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Abstract

It is apparent that various internet services in today’s digital ecosystem effectuate different types of networks’
quality of services (QoS) requirements. This condition, in fact, adds another level of complexity to the
current network congestion control protocols. Therefore, it drives the adoption of deep reinforcement
learning to improve the protocols’ adaptability to the dynamic networks’ QoS requirements. In this case,
the state-of-the-art works on congestion control protocols, formulate the markov decision process (MDP) by
transforming the congestion control pattern from the saw tooth congestion window to the staircase sending
rate per-interval cycles. This approach treats congestion control as a sequential decision-making process that
fits reinforcement learning. However, the interval configuration parameter that gives the optimum QoS has
not been empirically studied. In this work, we present an extensive study on various interval configuration
parameters for the deep reinforcement learning-based congestion control agent. Our work shows that various
interval configuration, which consists of the RTT estimator and the n parameter, results in different QoS. The
experiment shows that the RTTjk has significantly higher throughput than RTTewma and RTTmin−filtered

in various network conditions. Furthermore, we found that the RTTjk with n = 2.0 is superior to other
configurations in almost all networking scenarios. Whereas the RTTjk with n = 1.0 is optimal for a network
environment with fixed bandwidth scenario.
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1. Introduction

Modern computer networks, including the cur-
rent Internet, 5G, and beyond, offer various ser-
vices with diverse quality of services (QoS) require-
ments. Those QoS requirements add complexity to
protocols and algorithms throughout all networking
layers, including the congestion control within the
transport layer. Congestion control is responsible
for regulating the sending rate of end-to-end data
transmission to avoid the Internet from congestion
collapses [1]. The congestion shall occur if the
load on the network is greater than the capacity of
the network [2]. Empirically, congestion control is
also able to optimize the QoS of youtube on five
continents [3]. The traditional rule-based congestion
control algorithms may work well in a certain sce-
nario. However, the performance cannot be guaran-

teed in diverse network scenarios. Furthermore, the
changing condition in one network scenario may
also affect the algorithm’s performance. Thus, in-
telligent congestion control is necessary [4]. The
current state-of-the-art [5–11] leverages the power
of reinforcement learning. Reinforcement learning is
a variant of machine learning [12]. It improves the
adaptability of the congestion control algorithm to
face the challenge of modern computer networks.

The implementation of deep reinforcement learn-
ing to find the best policy behavior model requires
the problem of congestion control to be formulated
into the Markov decision process (MDP) as illus-
trated in fig 1. Recent works of congestion control
based on deep reinforcement learning (DRL-CC) [5–
8] use similar methods to formulate the MDP. They
transform congestion control into an interval-based
mechanism, as shown in fig 2. At each interval i,

151

http://dx.doi.org/10.21609/jiki.v16i2.1159


152 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 16,
issue 2, June 2023

Figure 1. The MDP formulation of congestion control
problem which uses multi-layered perceptron (MLP) to
estimate the action.

this formulation uses a constant sending rate while
continuously collecting and monitoring the network
statistics to infer the QoS of the networks. The QoS
of the interval i denoted as si later becomes the
consideration to calculate sending rate at interval
i + 1, symbolized as gi+1. In the training phase,
the QoS also becomes the source of reward function
ri. In the MDP formulation of congestion control,
the sending rate represents the actions, while the
state and reward use QoS as the main source. From
that formulation, one of the configurable variables is
the interval duration δi. Aurora [5] defines interval
as the product of n parameter and RTTlatest. Orca
[6] and DeepCC [7] set their interval to a fixed
value according to the prior knowledge of humans.
NeuRoc [8] employs interval based on changepoint
with constant maximum duration. Each method has
a different interval definition. However, there is no
empirical study for interval selection.

Our research follows the interval definition of
Aurora [5], but the n parameter and RTT estimation
are different. We pick several methods to estimate
RTT inspired by decades of rule-based congestion
control research [1, 3, 13, 14]. Our work shows
the effect of interval duration based on those RTT
estimators on the DRL-CC’s network performance.
The main goal is to find the appropriate value of n
and RTT estimation used for DRL-CC. This research
compares various RTT estimators and combines
them with several multiplication factors n. This work
examines each combination of the n parameter and
RTT estimation in seven networking scenarios with
various bandwidth, delay, and loss probability con-
ditions. Our research uses statistical analysis [15] to
analyze the data. Our findings are beneficial for the
subsequent research and implementation of DRL-
CC that uses interval-based monitoring. The key
contributions of this paper are:

• To the best of our knowledge, this work is
the first empirical study of the interval con-
figuration, which includes the RTT estimator

Figure 2. The MDP formulation transforms the congestion
control sending rate pattern from the conventional saw
tooth to staircase per-interval cycles.

used in DRL-CC.
• It investigates the applicability of RTTewma

[13], RTTjk [1], and RTTmin−filtered [14]
as the RTT estimator of interval configura-
tion.

• This paper discovers the preferred value of
the n parameter and RTT estimation in the
interval configuration examined in seven dif-
ferent networking scenarios.

The remainder of the paper is organized as
follows. The following section presents the re-
lated works. Then, this paper explains the research
methodology. Following that, it evaluates the result
from extensive experiments. In the end, it summa-
rizes the paper, concludes the work, and discusses
future works.

2. Related Works

Aurora [5] establishes the foundation for rein-
forcement learning applications to solve congestion
control problems. That algorithm maps the con-
gestion control problem into the Markov decision
process using PCC architecture [16]. Aurora [5]
uses δi = n × RTTlatest as the interval. That work
also tests various n values to discover its best per-
formance. The performance evaluation shows that
Aurora [5] is comparable to BBR [3] and Cubic [17].
Nevertheless, Aurora’s model is not generalized yet.
Moreover, that approach requires high computational
resources.

Orca [6] and DeepCC [7] fuse rule-based and
deep reinforcement learning to solve congestion con-
trol problems. They combine the best of both worlds.
They run both approaches concurrently and pick the
best one as the final sending rate. Orca [6] and
DeepCC [7] define interval as the monitoring time
period (MTP) and set it to a fixed value. They use
20ms as their MTP. They also study its performance
on various MTP.

Libra [9] and TCP-NeuRoc [8] work similarly to
Orca [6] and DeepCC [7]. However, they initially ran
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Figure 3. The policy model’s architecture.

the rule-based congestion control to train the DRL
agents using online training. Once they reach the
maximum training duration, the agents can be used
to estimate the sending rate decision. NeuRoc [8]
exploits the DRL agent if a changepoint is detected.
NeuRoc [8] employs variable length of monitoring
interval (MI) based on abrupt variation from time
series data, called changepoint, with a maximum
duration of no more than 200ms. On the other hand,
Libra [9] utilizes the DRL agent interchangeably
with the rule-based congestion control in each evalu-
ation interval. Libra [9] uses evaluation interval (EI)
to 0.5×RTT. MI and EI refer to the same variable,
interval δi, as described in the previous section.

An approach called Teacher-Student Learning
[10] and SymbolicPCC [11] leverage the distillation
method to reinforcement learning. Teacher-Student
Learning [10] teaches the DRL agent, as students,
to imitate BBR [3], which represents the teacher.
Unfortunately, there is no information about the in-
terval configuration used in this work. SymbolicPCC
[11] distills the Aurora [5] model as a teacher into a
more interpretable model as a student in the form of
the decision tree. SymbolicPCC [11] produces two
kinds of symbolic policy, including the unbranched
and the branched symbolic policy. This method uses
a genetic algorithm to look for the symbolic policy
and K-Means Clustering to branch the symbolic
policy. This approach uses identical interval duration
to Aurora [5].

We can summarize that the state-of-the-art em-
ploys different ways to determine the interval δi.
Several methods, such as Orca [6], DeepCC [7],
NeuRoc [8] set δi to an explicit and fixed time
value. On the other hand, Aurora [5], SymbolicPCC
[11] use the product of n = 1.5 and RTTlatest to

calculate the δi. Quite similar to Aurora [5], Libra
[9] use n = 0.5. Those variations in interval defini-
tion add repetitive work for subsequent DRL-CC’s
work to find their method’s best δi. This indicates an
open problem. Therefore, our work focuses on the
empirical study to investigate the effect of several
interval configurations on the network performance
of DRL-CC.

3. Methodology

3.1. DRL Problem Formulation

This work follows the original Aurora design
[5] that formulates the congestion control problem
as a partially observable Markov decision process
(POMDP). Aurora [5] formulates congestion control
as a sequential decision-making problem under the
RL framework. The agent’s design adopts the PCC
architecture [16] that divides the time into interval
series. At the beginning of each interval, the agent
adjusts its sending rate gi. In the MDP formulation,
the actions become changes of the sending rate.
At each interval, the agent collects a networking
event log, such as the packet size and the time of
packet sent/acked/lost. At the end of each interval,
we use the networking logs to calculate the quality
of service (QoS): throughput (tput), delay, and loss.
The QoS values are used to calculate the network
statistics: the latency inflation, latency ratio, and
sending rate ratio. The latency inflation is the ratio
between the current latency to the previous latency.
The latency ratio is the normalized current ratio to
the minimum latency. The sending rate ratio is the
normalized current sending rate to the throughput.
We symbolize the calculation of latency inflation,
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Table 1. Measurement scenario specification.

Network Scenario Mean Bandwidth One-Way Delay Loss Probability Queue Size
Default Pantheon [18] 12Mbps 60ms 0.0% 64packets
Static Movement [7] 21Mbps 20ms 0.0% 100packets

Walking Movement [7] 16Mbps 20ms 0.0% 100packets
Taxi Commuting [7] 21Mbps 20ms 1.0% 100packets
Bus Commuting [7] 19.8Mbps 20ms 1.0% 100packets

Low BDP [19] 2.64Mbps 88ms 0.0% 40packets
High BDP [19] 5.65MBps 200ms 0.0% 40packets

latency ratio, and sending rate ratio as fstate(QoS).
In the MDP formulation, the states are histories of
network statistics si = fstate(QoS). The reward
function also uses the QoS values to calculate the
reward at the end of the interval si = freward(QoS).
We follow the linear reward function defined by [5]
as in eq 1.

freward = 10× tput−103×delay−2×103× loss (1)

The agent has a policy model that is responsible
for receiving the states and inferring the action. The
policy model adopts multi-layered perceptron archi-
tecture [20] with two hidden layers. The first and
second hidden layers have 32 and 16 nodes, as illus-
trated in fig 3. The input layer consists of 30 nodes to
accommodate the last ten states, with three network
statistics in each state: latency inflation, latency ratio,
and sending rate ratio. The output layer has only
one node. All node uses tanh (hyperbolic tangent
function) as the activation function. In the training
process, we use proximal policy optimization (PPO)
[21] as the training algorithm. The value function
model adopts identical architecture to the policy
model. The hyperparameter value for the discount
rate γ is 0.99. The actor collects 8192 timesteps per
batch. Each optimization uses 2048 timesteps data
for 10 epochs. The learning rate is constant at 10−4.

3.2. Experiment

We use a quantitative experimental approach to
investigate several groups of interval configurations
and test them statistically. Each group is the combi-
nation of the product of the n parameter and RTT es-
timation as shown in eq 3.2. We compare three RTT
functions which are RTTewma [13], RTTjk [1], and
RTTmin−filtered [14]. The multiplication factor n is
set to n ∈ N = [0.5, 0.75, 1.0, 1.5, 2.0, 3.0]. Hence,
we got 18 combinations of n and RTT estimator as
interval configuration.

The RTTewma takes inspiration from the expo-
nential weight moving average in statistics. It is a
type of memory that combines present and past RTT

data to calculate the estimated RTT as defined in
eq 2. The RTTjk complements the RTTewma by
taking the pseudo variance into the calculation of
estimated RTT as shown in eq 3. It ensures that
the estimated RTT exceeds the fluctuating RTT. The
RTTmin−filtered takes a different approach than the
other two since it takes the minimum of RTT for the
last 10 seconds. It considers that if routing changes,
the routing table propagation needs 10 seconds to
affect the RTT empirically.

RTTewma = (1−α) ·RTTewma+α ·RTTlatest (2)

RTTvar = β·RTTewma+(1−β)·|RTTewma−RTTlatest|

RTTjk = RTTewma + 4× RTTvar (3)

δi = n×RTT (4)

,where RTT = {RTTewma,RTTjk,RTTmin−filtered}

We use Pantheon [18] to evaluate the network
performance of each method. Pantheon [18] is a
system that measures the performance of many
transport protocols and congestion control schemes
across a diverse set of network paths, either phys-
ical or emulated. It measures parameters such as
mean throughput, 95th-%ile delay, and mean loss.
The evaluation stage examines each combination of
interval configurations in seven networking scenar-
ios. The Pantheon default scenario is a link with
fixed 12 Mbps bandwidth. The other four scenarios
use cellular environment settings getting modeled as
static movement, walking, taxi, and bus commuting
[7]. The other two are low bandwidth-delay product
(BDP) and high BDP networks [19]. Table 1 shows
the network specifications for each measurement
scenario. The measurement is done in 60 seconds
of data transmission and repeated 30 times for each
method evaluated. The evaluation is done locally
inside a virtual machine (VM) with dedicated 1
vCPU and 4 GB RAM. We use GCP to provide the
VM used in the measurement activity.
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Table 2. Interval configurations group name.

Group Name N RTT Estimator
A 0.5 RTTewma

B 0.75 RTTewma

C 1.0 RTTewma

D 1.5 RTTewma

E 2.0 RTTewma

F 3.0 RTTewma

G 0.5 RTTjk

H 0.75 RTTjk

I 1.0 RTTjk

J 1.5 RTTjk

K 2.0 RTTjk

L 3.0 RTTjk

M 0.5 RTTmin−filtered

N 0.75 RTTmin−filtered

O 1.0 RTTmin−filtered

P 1.5 RTTmin−filtered

Q 2.0 RTTmin−filtered

R 3.0 RTTmin−filtered

Table 3. Manova table reporting the results of a multi-
variate comparison evaluating differences in the number
of networking performance observed for default Pantheon
scenario.

Value p value
Wilks’ lambda 0.000507 0.0
Pillai’s trace 2.363265 0.0
Hotelling-Lawley trace 71.612767 0.0
Roy’s greatest root 49.550905 0.0

This paragraph presents the fixed variable used in
this research. We use an identical machine-learning
model for all interval combinations to focus the
evaluation on the implementation aspect. The ma-
chine learning model design has been explained in
section 3.1. The RTTewma uses α = 1

8 . The RTTvar

uses β = 3
4 . The pacer implements token bucket

algorithm [22] with respect to the selected sending
rate gi.

We use one-way Manova [23] to analyze and
find the significant difference between interval con-
figurations involved in this research. The congestion
control research can leverage the statistical method
such as Analysis of Variance (ANOVA) [15, 24] to
analyze the measurement data [25]. Anova is an ap-
proach to determine the data group’s differences by
inspecting the similarity between them [24]. There
are 18 interval configurations or groups as indepen-
dent variables value as defined in table 2. The mea-
surements collect three kinds of data or dependent
variables: throughput, delay, and loss. There are one
independent variable and three dependent variables.

Figure 4. Throughput, delay, loss measurements at default
Pantheon scenario [18].

4. Result

This section presents the performance mea-
surement of each networking scenario in two
kinds of scatter plots: (1) throughput-delay and (2)
throughput-loss. We organize the diagrams in such a
way that the extreme conditions are easy to identify.
The top right area indicates high throughput and low
delay or loss. It is the ideal position. On the contrary,
the bottom left region denotes the low throughput
and high delay or loss. Other quadrants show that
there is a tradeoff between throughput and loss or
delay.

We also use statistical analysis to test the sig-
nificant relationship between each interval config-
uration. That value indicates whether there is a
statistically significant difference in networking per-
formance based on interval configuration in each
networking scenario. Manova [23] calculates four
multivariate test statistics: Wilks’ Lambda, Pillai’s
Trace, Hotelling-Lawley Trace, and Roy’s Greatest
Root. Those four tests share the same null hypoth-
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Figure 5. Throughput, delay, loss measurements at the
cellular network with static position scenario [7].

Table 4. Manova table reporting the results of a multi-
variate comparison evaluating differences in the number
of networking performance observed for static position
scenario.

Value p value
Wilks’ lambda 0.001696 0.0
Pillai’s trace 2.225667 0.0
Hotelling-Lawley trace 50.354655 0.0
Roy’s greatest root 42.073656 0.0

esis. The value column, as shown in table 3-9,
presents the calculated score of each multivariate test
statistic. Later, those values are used to calculate the
p-value. The null hypothesis is evaluated with regard
to this p-value. We reject the null hypothesis that the
group has no effect when the p-values are all less
than .05.

We present the measurement result of the default
Pantheon scenario in figure 4. Group I (1.0×RTTjk)
reaches the highest throughput among others. Group
M (0.5×RTTmin−filtered) preserves low delay and

Figure 6. Throughput, delay, loss measurements at the
cellular network with walking movement scenario [7].

Table 5. Manova table reporting the results of a multivari-
ate comparison evaluating differences in the number of
networking performance observed for walking movement
scenario.

Value p value
Wilks’ lambda 0.001528 0.0
Pillai’s trace 2.164291 0.0
Hotelling-Lawley trace 93.779338 0.0
Roy’s greatest root 89.839293 0.0

low loss by sacrificing the throughput. Group I (1.0×
RTTjk) also balances the throughput, delay, and loss.
Table 3 shows that all multivariate measures agree
that there is a significant difference (p value < 0.05)
in the measurement data. Those results deduce that
Group I (1.0 × RTTjk) is superior in this default
pantheon scenario.

Figure 5 plots the measurement result of
the static position scenario. Group M (0.5 ×
RTTmin−filtered) keeps the delay and loss low by
dropping the throughput. Group K (2.0 × RTTjk)
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Figure 7. Throughput, delay, loss measurements at the
cellular network in taxi commuting scenario [7].

Table 6. Manova table reporting the results of a multi-
variate comparison evaluating differences in the number
of networking performance observed for taxi commuting
scenario.

Value p value
Wilks’ lambda 0.001396 0.0
Pillai’s trace 2.541112 0.0
Hotelling-Lawley trace 36.842862 0.0
Roy’s greatest root 28.534529 0.0

lead the throughput performance. Group C (1.0 ×
RTTewma) stabilizes the throughput, delay, and
loss. However, the throughput of Group C (1.0 ×
RTTewma) is only 5% less than the Group K
(2.0 × RTTjk). Moreover, the statistical analysis
shows that there is a significant difference (p value
< 0.05) in the measurement data, as shown in table
4. Those measurement outputs infer that both group
C (1.0 × RTTewma) and K (2.0 × RTTjk) are rec-
ommended to cellular with static position scenario.

This work draws the measurement result of each

Figure 8. Throughput, delay, loss measurements at the
cellular network in bus commuting scenario [7].

Table 7. Manova table reporting the results of a multi-
variate comparison evaluating differences in the number
of networking performance observed for bus commuting
scenario.

Value p value
Wilks’ lambda 0.003224 0.0
Pillai’s trace 2.208646 0.0
Hotelling-Lawley trace 33.175822 0.0
Roy’s greatest root 26.725973 0.0

interval configuration for the walking movement sce-
nario in figure 6. Group M (0.5×RTTmin−filtered)
suppresses the delay and loss by retaining the
throughput. Group H (0.5 × RTTjk), B (0.75 ×
RTTewma), and C (1.0 × RTTewma) harmonize the
throughput, delay, and loss. Group L (3.0×RTTjk),
F (3.0×RTTewma), and K (2.0×RTTjk) become the
top 3 in throughput measurement. The throughput
margin from groups L, F, and K to groups H, B,
and C is less than 8%, but the delay margin is
more than 80%. All multivariate measures agree that



158 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 16,
issue 2, June 2023

Figure 9. Throughput, delay, loss measurements at low
bandwidth-delay product scenario.

Table 8. Manova table reporting the results of a multi-
variate comparison evaluating differences in the number
of networking performance observed for low bandwidth-
delay product scenario.

Value p value
Wilks’ lambda 0.153232 0.0
Pillai’s trace 1.230026 0.0
Hotelling-Lawley trace 3.262024 0.0
Roy’s greatest root 2.484698 0.0

there is a significant difference (p value < 0.05) in
the measurement data, as shown in table 5. Those
measurement results reveal that groups H, B, and C
are more favored for delay-sensitive applications in
this scenario.

We show the measurement result of each interval
configuration for the taxi commuting scenario in
figure 7. Group J (1.5×RTTjk) and K (2.0×RTTjk)
lead throughput measurement respectively. Group A
(0.5×RTTewma) balances the throughput, delay, and
loss. Group M (0.5 × RTTmin−filtered) suppresses

Figure 10. Throughput, delay, loss measurements at high
bandwidth-delay product scenario.

Table 9. Manova table reporting the results of a multi-
variate comparison evaluating differences in the number
of networking performance observed for high bandwidth-
delay product scenario.

Value p value
Wilks’ lambda 0.516508 0.0
Pillai’s trace 0.548742 0.0
Hotelling-Lawley trace 0.81294 0.0
Roy’s greatest root 0.630792 0.0

the delay and loss by keeping the throughput low.
Group A’s throughput is only less than 5% of group J
and K. Whereas group A’s delay and loss are almost
half of the group J and K. Table 6 shows that the
multivariate measures agree that there is a significant
difference (p value < 0.05) in the measurement data.
Those results deduce that Group A (0.5×RTTewma)
is preferable to this scenario.

Our work draws figure 8 to plot the measurement
result of each interval configuration for the bus
commuting scenario. Group B (0.75 × RTTewma)
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Table 10. Summary table of each evaluation scenario.

Scenario Higher
Throughput

Lower Delay
and Loss

Default Pantheon I M
Static Position C and K C and M

Walking Movement F, L and K C and M
Taxi Commuting J and K A and M
Bus Commuting H, J, and K B, C, and M

Low BDP J and K M and Q
High BDP K and Q A, K, M

and C (1.0 × RTTewma) harmonize the through-
put, delay, and loss. Group H (0.5 × RTTjk), J
(1.5 × RTTjk), and K (2.0 × RTTjk) become the
top 3 in throughput measurement. Group M (0.5 ×
RTTmin−filtered) suppresses the delay and loss by
retaining the throughput. All multivariate measures
agree that there is a significant difference (p value
< 0.05) in the measurement data, as shown in table
7. Those measurement outputs infer that both group
B (0.75 × RTTewma) and C (1.0 × RTTewma) are
preferred to cellular with bus commuting scenario
since the throughput is comparable to the highest
throughput, but they have better delay and loss.

Figure 9 portrays the measurement result
of each interval configuration for a low
bandwidth-delay product scenario. Group Q
(2.0 × RTTmin−filtered) stabilizes the throughput,
delay, and loss. Group Q (2.0 × RTTmin−filtered)
and M (0.5 × RTTmin−filtered) preserve the delay
and loss by suppressing the throughput. Group K
(2.0 × RTTjk) and J (1.5 × RTTjk) are the first
and second highest throughput measurement. The
distance of groups Q and M to groups K and J
with respect to throughput, delay, and loss is small.
Table 8 shows the multivariate measures agree that
there is a significant difference (p value < 0.05)
in the measurement data. Those results infer that
Group Q (2.0 × RTTmin−filtered) is advisable for
a low bandwidth-delay product scenario.

We plot the measurement result of each in-
terval configuration for a high bandwidth-delay
product scenario in figure 10. Group Q (2.0 ×
RTTmin−filtered) and K (2.0 × RTTjk) become
the top 2 in throughput measurement. Group K
(2.0 × RTTjk), M (0.5 × RTTmin−filtered), and A
(0.5 × RTTewma) keep the delay and loss low by
retaining the throughput. Group K (2.0 × RTTjk)
and A (0.5 × RTTewma) balances the throughput,
delay, and loss. Group K and Q’s delay and loss
are comparable to the lowest delay and loss. Table
9 presents the multivariate measures that agree that
there is a significant difference (p value < 0.05) in
the measurement data. Those measurement results

Figure 11. Sample RTT log of default Pantheon scenario.

reveal that groups K and Q are effective in this
scenario.

Those measurement results in seven networking
scenarios prove that certain networking condition
prefers particular interval configuration for DRL-
CC. Table 10 summarizes the evaluation results of
each scenario. Group K (2.0 × RTTjk) appears as
the high throughput in six of seven scenarios, in-
cluding a cellular network with fluctuating band-
width. Whereas, group I (1.0 × RTTjk) is better
than group K (2.0×RTTjk) in the flatter bandwidth
scenario. Group C (1.0 × RTTewma) reaches lower
delay and loss but smaller throughput in three of
seven scenarios. Group M (0.5 × RTTmin−filtered)
always has a low delay and loss by retaining the
throughput in all scenarios. The measurement of
group M (0.5×RTTmin−filtered) shows that narrow
interval durations yield low delay and loss.

Those measurement results also show that
RTTjk have higher throughput than RTTewma and
RTTmin−filtered. Fig 11 presents the recorded data
of the latest RTT, estimated RTTewma, estimated
RTTjk, and estimated RTTmin−filtered. We can see
that RTTewma draws a line within the latest RTT
data. Whereas RTTjk is consistently at the top of
the latest RTT. While RTTmin−filtered always be-
comes the lower bound. Those behavior affect the
sending rate and, eventually, the throughput. This
phenomenon relates to the selection of interval du-
ration δi.

Intuitively, we should select interval duration δi
that is greater than or equal to the propagation RTT
or RTTprop. RTTprop is the minimum RTT of a
communication. Let a packet is transmitted at time t;
thus, the fastest ACK arrives at t+RTTprop. If δi is
less than RTTprop, there are no networking statistics
that can be collected where it is required by the
policy model as input to infer the changes in sending
rate. Therefore RTTprop defines the lower bound of
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sampling interval δi. Since the network condition
is stochastic over time, the interval δi should also
be adaptive and follows the RTT trend. That intu-
ition also explains the result in the default Pantheon
scenario. The default Pantheon scenario has a fixed
bandwidth; therefore, we need interval duration δi
that is close to RTTprop. Fig 11 shows that RTTjk

is the closest among the other estimations. Hence, it
explains why Group I (1.0×RTTjk) gets the highest
throughput in default Pantheon scenario.

5. Conclusion

We present an empirical study of interval con-
figuration on the DRL-CC agent’s implementation.
The use of interval configuration significantly pro-
duces different QoS measurement results. Our work
also proves that RTTjk have higher throughput than
RTTewma and RTTmin−filtered in various network-
ing scenarios. Interval configuration, which com-
bines RTTjk and n = 2.0, is recommended for
almost all networking scenarios. Whereas interval
configuration pairing RTTjk and n = 1.0 is optimal
for a network with fixed bandwidth.

This work shows that there is a diverse interval
configuration to balance the networking performance
of the congestion control agents. There is a prob-
ability that static interval configuration unfits cer-
tain networking scenarios. Accordingly, we suggest
the learnable interval configuration of DRL-CC for
future work. The machine learning model can also
estimate the interval duration δi, in addition to send-
ing rate gi, since multi-layered perceptron (MLP)
is capable of inferring multiple outputs. Moreover,
we are aware that the computational complexity of
this DRL-CC prototype is high. It is caused by the
use of UDT transport protocol. One of the potential
solutions to address that issue is by replacing the
transport protocol from UDT to QUIC. We plan to
evaluate that method for future work.
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