with trained graph embedding.
Notice in figure 2, both user and item embedding
are trained separately and the resulting embedding
model used to predict the rating score of pair user
and item. The embedding is trained with loss func-
tion similar with graphSAGE, which formulated as
follows:

J(zu) = −log(σ(zu
T zv))−Q.Evn∼Pn(v).

log(σ(−zu
T zvn)) ,

(2)
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Figure 2. SGCF Architecture

where v is node that co-occurs near u on fixed
random walk, σ is a sigmoid function, Pn is negative
sampling distribution and Q is the number of nega-
tive samples. In our case the sampling probability
distribution Pn(v) is not uniform. The weighted
edges will alter the sampling probability distribution
so that neighbors that have higher weight are more
likely to be sampled. The graphSAGE model is used
as the embedding generator.

Let a graphSAGE model M , a graph G(V,E),
node attrributes xv, v ∈ V , model depth K, weight
matrices Wk, k ∈ {1, .....,K} and differentiable
aggregator AGGREGATEk, k ∈ {1, .....,K}. for
each depth 1 to K, the model will uniformly sample
the node neighborhood and aggregate the attributes
using differentiable aggregator AGGREGATEk

that yield the embedding vector of that node.
Notice that there are 2 steps to train SGCF. First

the embedding is trained with link prediction frame-
work, where each graph try to predict similarity
between neighbor based on its feature and neighbors
feature. This training framework will make the em-
bedding of connected nodes are close to each other
while non connected node has farther distance.

This model predicts embedding based on its
feature and its neighbor’s feature. To achieve this,
the model aggregates node’s neighborhood features
and concatenate it with it’s own and then fed it to
a neural network which will produce the embedding
based on equation (2). Our model use average oper-
ation to aggregate neighbors feature. The aggregator
is formulated in equation 3

hk
v = σ(W.MEAN({hk−1

v }∪{hk−1
u ,∀u ∈ N(v)})) ,

(3)

where hk denotes embedding value at kth layer
or k-hop neighbor embedding, σ denotes sigmoid
function, W denotes trainable aggregator weights,
and N(v) denotes node v neighbors. In our model,
we change the aggregation sampling so that the
model morelikely to extract local neighborhood fea-
ture using strongly connected neighbors. In our case,
this is a user who has the most similar preference of
movies and movies who has the most similar genre.
With the embedding model defined, our model con-
catenate users and item embedding and feed it to
MLP as illustrated in figure 2. The MLP will act as
rating predictor which will predict user rating to a
movie. This prediction rating is used to construct
item recommendation for user u as illustrated in
figure 1. The MLP model is trained using mean
squared error as the cost function.

To illustrate how our model works, take a look at
figure 1. In the figure, there are 3 columns that sep-
arate each steps to train the embeddings. SGCF ar-
chitecture takes use 2 graph to produce embeddings
depicted in the leftmost column in figure 1. First, we
calculate edge weight using cosine similarity of node
features defined in equation 1 for user graph, and one
hot encoding of genres for item graph. Second, we
train the embedding for user graph and item graph
using features (2nd and 3rd columns). The task to
train the embeddings are predicting whether or not
two nodes is connected. To formalize this let zi be
item features, zu user features, Gi be item graph
nodes, Gu be user graph nodes, hk

i is item graph
embedding and hk

u is user graph embedding.

h0
u = zu∀u ∈ Gu (4)
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h1
u = σ(W.MEAN({h0

u′}
∪ {h0

u′ ,∀u′ ∈ N(u),∀u ∈ Gu})) (5)

h0
i = zi∀i ∈ Gi (6)

h1
i = σ(W.MEAN({h0

i′}
∪ {h0

i′ ,∀i′ ∈ N(i),∀i ∈ Gi})) (7)

With the embedding defined, to calculate the loss
in training, we put h1

i for the item graph and h1
u to

the cost function as input for each graph embedding.
After training the graph embedding for each user
graph and item graph, we train the recommendation
using the graph embeddings as input and give the
recommendation model task to predict movie rat-
ings. Note that the illustration above only uses 1 hop
neighborhood. The embeddings produced by SGCF
can be seen in 7. The embeddings behave exactly as
intended in the cost function, where similar entities,
in this case similar items with similar genres, are
projected close to each other.

In the next section we will explain how we eval-
uate our model performance and how the experiment
is conducted.

4. Experiments

In this section, we explain our experiment ob-
jective and methods to achieve the objective. First
we explain our main objectives followed by detailed
method used for the experiment. After that we ex-
plain how the recommendation list is constructed and
how to evaluate the recommendations.

4.1. Experiment Settings

There are 2 main objective of this experiment.
First objective is we want to investigate SGCF per-
formance compared to neural collaborative filtering.
Second, we want to investigate SGCF performance
if we alter the problem formulation and embed-
ding optimization. We choose neural collaborative
filtering as baseline because our model is a variant
of neural collaborative filtering where we modify
the embedding part to graph based embedding. To
achieve this objective, we evaluate the recommenda-
tion results with precision metric and recall metric.
We use NDCG [20] [21] as precision metric and
recall as recall metric. Both precision and recall
metrics evaluated at top 5, 10, and 100.

First, we separate training and testing data in
user level by 80:20. This way every user will have
ground truth interaction stored in testing data. We
use training data to extract features that requires user
item interaction information. The graph embedding
model is trained by generating negative samples of
connection in each graph. The embedding models
are trained for 10 epochs with binary cross entropy
as the loss function.

In the experiment scenario, we train the em-
bedding model with weight calculated from fea-
ture extraction phase and without. Furthermore, in
training recommender system phase, we freeze the
embedding result and retrain the embedding vector,
lastly we experimented with SGCF where user and
item graph are not separated, and the connection is
determined from training data. In this case, we train
the embedding and score prediction simultaneously
in recommendation system training phase.

The recommendation system training phase is
trained with validation randomly sampled 20% from
training data. Evaluating the recommendation sys-
tem is done by sampling 10000 users and compare
the recommendation list to ground truth. We evaluate
the recommendation by NDCG, and which defined
in equation 10

DCGp =

p∑
i=1

reli
log2(i+ 1)

(8)

IDCGp =

|RELp|∑
i=1

reli
log2(i+ 1)

(9)

NDCG =
DCGp

IDCGp
, (10)

where P in equation 8 represent the number of
query, in our case is the number of user which rec-
ommendation is compared to. The reli in equation
8 9 represent relevancy score, which in our case is
the predicted ratings. The RELp is recommendation
ground truth and p is movie rank in the predicted
recommendation list. Our reasoning behind using
NDCG and recall to evaluate movie recommenda-
tion system is that NDCG can evaluate ranking
quality while recall can evaluate movies which the
user would watch. An ideal recommendation system
would recommend the most likely item a user would
interact first, which is why the order of recommen-
dation matters. This quality can be measured using
NDCG [20]. Recall is used as metric to make sure
the recommendation system able to retrieve list of
item user would likely to watch.

To construct the recommendation list, for each
user we sample 1000 item the user haven’t interacted
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(both in training and testing) and add all item in
test data for that user as ground truth. We rank
the user item pair based on the predicted scores.
This way we can fairly compare the model ranking
ability to the ground truth. This recommendation list
is evaluated at top 5, 10 and 100 cut off from the
recommendation system towards ground truth in test
data.

The experiment is conducted by comparing
SGCF variants to the baseline. We choose Neural
Collaborative Filtering (NCF) as our baseline be-
cause the computation flow is very similar to it.
The NCF model has both user and item embedding,
where each embedding is represented as a matrix and
trained simultaneously in recommendation system
training phase.

4.1.1. Neural Collaborative Filtering. The neural
collaborative filtering [13] proposed trainable inter-
action between user and item embeddings. In previ-
ous methods, the interaction between user and item
embedding is formulated as dot product. The authors
of NCF believe that replacing dot product operation
with generic trainable model such as MLP able to
boost the recommendation performance.

4.1.2. NGCF. Similar with neural collaborative fil-
tering, neural graph collaborative filtering [19] has
idea to replace user and item embedding as graph
that contains interactions between user and items.
The embeddings is calculated utilizing GCN. How-
ever, the GCN used in this methods is transductive.

4.1.3. PEAGAT. The e MetaPath- and Entity-Aware
Graph Attention Network (PEAGAT) [10] propose
unified framework to process relational information
in graph. This method aggregates information over
multiple metapath-aware subgraphs and fuse the ag-
gregated information to obtain node representation
using attention mechanism.

The SGCF variants we mentioned above are
SGCF with edge weight, SGCF without weight,
SGCF with frozen graph embedding, means the em-
beddings are not trained in recommendation training
phase. The last variant is SGCF with link prediction
formulation, where user and item are constructed in
one graph.

4.2. Dataset

This work use movielens 25M dataset [22] to
perform experiment. The Movielens 25M dataset
contains user historical interaction with movies, user
information and movie information. The data has ap-
proximately 62K movies, 162K users and 25 million

rating / historical user interaction data. There are 19
different movie genres where movie can have more
than 1 genre. Those genres are Action, Adventure,
Animation, Children, Comedy, Crime, Documentary,
Drama, Fantasy, Film-Noir, Horror, Musical, Mys-
tery, Romance, Sci-Fi, Thriller, War, Western, (no
genres listed). The category data are stored in string
format. There also review information and synopsis
that linked to other sites. However we decided to not
to use user review and synopsis because it’s outside
this work’s focus.

4.3. Result

In this section we will answer 2 research ques-
tion. We answer research question 1 by our model
with 3 baselines along with significance test to mea-
sure how significant our result compared to other
methods. Research question 2 will be answered by
conducting multi-label classification both on item
and users. The task is to predict movie genre and
user preferred movie based on the feature extrac-
tions.

4.3.1. Recommendation System Performance.
We conduct experimentation on 4 different models,
SGCF with edge weight, SGCF without edge weight,
SGCF with the embedding locked (not changed), and
NCF [13] and NGCF [19] as the baseline.

Our experiment result is illustrated in table
1. Both SGCF which embedding is optimized in
recommendation system training has better perfor-
mance than NCF in precision metric (NDCG) and
recall metric. However, SGCF with link prediction
framework and frozen embedding perform signifi-
cantly worse than baseline, except in top 100 recall
in SGCF with link prediction framework. Note that
all model are trained in uniform setting training and
test data split. Our weighted SGCF perform better
than the baseline, however the weighted SGCF and
SGCF has difference in which they’re perform best
at.

If we compare the two, weighted SGCF are
better at retaining items in the ground truth however
it wasn’t able to outperform SGCF in the ranking
task. Our experiment shows that SGCF are better at
predicting the relevancy scores.

In figure 3, we illustrate weighted SGCF loss
in training and validation for 10 epoch training.
We add early stopping to prevent the model to be
over-trained and the model loss stop decreasing at
epoch 10. Our model is trained in 2 phase, em-
bedding training phase and downstream task fine-
tuning. The embedding training phase is conducted
in unsupervised manner, where for each graph, the



62 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 1, February 2022

Method NDCG@5 NDCG@10 NDCG@100 Recall@5 Recall@10 Recall@100
Weighted SGCF 0.5923αβγ 0.6027αβγ 0.7060αβγ 0.6480αβγ 0.6482αβγ 0.8969 αβγ

SGCF 0.5942 αβγ 0.6029 αβγ 0.7079αβγ 0.6476αβγ 0.6456αβγ 0.8886αβγ

SGCF (frozen graph embedding) 0.1839 0.2025 0.4516 0.2108 0.2377 0.8705
SGCF (Link Prediction) 0.0865 0.1227 0.4711 0.0985 0.1610 0.9294

PEAGAT 0.5372 0.5475 0.5850 0.6388 0.6440 0.8784
NGCF 0.4472 0.4866 0.5230 0.6088 0.6140 0.7758

Neural Collaborative Filtering 0.5870 0.5990 0.6992 0.6401 0.6450 0.8780

Table 1. Experiment Results. The superscript symbols represent statistical significance p < 0.05 against baselines where
α : PEAGAT, β : NGCF and γ : NCF

0.57
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0.576
0.578
0.58

0.582
0.584
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0.588
0.59

0.592
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Figure 3. SGCF training epoch. Y axis denote mean
squared error loss. X axis denote epoch. Red line denote
validation loss, blue line denote training loss. Note that
the thick line is smoothed, the thin line is the real value

Table 2. Recommendation Ground Truth
user rating ground truth title
26811 5.0 The Hateful Eight (2015)
26811 4.5 28 Days Later (2002)
26811 4.5 Inglourious Basterds (2009)
26811 4.5 Grand Budapest Hotel, The (2014)
26811 4.5 Deer Hunter, The (1978)
26811 4.0 Death Proof (2007)
26811 4.0 Hot Fuzz (2007)
26811 4.0 Dallas Buyers Club (2013)
26811 4.0 The Revenant (2015)
26811 4.0 Seven Samurai

(Shichinin no samurai) (1954)

embedding is tasked to predict if two entities in the
graph are connected or not. Then the fine tuning is
conducted to predict the relevancy score of user and
item pairs. The fine tuning is performed by taking
trained embedding and combine the embedding to
a downstream task which is predicting relevancy
scores.

In order to achieve our experiment objective, we
compared our baseline and SGCF model embedding
result and recommendation results on 2 random
picked user with top 10 recommended items against
the ground truth in table 2. We focused on our first
objective because our experiment result have given
the evidence on other SGCF variant performance
against the strongest baseline that use graph embed-
ding (PEAGAT).

We compare top 10 recommendation result from
SGCF and PEAGAT. To conduct the comparison,
We sample 1 random user id and we pass the id
to the recommendation system and generate top 100
recommended movies the user might like, which we
cut off to top 10 for analysis purpose. Furthermore,
we compare the 2 recommendations from SGCF and
PEAGAT to ground truth. User with id 26811 has
strong affinity (top 10 movie genres) with genre
Film-Noir, Western, Thriller, Mystery, Drama, Com-
edy, Horror, Crime, War, Action in that order. SGCF
model able to hit 5 out of 10 movies recommended
to user 26811. On the other hand, PEAGAT model
able to hit 3 out of 10 movies recommended to user
26811. SGCF model have better recall compared
with PEAGAT.

4.3.2. Embedding Quality Analysis. In this sec-
tion, we will investigate the quality of user and
item embeddings by comparing them with NCF. We
didn’t compare it with PEAGAT and NGCF because
both method use single graph that contains relation-
ship between user and item, whereas our method
use them separately. However, We are able to com-
pare recommendation result for weighted SGCF and
PEAGAT. We use PEAGAT as comparison because
PEAGAT is the strongest baseline.

First, take a look in figure 6 and figure 7 on hor-
ror genre attached in the appendix, the embedding
visualization are projected using TSNE algorithm
[23] in the same parameter (100 iterations and 63
perplexity) without supervision. The NCF embed-
ding tend to tightly group similar categories to-
gether such as comedy/horror movies and horror/sci-
fi movies. On the other hand, SGCF embedding
projects the items more sparsely and more aware
on its subcategory. For example, the horror/sci-fi
genre movies are projected close to horror/fantasy.
This behavior shows that the embedding produced
by SGCF model able to learn ”nuance” of the movie
which we didn’t explicitly give the information. For
example, The ability to learn the movie nuance
and interact it with user projections is one reason
why SGCF perform better in all of the performance
metrics against the baseline.
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Table 3. Recommendation Result Comparison
Methods user score title NDCG@10 Recall@10

4.37 City of God (Cidade de Deus) (2002)
4.35 Deer Hunter, The (1978)
4.32 Lost in Translation (2003)
4.28 Seven Samurai (Shichinin no samurai) (1954)
4.19 Wrestler, The (2008)

SGCF 26811 4.16 Grand Budapest Hotel, The (2014) 0.7930 0.8000
4.13 Rome, Open City (a.k.a. Open City)
4.12 The Hateful Eight (2015)
4.09 Perfect Candidate, A (1996)
4.08 28 Days Later (2002)
4.73 Seven Samurai (Shichinin no samurai) (1954)
4.39 Lost in Translation (2003)
4.33 Deer Hunter, The (1978)
4.32 Rome, Open City (a.k.a. Open City) (Roma, città aperta) (1945)
4.28 City of God (Cidade de Deus) (2002)

PEAGAT 26811 4.21 Frank (2014) 0.5964 0.5000
4.21 Confessions of a Dangerous Mind (2002)
4.20 Personal Journey with Martin Scorsese Through American Movies, A (1995)
4.19 Grand Budapest Hotel, The (2014)
4.16 Shirkers (2018)

Figure 4. NCF user embedding visualization using T-SNE
algorithm. The illustration highlight users who like horror
movies. Brighter dots means higher affinity to Horror
genre

Figure 5. SGCF user embedding visualization using T-
SNE algorithm. The illustration highlight users who like
horror movies. Brighter dots means higher affinity to
Horror genre

Table 4. Multi-label classification result
Embeddings Average Precision@19 Average F1

User 0.9435 0.9215
Movie 0.9620 0.9450

This behavior also shown in user embeddings.
Notice that in figure 4 and figure 5 user embedding
on NCF model tend to be densely grouped. On the
other hand, SGCF embedding are more sparse and
more specific to the user’s taste of movies, which
is another evidence that can explain why SGCF
perform better compared to NCF.

If we investigate further on the SGCF itself,
the SGCF model are designed very similar to NCF
model. The main difference between them is the
starting point to optimize the embedding, the NCF
model is initialized by random while SGCF model
initialized from graph embedding. Our experiment
result shows that the graph embedding alone does
not able to perform better than NCF. We further
tested it with other SGCF variant where we trained
the SGCF using link prediction framework which
perform worse than SGCF where the embedding
is not trained in recommendation system training
phase.

Furthermore, to provide evidence that the gener-
ated embeddings are able to capture useful signals,
we will conduct experiment on both embeddings.
The embeddings will be given a downstream task to
predict user preference and movie genre. The task
will be formulated as multi-label classifications with
one vs the rest settings.

The experiment result illustrated in table 4 shows
that both embeddings can capture useful signals,
supported by the average precision for 19 class and
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the average f1 scores. The embedding used in this
experiment is embeddings that produced in the rec-
ommendation system training phase. There are infor-
mation loss in the embedding if we compare them to
embbedings that produced before recommendation
system training phase. Note that the embeddings be-
fore recommendation system training phase has the
downstream task label as feature which will make
the embedding has 100% accuracy. To conclude this
experiment analysis, we shows that SGCF model are
able to discern movies based on its nuance rather
than solely relies on movies genre. This behavior is
supported by evidence that we observed on the em-
bedding projections. We also provide the evidence
on the embedding quality, where the embedding can
capture useful features which has been shown by
downstream task experiment. We also shows that
the weighted inductive graph embedding is useful
for recommendation system task.

5. Conclusion

We have experimented with the inductive graph
embedding based recommendation system SGCF.
We also analyzed the SGCF recommendation perfor-
mance and its variations compared to baseline. Both
SGCF with edge weight and without weight perform
better than baseline. The difference between both
SGCF model variants lies in its ability in precise
ranking and recall. The SGCF model with weight
is better at retaining top-n recommendation from
ground truth, whereas SGCF model without edge
weight are better at precise ranking. This observation
is supported by our experiment result on table 1. We
also show that graph embedding is able to capture
useful signals based on projection and downstream
task testing, which makes the embedding effective.
Based on the evidence that we have obtained so far,
we believe that graph structures contribute positively
to recommendation given that we feed informative
relational data. We also confirmed the effectiveness
of the SGCF model compared to baseline and ana-
lyzed SGCF performance.
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Appendix A.
Embedding Visualization
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