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Abstract 

 
The inspection of weld defects utilizing nondestructive testing techniques based on radiography is 
essential for ensuring the operability and safety of weld joints in metals or other materials. During the 

process of welding, weld defects such as cracks, cavity or porosity, lack of penetration, slag inclusion, 
and metallic inclusion may occur. Due to the limitations of manual interpretation and evaluation, 
recent research has focused on the automation of weld defect detection and classification from 
radiographic images. The application of deep learning algorithms enables automated inspection. The 
deep learning architectures for building weld defect classification models were discussed. This paper 
concludes with a discussion of the achievements of automation methods and a presentation of the 
research recommendations for the future. 

 
Keywords: weld defect, radiographic images, deep learning, convolutional neural network 

 

 

1. Introduction 

 

It is critical to test metal or material-welded 

joints to verify that they meet design and service 

specifications and to ensure their safety and 

dependability. Cracks, porosity, gas pores, lack of 

penetration, slag inclusion, and metallic inclusion 

may occur on the weldment during the welding 
process. Poor edge quality, extreme stresses, and 

improper welding procedures cause cracks. The 

existence of moisture in the weld metals causes 

cavity or porosity defects in welded joints. A 

metallic inclusion defect occurs when metal, as 

well as tungsten, become entrapped in the weld 

seam. Lack of penetration is a dangerous defect 

that occurs when a joint has inadequate weld 

penetration. It has the potential to cause extensive 

damage to the weldment. Slag inclusion defects 

are caused by the presence of nonmetallic 
elements in welded metals. 

Nondestructive testing (NDT) methods for 

detecting welding defects are typically divided 

into a number of categories, including visual or 

manual inspection, radiographic testing with an 

ionizing radiation source, including gamma rays 

or X-rays, eddy current testing, ultrasonic testing, 

dye penetrant testing, etc. In many industries, 

detecting defects in radiographic images is 

regarded as a basic requirement and is extensively 

utilized for controlling welding quality [27]. NDT 

experts have traditionally evaluated these 

radiographic images. Manual interpretation and 

evaluation of radiographic images are complex, 

subjective, inconsistent, time-consuming, and 

occasionally biased with respect to defects with 

similar features. As a result, it is advantageous to 
combine an automated artificial intelligence 

algorithm with a computer vision system for 

image evaluation and interpretation. In terms of 

working conditions, time required, digitalized 

documenting, objectivity, and increasing accuracy, 

automatic detection has significant advantages 

over manual evaluation. 

In recent decades, researchers have 

concentrated on automated inspection techniques 

based on radiographic images. It has been 

demonstrated that radiographic images are 
typically difficult to examine due to their high 

noise, inconsistent gray distribution, and low 

contrast. Image quality has a significant impact on 

the detection of weld defects, particularly for 

small defects that are easily obscured by noise. 

Several methods for image pre-processing have 

been developed to eliminate or reduce these 

issues. At the beginning of research on the 

detection and classification of weld defects, 
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machine learning algorithms, including adaptive 

cascade boosting (AdaBoost) classifier, support 

vector machine (SVM), random forest (RF), 

neural network (NN), k-nearest neighbor (k-NN), 

and logistic regression (LR) were widely 

employed. Deep learning, on the other hand, is 

one of the machine learning implementation 

methods that utilizes an artificial neural network 

(ANN) to replicate the functions of the human 

brain. However, it is suspected that deep learning 
algorithms perform better at detecting and 

classifying weld defects in radiographic images. A 

deep neural network (DNN) is an ANN with 

multiple layers between the input and output 

layers. Convolutional neural network (CNN or 

ConvNet) is a form of ANN that is frequently 

employed in deep learning to analyze visual 

imaging. Deep belief network (DBN) was 

developed as a solution to the problems 

encountered when training deep layered networks 

with traditional neural networks. Transfer learning 
(TL) is another type of deep learning that involves 

applying a previously trained model to a new 

problem. Due to the fact that it can train DNNs 

with small datasets, it is currently very popular in 

deep learning. 

The objective of this review is to examine 

methods for detecting and classifying weld 

defects from digital radiographic images. 

“Digital” may refer either to the direct recording 

of the radiographic image using a digital device or 

to the digitization of the radiographic image from 
conventional film. No distinction was made. This 

paper focused on digital radiographic image 

analysis techniques, including image 

preprocessing, defect detection, and defect 

classification. The most essential factor in the 

detection and classification of weld defects is the 

performance of the model based on deep learning. 

 

2. Literature Review 

 
We scoured searchable databases for relevant 

literature on the detection and classification of 
weld defects based on deep learning algorithms. 
We used the terms weld defects, radiographic 
images, deep learning, and CNN in our search. 
This is based on the object that will be used, which 
consists of radiographic images containing weld 
defects. For the detection and classification of 
weld defects, a CNN-based deep learning 
approach is used. After collecting the literature 
that aligned with the keywords, we considered that 
only journal articles and conference proceedings 
published within the last five years, or between 
2017 and 2022, were considered. Finally, a total of 
20 articles from 7 sources were obtained, with 
specific details depicted in Figure 1, which is a 
block diagram of this article’s review stages. 

 
Fig. 1. Flowchart of the article’s review stages. 

 After a comprehensive literature review, it is 
possible to conclude that the automatic detection 
system for welding defects is comprised primarily 
of the following technologies: image pre-
processing, defect detection, and defect 
classification. In our paper, a summary of the 
literature is provided through a detailed analysis of 
each section. DNN, DBF, and CNN in various 
forms, including AlexNet, U-Net, VGG, ResNet, 
YOLO, MobileNet, Xception, EfficientNet, AF-
RCNN, etc., are the deep learning architectures 
used to create models for detecting and classifying 
weld defects. Figure 2 represents the stages of a 
defect detection and classification system 
involving these aspects. 

 

Fig. 2. Flowchart of the method for weld defect detection and 

classification. 
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After conducting an in-depth analysis of the 

collected literature, it is possible to conclude that 

an automatic welding defect detection and 

classification system involves the following 

stages: image collection, image pre-processing, 

defect detection, and defect classification. Each 

section of the literature is summarized and 

analyzed in our paper. 

 

3. Data Collection 
 

The publicly accessible GRIMA X-ray 

(GDXray) database served as the source for the 

radiographic image database used in multiple 

studies [3]. This database contains several 

categories of X-ray radiographic images, 

including castings, welds, baggage, nature, and 

settings. In our review, only the welds category 

was used as the dataset for the development of 

weld defect detection and classification models. 

This category includes 67 high-quality digitized 
radiographic images from a round-robin test on 

the detection of defects in welding seams. The 

radiographic images are stored as uncompressed 

TIFF files and have a 40.3 m pixel size. The 

experimental image datasets of [1], [6], [9], [12-

14], [17-19], and [22] were retrieved from the 

GDXRay public database. Figure 3 depicts an 

example of a radiographic image obtained from 

the GDXray database. 

 

 
Fig. 3. A sample of radiographic images from the GDXRay 

database [3]. 

 

Furthermore, personal datasets that are not 

accessible to the public were utilized by [2], [5], 

[7], [8], [10], [11], [15], [16], [20], and [21]. For 

example, radiographic images obtained from real-

time radiography utilizing a flat panel detector 

and digital detector array (DDA), as illustrated in 

Figure 4, are considered to be radiographic 

images [5, 16]. 

  

 
Fig. 4. A sample of radiographic images from DDA [16]. 

 

Meanwhile, the GDXray database was utilized 
by [2] to validate the experimental results 

obtained on the welding personal dataset. Each 

article utilized a distinct number of image 

datasets. The image dataset is obtained from a 

complete, high-resolution radiographic image, 

which may contain multiple types of defects. 

 

4. Image Pre-processing 
 

Typically, digital radiographic images have 

low contrast, noise, and an inconsistent grayscale 
distribution. However, image quality significantly 

affected the detection of weld defects, especially 

for small defects that are easily obscured by 

background noise. Various processing methods 

were employed to prevent or mitigate the 

occurrence of such problems.  

 

4.1. Pre-processing Methods 

 

Several articles that utilize personal databases, 

particularly real-time radiography, have 
performed several image pre-processing steps. 

Motion deblurring using the Hough Transform 

was utilized to eliminate motion blur in some 

images so that the weld area and defects could be 

seen explicitly [5]. In order to eliminate noise 

caused by defects in the base metal or film, noise 

removal was adopted to eliminate everything 

other than the welds and serves as training data 

alongside tagged information [15]. Contrast 

enhancement was performed to obtain a more 

distinct image of defects against the background 
[5]. Guo et al. [11] proposed a novel model 

known as the contrast enhancement conditional 

generative adversarial network (CECGAN), 

which is utilized as a resampling technique for 

improving radiographic image datasets. While 

addressing the weakness of feature extraction 

caused by low image contrast, the number of 

image samples is increased, and the data 

distribution within the images is balanced. Liu et 

al. [21] proposed image relief pre-processing to 

enhance the radiographic image’s contrast to 

make it easier to detect defects. Other image pre-
processing methods include RGB channel 

conversion [2], grayscale to binary conversion 

[17], histogram equalization [9, 16], and gradient 

processing [16]. Figures 5 and 6 illustrate an 

example of radiographic image pre-processing 

steps. 

 

 
        (a)                              (b)                             (c) 

Fig. 5. The process of blind motion deblurring (a) Blurry 

image (b) Hough Transform implementation (c) Deblurred 

image [5]. 
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Fig. 6. Image relief preprocessing example [21]. 

 

A series of image pre-processing methods are 

necessary to ensure that the image is suitable to be 

utilized as a dataset. 

 

4.2. Image Cropping 
 

Following a series of image pre-processing 

steps, the random cropping method was used to 

obtain an image containing a single class of weld 

defect. Random cropping in the form of a square 

or rectangle can be performed manually or with a 

sliding-window approach. The pixel size of the 

randomly cropped image differs among the 

reviewed articles, including 32 x 32 [6,7,17,18], 

64 x 64 [6,20], 71 x 71 [11], 96 x 96 [6], 128 x 

128 [1,6,12], 160 x 160 [19], 224 x 224 [14], 227 
x 227 [2], 240 x 480 [22], and 320 x 640 [9].  

 

4.3. Image Augmentation 

 

After obtaining an image patch with a single 

class of defect, the data augmentation step is 

performed to increase the number of datasets 

employed. This is intended to increase training 

accuracy and avoid overfitting. Several reviewed 

articles employ the image augmentation 

parameters, such as random rotation, horizontal 

and vertical flipping, random saturation, contrast 
adjustments, resizing, and clipping. Meanwhile, 

Zhang et al. [7] generated an artificial image patch 

with a defect using a data augmentation technique 

based on Wasserstein generative adversarial 

networks (WGAN). Figure 7 illustrates an 

example of the results of the image cropping and 

data augmentation method. 

  

 
Fig. 7. The example of image cropping and data augmentation 

results [18]. 

 

After performing an image augmentation 

method, the number of image datasets for each 

type of defect is obtained. The dataset is then 

distributed for testing, validation, and training 

purposes. We have highlighted several distinct 

types of dataset distribution composition, as 

illustrated in Table 1. 

 
Table 1. Composition of image datasets 

Literature 
Composition (%) 

Training Validation Testing 

[1] 60 20 20 

[2], [6]-[9], [11] 80 - 20 

[12] 70 15 15 

[14] 75 - 25 

[15] 94 6 - 

[19] 40 30 30 

 

Meanwhile, we were unable to find sufficient 
information on the dataset’s composition from 

articles not listed in Table I. 

 

5. Evaluation Indicator 
 

The created image datasets serve as training, 

validation, and testing data for the proposed weld 

defect detection and classification model. A series 

of evaluation indicators is presented to verify the 

detection and classification results of weld defects 

and the performance of the proposed network 

model. For measuring training and testing 
performance, the recall, precision, F1-score, and 

accuracy are calculated using a confusion matrix. 

These indicators enable us to choose the most 

effective models and compare various models. 

The confusion matrix is depicted in Figure 8. 

 

 
Fig. 8. Confusion matrix [16]. 

 

The confusion matrix, meanwhile, provides 

individual class-level insight into true and false 

classifications, as well as error types. The terms 

TP (true positive), TN (true negative), FP (false 

positive), and FN (false negative), which are 
resolved from the cells of the confusion matrix, 

define the precision (P) and recall (R) scores. The 

F1-score is the harmonic mean of P and R. 

Accuracy (Acc) is used to calculate the proportion 
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of correctly identified pixels. Yang et al. [9] also 

utilized additional evaluative metrics, including 

specificity (Sp), sensitivity (Se), area under the 

curve (AUC), which represents the area under the 

curve, such as the P-R Curve, which is between 

0.1 and 1, and dice coefficient (Dice). The 

formulas for all of these metrics are as follows: 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 𝑆𝑒 = 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 𝐹1 =
2𝑃𝑅

𝑃+𝑅
 

 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 𝐷𝑖𝑐𝑒 =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
 

where A and B represent two evaluation objects. 

 

6. Defect Detection 
 

The weld image contains not only the weld but 

also information about the background. The 
background is the portion of an image that does 

not require analysis. In welding defect detection, 

the area of the weld seam with defects becomes 

the target for identification. Subtracting the 

original image's background requires a 

segmentation method for identifying defects. 

Some articles include defect detection as part of 

defect classification. In this paper, however, we 

focused on the defect detection stage, i.e., 

determining the presence of defects in a 

radiographic image, also known as defect 
segmentation, excluding the classification of 

defect types. Yang et al. [9] proposed a defect 

detection method based on an Improved U-Net 

network to achieve high-precision automatic weld 

defect location. Created by the U-Net network, the 

proposed method can enhance radiographic image 

segmentation performance. In the presence of 

complex radiographic images with poor texture 

and contrast, a proposed model is required for the 

automatic and accurate localization of weld 

defects.  

Sizyakin et al. [13] proposed an approach to 

detect weld defects using a combination of CNN 

and SVM. CNN is primarily used for defect and 

non-defect classifications. SVM is used to define 

defect boundaries accurately. To improve 

detection performance, the morphological 

filtration method was implemented. Golodov et al. 

[16] performed image segmentation in two stages: 

segmentation of the weld area from a whole 

image using the foreground segmentation 
network, or FgSegNet_v2 architecture, followed 

by segmentation of the weld defect using the 

FgSegNet_M architecture. Hou et al. [17] 

presented a three-stage algorithm for the 

automatic recognition of defects. Identifying a 

weld area using Otsu's method is the initial stage. 

Then, a sparse auto-encoder network (SAE) is 

trained and tested using radiograph image patches. 

Finally, a sliding-window approach is used to 

detect defects in a whole seam. Dong et al. [20] 

utilized a U-Net network by replacing its final 
softmax layer with RF to achieve better results. 

Figures 9 and 10 illustrate examples of weld 

defect detection results.  

 

 
                (a)                             (b)                           (c) 

Fig. 9. Detection result using FgSegNet (a) Input image (b) 

Weld mask (c) Defect mask [16]. 

 

 
Fig. 10. Detection results using SAE (a) The probability map 

for defects (b) The detection result [17]. 

 

Figure 9(b) shows that the gray input image is 

segmented, resulting in a yellow welding area. 

Figure 9(c) also shows segmentation of weld 
defects in yellow. In comparison to Figure 9, 

Figure 10 shows defect segmentation using a 

probability map. Weld defects are bordered in red 

in the whole image. To determine the 

effectiveness of the proposed models, the 

performance evaluation of the proposed weld 

defect detection models is illustrated in Table 2.
 

Table 2. Weld defect detection model performance 

Literature Pre-processing Architecture Evaluation Result 

Yang et al., 

2021 [9] 

Similarity transformation; 

Gamma transformation; 

Linear transformation; 

Gaussian noise 

Improved U-Net 

Se 

Sp 

Acc 

AUC 

Dice 

0.860 

0.999 

0.998 

0.884 

0.818 
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Literature Pre-processing Architecture Evaluation Result 

Sizyakin et 

al., 2019 

[13] 

Morphological filtration; 

Contrast-limited adaptive histogram 

equalization 

CNN – SVM 

for MF + CNN + EB: 

R 

False alarm 

P 

F1-score 

 

0.4552 

0.0278 

0.6120 

0.5221 

Golodov et 

al., 2022 

[16] 

Histogram normalization; 

Gradient transformation 

FgSegNet_v2 

FgSegNet_M 

F1-score (weld seg.) 

F1-score (defect seg.) 

96.94% 

91.19% 

Hou et al., 

2017 [17] 

Binary to grayscale conversion; 

Thresholding using Otsu’s method 
SAE Acc 91.84% 

Dong et al., 

2019 [20] 

Shearing, skewing, flipping and elastic 

distortion operations 
U-Net – RF AUC 0.998 

 

The proposed model for segmenting weld 

defects from radiographic images is highly 

effective. In terms of comparison with ground-

truth values, the model proposed by Yang et al. 

[9] is preferred. While the model proposed by 

Golodov et al. [16] can detect not only weld 
defects but also the weld area relative to the base 

material, Therefore, these two models are more 

strongly recommended. 

 

7. Defect Classification 
 

ISO-6520-2:2013, “Welding and Allied 

Processes—Classification of Geometric 

Imperfections in Metallic Materials” [4] describes 
in detail the classes of weld defects. According to 

the articles that we have summarized, cracks, 

pores, lack of penetration, lack of fusion, solid 

inclusions, including slag and tungsten inclusions, 

undercuts, burn-through, excessive root 

penetration, concave root, overlap, and spatter are 

the most common classes of defects found in 

radiographic images. However, [9], [13], [17], and 

[20] did not specify the type of defect used, as the 

model only detects and classifies binary results, 

namely defects and non-defects. The choice of 
classifier is another crucial factor influencing 

defect classification performance. At the 

beginning of the study, defect classification was 

accomplished primarily through the use of 

traditional machine learning algorithm 

approaches. The classification results of these 

methods are always constrained by the quality of 

the designed features and the amount of image 

data. Deep learning technology can automatically 

extract deep representative features from a 

radiographic image, thereby eliminating the need 
to manually extract features. A further advantage 

of deep learning is that the network can utilize 

unlabeled data, like in the SAE [17] and DBN 

[22] architectures. 

According to the articles we reviewed, the 

deep learning architectures are quite diverse, but 

they all refer to the CNN architecture, which is 

modified into several types based on the layer 

structure as shown in Table III. Thakkallapally [1] 

proposed a VGG-19-based CNN that was trained 

using transfer learning on a sample of 3000 

radiographic images of size 128 x 128 pixels and 

belonging to three classes. Ajmi et al. [2] 

proposed a classification model based on the 

architecture of the pretrained network AlexNet, 

then compared the performance with deep 
convolutional activation features, or DCFA, 

GoogLeNet, VGG-16, VGG-19, ResNet50, and 

ResNet101. In the field of detecting steel pipe 

weld defects, Yang et al. [5] proposed object 

detection based on the YOLOv5 algorithm and 

compared it to the two-stage representative object 

detection algorithm Faster R-CNN. Pan et al. [6] 

proposed a classification model based on the TL-

MobileNet structure by adding a full connection 

layer and a softmax classifier into the MobileNet 

architecture. Zhang et al. [7] proposed a WGAN-
based method for image augmentation to address 

the limited number of datasets. Then, two DCNNs 

are trained on the augmented image sets using 

transfer learning techniques based on feature 

extraction. The two trained CNNs are combined in 

a multi-model ensemble framework to classify 

weld defects.  

Yang et al. [8] proposed a three-stage defect 

classification model: define 11 welding defect 

features as inputs, construct a deep learning 

framework (unified DNN) in which multi-level 

features are included, and additionally, investigate 
pre-training and fine-tuning strategies to improve 

generalization performance with limited datasets. 

Naddaf et al. [10] developed and annotated over 

100,000 radiographic images of various welds. On 

the basis of these data and annotations, an 

optimized CNN for defect classification is 

designed and trained. Guo et al. [11] utilized a 

generative adversarial network combined with 

transfer learning to address the data imbalance 

and improve accuracy. The Xception model is 

proposed as a feature extractor in the target 
network for transfer learning, while frozen–

unfrozen training is used to fine-tune the 

classification model. Nazarov et al. [12] utilized 

the VGG-16 architecture for classification to solve 

the problem of transferring training due to the 

limited number of training images. To extract the 
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features of this dataset of weld defects, 

Kumaresan et al. [14] used transfer learning with 

pre-trained DCNNs, including VGG16 and 

ResNet50. On these extracted features, machine 

learning models such as LR, SVM, and RF were 

then trained. Oh et al. [15] proposed a faster R-

CNN to classify welding defects automatically. To 

properly extract the radiographic testing image's 

features, two internal Faster R-CNN feature 

extractors were selected, compared, and their 
performances evaluated.  

Golodov et al. [16] performed a classification 

of the weld area using EfficientNet-B3, followed 

by a classification of the weld defects using 

EfficientNet-B0. Hou et al. [18] created a model 

based on a DCNN for extracting deep features 

from radiographic images. In consideration of the 

imbalance in the number of image patches with 

different weld defects, three types of resampling 

techniques, namely ROS, RUS, and SMOTE, are 

employed to develop three balanced datasets. 
Using datasets, the classification abilities of five 

extracted types of features are compared using 

traditional and deep learning methods. Liu et al. 

[19] proposed the AF-RCNN algorithm to classify 

weld defects. ResNet and FPN serve as the 

network's backbone, while lightweight model 

channel attention and spatial attention 

mechanisms are utilized. Liu et al. [21] proposed 

a three-stage method for the classification of weld 

defects using a triplet DNN. The initial 

radiographic image is transformed into a relief 

image. Second, the feature vector is obtained by 
mapping the relief image. Finally, the SVM 

classifier detected the weld defect. Chang et al. 

[22] proposed a classification model based on 

DBN that classifies the weld feature curves 

extracted. A cylindrical projection method is 

proposed to increase the proportion of defect parts 

and address the problem of small defect loss. 

Finally, a SegNet-based system for classifying 

weld defects is proposed. As illustrated in Figures 

11 and 12, the example results of defect 

classification are tested on whole radiographic 
images. 

 

 
Fig. 11. Detection and classification results using YOLOv5 [5]. 

 

 
Fig. 12. Detection and classification result using WDC-SegNet (a) Original images (b) Defects recognition [22].

Figure 11 depicts the results of the detection of 

eight distinct images containing defects, indicated 

by colored boxes along with the defect's name and 

degree of accuracy. Figure 12 depicts a single 

image for three distinct types of defects. To 

determine the performance of the proposed 

models, Table 3 presents the results of the 

performance evaluation of the proposed 

classification models. 

 

 

(a) 

(b) 
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Table 3. Weld defect classification model performance 

Literature Pre-processing Architecture 
Number of Defect 

Classes 
Evaluation Result 

Thakkallapally, 

2019 [1] 
- VGG-19 3 

Train Acc 

Val Acc 

Test Acc 

93.17% 

91.14% 

91% 

Ajmi et al., 

2020 [2] 
Conversion to RGB AlexNet 2 Acc 100% 

Yang et al., 

2021 [5] 

Motion deblurring; 

Light change; 

Gaussian noise; 

Saturation adjustment; 

Contrast and Sharpness 

YOLOv5 8 

mAP 

(mean of Average 

Precision) 

98.7% 

Pan et al., 2020 

[6] 
- MobileNet 5 mAcc 97.69% 

Zhang et al., 

2019 [7] 

Gaussian filter; 

Data augmentation with 

WGAN 

Inception & 

MobileNet 
4 

Acc (normal) 

Acc (burn through) 

Acc (crack) 

Acc (porosity) 

100% 

94.77% 

99.75% 

99.67% 

Yang et al., 

2021 [8] 

Image quality 

improvement 
Unifed DNN 5 

Train Acc 

Test Acc 

97.95% 

91.36% 

Naddaf et al., 

2020 [10] 
- 

VGG-16, VGG-

19, AlexNet, 

ResNet 

11 Acc 96% 

Guo et al., 

2021 [11] 

Contrast enhancement 

(CECGAN) 
Xception 5 

F1-score 

Acc 

0.909 

92.5% 

Nazarov et al., 

2021 [12] 
- VGG-16 5 Acc 86% 

Kumaresan et 

al., 2021 [14] 
- 

VGG-16 & 

ResNet-50 

9 

14 

Acc (9 classes) 

Acc (14 classes) 

99.4% 

97.8% 

Oh et al., 2020 

[15] 

Noise reduction;  

Contrast enhancement 

Faster R-CNN, 

ResNet, Inception 
2 mAP (ResNet with aug.) 0.532 

Golodov et al., 

2022 [16] 

Histogram normalization; 

Gradient transformation 
EfficientNet-B0 8 

Acc (Top1) 

Acc (Top2) 

82.73% 

96.76% 

Hou et al., 

2019 [18] 

Resampling (ROS, RUS, 

SMOTE); 

Reshape 

DCNN 4 

Acc (DCNN2): 

ROS Dataset 

RUS Dataset 

SMOTE Dataset 

 

96.3% 

79.9% 

97.2% 

Liu et al., 2022 

[19] 
Image resizing AF-RCNN 6 mAP 85.4% 

Liu et al. 2020 

[21] 

Contrast enhancement; 

Image to relief conversion 

Triplet DNN – 

SVM 
5 

Acc (multi-defects): 

Defect 1 

Defect 2 

Defect 3 

Defect 4 

 

0.70 

0.90 

1.00 

0.80 

Chang et al., 

2021 [22] 
- 

DBN, WDC-

SegNet 
4 Acc 98.6% 

In terms of classification, weld defects that 

occur during the welding process can vary. 

Consequently, a model with the ability to classify 

more types of defects has better results. Based on 
the data in Table 3, a model that can classify eight 

or more defect classes has good performance for 

real applications, including the models proposed 

by Yang et al. [5], Naddaf et al. [10], Kumaresan 

et al. [14], and Golodov et al. [16]. However, it 

can be difficult to classify infrequent types of 

defects using these models. Thus, research into 

the development of a model capable of classifying 

more types of defects is continuous. 

8. Discussion 

 
The detection and classification of weld 

defects in radiographic images is one of the most 

essential and challenging welding inspection 

tasks. The limitations of manual or visual image 

evaluation and interpretation require an automated 

image inspection method utilizing computational 
technology. Researchers in the field of artificial 

intelligence have developed a deep learning-based 

method for inspecting weld defects in 

radiographic images. As a result, the deep learning 

architecture is able to become a model for 

detecting and classifying welding defects with 

good performance based on test results using 

evaluation indicators, particularly those that are 

most frequently associated with accuracy. The 

most fundamental aspect of this stage of detecting 

welding defects is that the model can distinguish 
the defective image from the background image. 

This becomes difficult when the evaluated 

radiographic images have poor quality, low 

contrast, noise, and an inconsistent grayscale 
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distribution. The result indicated that a series of 

image pre-processing methods, including motion 

deblurring [5], contrast enhancement [11], [15], 

[21], noise removal [15], image conversion [21], 

as well as image segmentation techniques, are 

capable of resolving this problem. In terms of 

defect classification, the model is able to 

recognize a diversity of defect types in a variety 

of classes, such as [5], [10], [14], and [16]. When 

the model is presented with a small number of 
datasets and there is an imbalance between 

classes, the classification of defects can become 

difficult. The limited number of datasets can be 

overcome by employing image augmentation 

techniques that vary the orientation and position 

of image defects artificially. The generative 

adversarial network method [11] and the 

resampling method [18] have been used to address 

the issue of imbalanced data. In summary, it can 

be determined that this classification model 

supports the evaluation and interpretation of weld 
defects in radiographic images by NDT 

specialists. 

To get better detection and classification 

results, several recommendations can be 

considered. The stages of image preprocessing are 

determined according to the quality of the initial 

radiographic image. The pre-processing stages for 

radiographic images derived from conventional 

film digitization may differ from those derived 

from DDA or computed radiography (CR). An 

imaging plate records the radiographic image of 
CR, and during its use, artifacts in the form of 

scratches and spots can appear on the radiographic 

image [26]. The presence of these artifacts is 

disruptive to the image of the weld, as they can 

obscure defects that need to be inspected. Before 

an image is used as a dataset, the application of 

certain image filters is thus one of the most crucial 

image pre-processing parameters [27]. 

Important to the improvement of the defect 

classification model is the issue of the number of 

defect classes classified. The majority of studies 

have been able to classify the most common types 
of welding defects, including cracks, porosity, gas 

pores, lack of penetration, lack of fusion, slag 

inclusions, etc. According to ISO 6520-2:2013, 

there are approximately 60 types of defects, which 

are explained in detail and grouped into six major 

categories [4]. If the classification model can 

classify more types of defects, it will perform 

well. However, this will be problematic for types 

of defects that occur infrequently, as the amount 

of data available for these classes of defects will 

be extremely limited and imbalanced. In the 
future, it will be necessary to consider effective 

image augmentation methods in order to 

overcome this issue.  

According to the articles we summarize, the 

weld defect dataset is comprised of radiographic 

images with a more elongated weld orientation 

than whole radiographic images. As a follow-up 

to the research conducted by [23-25] and [28], it 

will be necessary to conduct future studies on 

weld defect detection and classification based on 

radiographic image datasets with elliptical 

orientation or in radiographic techniques known 

as the double wall double image technique 
(DWDI). Figure 13 is an illustration of a 

radiographic image displaying an elliptical 

welding orientation. 

 

 
Fig. 13. A radiographic image sample using the DWDI 

technique [3]. 

 

Considering that the stages of detection and 

classification of weld defects are only a part of the 

entire radiographic image inspection, future 

research challenges are quite interesting to study. 

Following the detection and classification of weld 

defects, one of the subsequent advanced steps 

involves measuring the dimensions and depth of 

weld defects. Measuring the size of the defect is 
crucial because the size of a similar type of defect 

can differ from the others. In determining the 

performance limits of welded joints in materials, 

the size of the defect has to be considered. The 

size of the defect is one of the indicators that the 

welding process and quality control system 

require improvement. Therefore, it is highly 

probable that deep learning methods combined 

with computer vision can be utilized to develop a 

weld defect classification model that can 

automatically measure the dimensions and depth 
of defects in radiographic images.  

In addition, it is necessary to conduct research 

on the detection and classification of welding 

defects in real time during the welding process in 

order to ensure the implementation of proper 

welding procedures. In actual conditions, welding 

defects occur due to errors in procedures, 

equipment, and environmental influences during 

the welding process. Because it needs to be 

understood that the model of detection and 

classification of weld defects cannot directly 

reduce or eliminate these defects, the results of the 
detection and classification of the types of weld 

defects that appear can be used as material for 

evaluating and improving procedures, equipment, 

and the environment during the welding process. 

For example, if there is a crack-type defect in a 
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welding area, this must be prevented in the future 

by preheating the metals, gradually cooling the 

weld joints, and maintaining acceptable weld joint 

gaps. 

 

9. Conclusion 

 

It is essential to test material-welded joints to 

ensure their safety and compliance with design 

and service specifications. Manual or visual 
evaluation and interpretation of conventional 

radiographic film are complex, time-consuming, 

subjective, inconsistent, and occasionally biased 

with respect to defects with similar features. 

Therefore, researchers have attempted to automate 

the evaluation and interpretation using deep 

learning-based computer assistance. As part of the 

evaluation and interpretation process, this article 

discussed an automation technique based on deep 

learning for detecting and classifying weld 

defects. This article discussed techniques for 
inspecting weld defects using digital radiographic 

images. This literature review provides 

information on the development of a model for 

the detection and classification of defects, whose 

stages involve data collection, image pre-

processing, defect detection, and defect 

classification. First, the radiographic images used 

as datasets are categorized into two groups: public 

databases and private databases. Second, a series 

of image pre-processing methods are performed to 

obtain images that are adequate for use as 
training, validation, and testing datasets. Third, 

the defect detection and classification model is 

constructed using the obtained dataset, and its 

performance is evaluated using evaluation 

indicators. Concerning the detection of weld 

defects, the closeness of the segmentation results 

to the ground-truth value is of utmost importance. 

The model proposed by Yang et al. [9] and 

Golodov et al. [16] is therefore preferred. In terms 

of classification, models with the ability to 

classify more types of defects are preferred, 

including the model proposed by Yang et al. [5], 
Naddaf et al. [10], Kumaresan et al. [14], and 

Golodov et al. [16], which can classify eight or 

more classes of weld defects. Finally, the 

achievements of the defect detection and 

classification model are described, and 

recommendations are made to improve future 

research outcomes. 
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