
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
17/1 (2024), 19-35. DOI: http://dx.doi.org/10.21609/jiki.v17i1.1184

Note on Algorithmic Investigations of Juosan Puzzles

Muhammad Tsaqif Ammar1, Muhammad Arzaki2, Gia Septiana Wulandari2

1 Undergraduate Student, Computing Laboratory, School of Computing, Telkom University, Bandung (40257)
2 Computing Laboratory, School of Computing, Telkom University, Bandung (40257)

Email: 1tsaqifammarmuh@gmail.com, 2{arzaki,giaseptiana}@telkomuniversity.ac.id

Abstract

We investigate several algorithmic and mathematical aspects of the Juosan puzzle—a one-player pencil-and-
paper puzzle introduced in 2014 and proven NP-complete in 2018. We introduce an optimized backtracking
technique for solving this puzzle by considering some invalid subgrid configurations and show that this
algorithm can solve an arbitrary Juosan instance of size m × n in O(2mn) time. A C++ implementation of
this algorithm successfully found the solution to all Juosan instances with no more than 300 cells in less
than 15 seconds. We also discuss the special cases of Juosan puzzles of size m× n where either m or n is
less than 3. We show that these types of puzzles are solvable in linear time in terms of the puzzle size and
establish the upper bound for the number of solutions to the Juosan puzzle of size 1× n. Finally, we prove
the tractability of arbitrary m× n Juosan puzzles whose all territories do not have constraint numbers.

Keywords: backtracking, Juosan puzzle, puzzle solver, tractable sub-problems

1. Introduction

Juosan (縦横さん in Japanese) is a puzzle
developed by Nikoli, a Japanese publisher that
specializes in pencil-and-paper logic puzzles. The
puzzle—introduced in 2014 [1]—has been proven
NP-complete in 2018 by Iwamoto and Ibusuki [2].
Later in 2020, it was shown that the 3SAT problem is
polynomial-time reducible to Juosan puzzles [3]. An
algorithmic investigation regarding the card-based
zero-knowledge proof of Juosan puzzles is discussed
in [4]. This puzzle is played on an m×n grid of cells
that are divided into several rectangular territories
enclosed by bold lines. The goal is to fill each cell
of the grid with a (vertical bar) or (horizontal
bar) symbol following a set of rules, namely [5]:

1) if a territory contains a number, then the num-
ber of either or symbols in it must be
equal to that number; if a territory is unnum-
bered, then it may have any number of or

symbols;
2) the symbol can extend for more than three

cells vertically but not more than two cells
horizontally;

3) the symbol can extend for more than three
cells horizontally but not more than two cells
vertically.

Puzzles have a long history and are found in
diverse societies, revealing the inherent connection
between human intelligence and playful imagination.
They serve not only as recreational activities but
also as cognitively stimulating exercises [6]. Interest-
ingly, puzzles have gained significant attention from
the scientific community in recent decades due to
their deep connection with important problems in
mathematics and computation [7]. Studies regarding
this include algorithmic investigations and compu-
tational complexity analysis of various puzzles (see
[7–10] for extensive surveys). In the case of pencil-
and-paper puzzles, many have been proven to be NP-
complete, such as (in chronological order): Nono-
gram (1996) [11], Sudoku (2003) [12], Nurikabe
(2004) [13], Heyawake (2007) [14], Country Road
and Yajilin (2012) [15], Kurodoko (2012) [16], Sto-

19

http://dx.doi.org/10.21609/jiki.v17i1.1184

20 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

Stone (2018) [17], Usowan (2018) [18], Kurotto and
Juosan (2018 and 2020) [2, 3], Tatamibari (2020)
[19], Yin-Yang (2021) [20], Nurimeizu (2022) [21],
and Tilepaint (2022) [22]. Furthermore, elementary
algorithmic investigations have also been conducted
on puzzles like Yin Yang and Tatamibari [23, 24].

The NP-completeness of Juosan puzzles implies
the existence of a polynomial-time solution verifier
and an exponential-time algorithm for solving such
puzzles. However, there has been limited formal
algorithmic investigation of Juosan solvers because
the puzzle is relatively new and has only been re-
cently proven NP-complete. Regardless of various
approaches for solving NP-complete puzzles, such as
using MIP (mixed integer programming) solvers [25]
or SAT-based solvers [26], this paper discusses a
relatively elementary and straightforward technique:
the backtracking method with pruning optimizations.
We demonstrate that this technique can solve an
arbitrary Juosan puzzle in exponential time relative
to the puzzle’s size. We also discuss some spe-
cial tractable cases of the Juosan puzzle and per-
tinent mathematical analyses regarding the number
of solutions. Investigation of tractable sub-problems
and tractable variants of NP-complete problems are
particularly important in theoretical computer sci-
ence (see, e.g., [27, 28]). Moreover, counting the
number of solutions to a particular computational
problem is also interesting from mathematical and
computational perspectives, especially in counting
complexity theory [29, 30].

We further organize the rest of the paper into the
following sections. In Section 2, we discuss some
theoretical aspects of the Juosan puzzles and derive
an additional rule concerning the non-existence of
some particular subgrids. In Section 3, we introduce
an O(mn) time algorithm to verify an m×n Juosan
solution. Section 4 discusses our optimized back-
tracking algorithm for solving an arbitrary m × n
Juosan puzzle in O(2mn) time. The investigation
of tractable variants of the Juosan puzzle and the
upper bound on their number of solutions based
on mathematical analysis is discussed in Section 5.
Additionally, we present computational experiments
of our algorithms in Section 6. The last portion of
the paper, Section 7, summarizes and concludes our
findings.

2. Preliminaries, Related Works, and
Important Observation

In this paper, we use one-based indexing for all
arrays. For a one-dimensional array A of length n,
the notation Ai or A[i] (1 ≤ i ≤ n) denotes the
i-th entry of A. For a two-dimensional array B of

m rows and n columns, the notation Bi,j denotes
the entry in i-th row and j-th column of B where
1 ≤ i ≤ m and 1 ≤ j ≤ n.

2.1. Formal Definition and Data Structure
Representation of Juosan Puzzles

Informally, a Juosan instance is the initial in-
complete puzzle. A Juosan configuration is a puzzle
where all cells are filled, but it may not satisfy the
rules of the Juosan puzzle. A Juosan solution is a
Juosan configuration that complies with the rules of
the Juosan puzzle. To discuss the formal algorithmic
aspects of the Juosan puzzle, we introduce the for-
mal definition of Juosan instance, configuration, and
solution in Definition 1. For more illustration about
the Juosan puzzle, see Figure 1.

Definition 1. An instance of a Juosan puzzle of
size m × n is a rectangular grid of m rows and
n columns consisting of mn empty cells partitioned
into one or more rectangular territories. A territory
may contain a positive integer between 1 and the
number of cells in such a territory. A configuration
for a Juosan instance (or a Juosan configuration) is a
Juosan instance whose cells are filled with either the

or symbol. A solution to a Juosan instance is a
Juosan configuration that satisfies the rule of Juosan
puzzles, namely: (1) if a territory contains a number
k, then the number of either or symbols in it
must be equal to k; (2) the symbol cannot extend
horizontally to more than two consecutive cells; and
(3) the symbol cannot extend vertically to more
than two consecutive cells.

3

4

2 3

4

1

(a) An instance of a Juosan
puzzle.

3

4

2 3

4

1

(b) One possible solution
for an instance in Figure
1a.

Figure 1. An example of a Juosan instance (left) and its
solution (right).

In this paper, a Juosan instance of size m × n
is represented using a two-dimensional array R of
the same size where Ri,j denotes the label of the
territory containing cell (i, j). This label is an integer
between 1 and r (inclusive), where r denotes the
number of territories in the instance. We also use
a one-dimensional array N of length r to represent

Ammar et.al., Note on Algorithmic Investigations of Juosan Puzzles 21

the numbers within each territory (if such numbers
exist). For each 1 ≤ i ≤ r, we define Ni as the
number occurring in territory i. If there is no infor-
mation about this number for a particular territory
i, we define Ni = −1. The solution to a Juosan
instance R of size m×n is represented using a two-
dimensional array S of the same size where Si,j is
either or .

2.2. Overview of the NP-Completeness of
Juosan Puzzles

Juosan puzzles have been proven NP-complete
by Iwamoto and Ibusuki [2, 3]. The authors pre-
sented a polynomial-time reduction from the PLA-
NAR 3SAT problem to Juosan puzzles [3]. The
PLANAR 3SAT problem was proven NP-complete
by Lichtenstein [31], thus establishing the NP-
completeness of Juosan puzzles.

From every 3SAT problem, an incidence graph
can be constructed by creating nodes for each vari-
able and clause, and edges connecting each variable
to the clause it appears in. The PLANAR 3SAT
problem is a subset of 3SAT in which the constructed
incidence graph is planar [31]. A graph is considered
planar if it can be drawn on a plane such that no two
edges intersect except on its vertices [32].

The earlier stated polynomial-time reduction pre-
sented by Iwamoto and Ibusuki uses constant-size
partial instances of Juosan puzzles, generally rec-
ognized as gadgets, to represent objects in the
PLANAR 3SAT problem, such as variable gad-
gets, clause gadgets, and not gadgets. According to
Iwamoto and Ibusuki [3], any instance of the PLA-
NAR 3SAT problem can be represented by a corre-
sponding Juosan puzzle constructed using the afore-
mentioned gadgets. The constructed Juosan puzzle
has a solution if and only if the PLANAR 3SAT in-
stance is satisfiable, thus completing the polynomial-
time reduction. Furthermore, as Juosan puzzles can
be verified in polynomial time, they are considered
NP-complete. In this paper, a polynomial-time verifi-
cation algorithm for checking Juosan configurations
is also discussed in Section 3.

2.3. Important Observation: Invalid 2 × 3
and 3× 2 Subgrids

In a Juosan puzzle, it is possible to have a
configuration containing a 2×3 subgrid with all cells
filled with symbols or a 3 × 2 subgrid with all
cells filled with symbols. The following definition
formally characterizes such subgrids. An illustration
of these subgrids is given in Figure 2.

Definition 2. A 2×3 subgrid of is a collection of
six adjacent cells (r, c), (r, c+1), (r, c+2), (r+1, c),
(r+1, c+1), and (r+1, c+2) such that these cells
are filled with symbols. A 3 × 2 subgrid of
is a collection of six adjacent cells (r, c), (r, c+ 1),
(r + 1, c), (r + 1, c + 1), (r + 2, c), (r + 2, c + 1)
such that these cells are filled with symbols.

Figure 2. A 2 × 3 subgrid of and a 3 × 2 subgrid of
.

In the following theorem, we prove the non-
existence of Juosan solutions for particular Juosan
puzzles. We show that any configuration with more
than two rows containing at least one 2× 3 subgrid
of does not satisfy the puzzle rules. Analogously,
this condition also applies to any configuration with
more than two columns containing at least one
3 × 2 subgrid of . These facts are beneficial for
backtracking algorithms in eliminating many invalid
configurations as the puzzle’s size gets bigger.

Theorem 1. Let C be an m×n Juosan configuration
that satisfies one of the following properties:

1) m > 2 and n ≥ 3 and C contains a 2 × 3
subgrid of ,

2) m ≥ 3 and n > 2 and C contains a 3 × 2
subgrid of ,

then C does not satisfy Juosan rules.

Proof. We prove the theorem by contradiction. For
brevity, we only discuss the proof for the first condi-
tion, i.e., if m > 2 and n ≥ 3 and C contains a 2×3
subgrid of . If such a condition happens, then there
must exist a row above or below such a subgrid,
and these rows contain at least three columns. Since
we cannot vertically extend the symbol for more
than two cells, these rows must be filled with
symbols. However, this condition implies that the

symbols are extended for three cells horizontally,
which contradicts the puzzle rules.

The proof for the second condition is analogous
to the first one.

3. Verifying Juosan Solutions in Polyno-
mial Time

This section briefly discusses a polynomial time
algorithm for verifying whether a Juosan configura-
tion is a valid solution.

22 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

3.1. Constraint Checking Related to Num-
bers Within Territories

As previously mentioned in the rules of Juosan,
if a territory contains a number k, then the number
of either or symbols in it must be equal to
k. Suppose the cells are grouped into r territories,
denoted as t1, t2, . . . tr, where territory ti contains a
number ki. To verify if a Juosan configuration sat-
isfies this rule, we first create two variables Di and
Pi for each territory to track the number of and

symbols within it, respectively. Then, we traverse
all mn cells in row-major order and increment Di

if we encounter a symbol or increment Pi if we
encounter a symbol in territory ti. Finally, we
check if Di = ki or Pi = ki for all territories ti
containing a positive integer ki.

3.2. Constraint Checking Related to Three
Consecutive Cells

A Juosan configuration is a solution if it does not
contain symbols extending horizontally to more
than two consecutive cells or symbols extending
vertically to more than two consecutive cells. Notice
that it is sufficient to check for only three consecu-
tive cells to verify this rule. To check the horizontal
constraint for the symbol, we examine all cells
(i, j) filled with symbols, where 1 ≤ i ≤ m and
1 ≤ j − 2 ≤ n, to see if two cells to the right
of it are also filled with symbols. Similarly, to
check the vertical constraint for the symbol, we
examine all cells (i, j) filled with symbols, where
1 ≤ i ≤ m − 2 and 1 ≤ j ≤ n, to see if two cells
below it are also filled with symbols. If one of
these conditions is met for any cell, then the Juosan
configuration is not a solution.

3.3. Main Verification Algorithms

To verify whether a Juosan configuration satisfies
the Juosan rules, we perform all the constraint-
checking algorithms described in Section 3.1 and
Section 3.2. It is worth noting that each checking
algorithm involves a simple linear scan of the m×n
grid, making their running time O(mn) each. There-
fore, the entire verification algorithm also has a run-
ning time of O(mn). This confirms that the Juosan
puzzle can be verified in polynomial time, which
places it in the NP complexity class. Additionally,
this algorithm has an asymptotic space complexity
of O(mn) due to the need to store two variables for
each territory, which, in the worst case, totals up to
mn territories.

4. Backtracking Method for Solving Ju-
osan Puzzles

The backtracking method is a recursive approach
to incrementally build and test potential solutions
while rejecting those that violate the problem’s con-
straints. A backtracking algorithm can be optimized
by adding extra negative constraints that might help
eliminate (or “prune”) many invalid solutions [33].
This section discusses a backtracking method with
some pruning optimizations to solve the puzzle and
its complexity analysis.

To solve the Juosan puzzle with the backtracking
method, we begin by labeling the territories with
unique numbers. Let us denote Ri,j as the label of
the territory containing cell (i, j) and Ni as the num-
ber occurring in territory i. If a particular territory
i does not contain a number, we define Ni = −1.
The backtracking algorithm, with row-major order
grid traversal, works as follows:

1) We fill the grid in row-major order. To fill each
cell, we try both possibilities: filling it with
either or symbol.

2) As we fill in the grid, we also track and update
some information to help us decide when to
backtrack later. When filling cell (i, j), four
types of information are tracked:

a) The number of vertically consecutive
symbols ending at cell (i, j), denoted as
V Hi,j . To track this, we set V Hi,j to
V Hi−1,j + 1 if cell (i, j) is currently filled
with . When backtracking, we reset V Hi,j

to 0.
b) The number of horizontally consecutive

symbols ending at cell (i, j), denoted as
HVi,j . To track this, we set HVi,j to
HVi,j−1 + 1 if cell (i, j) is currently filled
with . When backtracking, we reset HVi,j

to 0.
c) The number of horizontally consecutive

symbols ending at cell (i, j), denoted as
HHi,j . To track this, we set HHi,j to
HHi,j−1 + 1 if cell (i, j) is currently filled
with . When backtracking, we reset HHi,j

to 0.
d) The number of and symbols filled in

territory Ri,j so far. We denote the former
with D[Ri,j] and the latter with P [Ri,j].
If cell (i, j) is currently filled with , we
increment D[Ri,j]; otherwise, we increment
P [Ri,j]. When backtracking, we decrement
them correspondingly.

Initially, all of these variables have the value of
0 in all positions (i, j).

Ammar et.al., Note on Algorithmic Investigations of Juosan Puzzles 23

3) After filling each cell (i, j), we decide whether
to backtrack, that is, to undo the filling of the
last cell and try another possibility if one exists.
If not, we backtrack further. We backtrack if
any of the following conditions are met:

a) We have formed three consecutive ’s ver-
tically (i.e., V Hi,j = 3).

b) We have formed three consecutive ’s hor-
izontally (i.e., HVi,j = 3).

c) The grid size is larger than 2×3 and a 2×3
subgrid of is formed (i.e., HHi,j ≥ 3 and
HHi−1,j ≥ 3), which results in an invalid
grid state as explained in Theorem 1.1

d) Both the number of and sym-
bols in Ri,j have exceeded NRi,j

(i.e.,
min{D[Ri,j], P [Ri,j]} > NRi,j

).
e) If we fill in the remaining empty cells in

territory Ri,j with all symbols or
symbols, we can never reach NRi,j

(i.e.,
E[Ri,j] + max{D[Ri,j], P [Ri,j]} < NRi,j

,
where E[Ri,j] denotes the number of empty
cells in Ri,j).

f) In territory Ri,j , the symbol with the higher
frequency, denoted by c, exceeds NRi,j

while
the number of cells that are not filled with c
(including empty cells) is less than NRi,j

.
Note that we only check for the first three
conditions if NRi,j = −1 (i.e., the territory Ri,j

does not contain a number).
4) A solution has been found if all cells are

successfully filled. Thus, we can output this
solution and terminate the algorithm.

5) If there is no more possibility to try and the
algorithm has not yet terminated from step 4,
then there is no solution for the instance; there-
fore, we terminate the algorithm.

Figure 3 shows a visualization of this algorithm
solving a 2 × 3 grid with three territories (one of
them is an unnumbered territory).

We divide the backtracking approach into
three major procedures, namely: the procedure
FILL(i, j, s) to fill the cell (i, j) with a symbol
s ∈ { , }, the procedure UNFILL(i, j) to undo
the filling of the cell (i, j), and the procedure MUST-
BACKTRACK(i, j) which returns true if we must
backtrack considering the information at cell (i, j).
All these procedures consider the variables current
and size correspondingly denotes the grid state dur-
ing the filling process and an array signifying the

1For row-major order grid traversal, we can omit checking the
existence of a 3× 2 subgrid of because if one is formed, we
must immediately backtrack in the next cell to fill (i.e., besides
the bottom right corner of the subgrid). This is because filling it
with either symbol violates the rule regarding three consecutive
symbols. Therefore, the check is unnecessary.

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

✓

Figure 3. The pruned state space tree generated when the
Algorithm 4 is used to solve a Juosan instance of size
2 × 3 (topmost). Grid states that cannot possibly lead to
a solution (i.e., meeting one of the conditions in step 3)
are pruned and marked with red crosses, while the found
solution is marked with a green check mark.

sizes of the territories. Additionally, all these proce-
dures consider the variables V H , HV , and HH as
two-dimensional integers arrays of size m × n and
the variables D and P as one-dimensional integer
arrays whose lengths are equal to the number of
territories.

We summarize the procedure to update the value
of V H , HV , HH , D, and P in Algorithm 1. This
procedure fills cell (i, j) with either a or and
updates the value of V Hi,j , HVi,j , HHi,j , D[Ri,j],
and P [Ri,j] accordingly.2

The process to undo the backtracking steps is
summarized in Algorithm 2. This procedure removes
the filling of cell (i, j) and resets the information
update in each of the variables V Hi,j , HVi,j , HHi,j ,
D[Ri,j], and P [Ri,j] accordingly.

Finally, the procedure MUSTBACKTRACK(i, j)

2We use the notation D[Ri,j] and P [Ri,j] instead of DRi,j
and

PRi,j
to increase readability and to avoid cumbersome notations.

24 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

Algorithm 1 FILL(i, j, s) fills cell (i, j) with
symbol s and updates V H , HV , HH , D, and P .

Require: The cell to be updated, (i, j), and symbol
s to fill the cell with, where s ∈ { , }.

Ensure: The procedure fills cell (i, j) in
current with s and updates the information
V H,HV,HH,D, and P accordingly.

1: currenti,j ← s
2: if s = then
3: V Hi,j ← V Hi−1,j + 1
4: HHi,j ← HHi,j−1 + 1
5: D[Ri,j]← D[Ri,j] + 1
6: else
7: HVi,j ← HVi,j−1 + 1
8: P [Ri,j]← P [Ri,j] + 1
9: end if

Algorithm 2 UNFILL(i, j) undo the filling of cell
(i, j) for backtracking.

Require: The cell to be undone, (i, j).
Ensure: The procedure removes the filling of cell

(i, j) in current and updates the information
V H,HV,HH,D, and P accordingly.

1: assert(currenti,j ∈ { , })
2: if currenti,j = then
3: V Hi,j ← 0
4: HHi,j ← 0
5: D[Ri,j]← D[Ri,j]− 1
6: else
7: HVi,j ← 0
8: P [Ri,j]← P [Ri,j]− 1
9: end if

10: currenti,j ← empty
11: ▷ the cell (i, j) becomes empty

Algorithm 3 MUSTBACKTRACK(i, j) returns true if we must backtrack considering the information at (i, j).

Require: The cell to be checked, (i, j).
Ensure: The function returns true if the information at cell (i, j) indicates a violation of Juosan rules or if

a backtracking condition is met.
1: conditionA← V Hi,j = 3 ▷ there are three consecutive symbols vertically
2: conditionB ← HVi,j = 3 ▷ there are three consecutive symbols horizontally
3: conditionC ← HHi,j ≥ 3 and HHi−1,j ≥ 3 ▷ condition in Theorem 1
4: if conditionA or conditionB or conditionC then
5: return true
6: end if
7: if NRi,j

̸= −1 then
8: E ← size[Ri,j]− (D[Ri,j] + P [Ri,j]) ▷ the number of empty cells in territory Ri,j

9: rem← size[Ri,j]−max{D[Ri,j], P [Ri,j]}
10: ▷ the number of cells in Ri,j that are not filled with a symbol of the higher frequency
11: conditionD ← min{D[Ri,j], P [Ri,j]} > NRi,j

12: conditionE ← E +max{D[Ri,j], P [Ri,j]} < NRi,j

13: conditionF ← max{D[Ri,j], P [Ri,j]} > NRi,j
and rem < NRi,j

14: if conditionD or conditionE or conditionF then
15: return true
16: end if
17: end if
18: return false

returns true if we must backtrack based on the cur-
rent information in cell (i, j). This algorithm returns
true if the aforementioned conditions in point 3a-3f
are satisfied, and it is summarized in Algorithm 3.

All of the Algorithm 1, Algorithm 2, and Algo-
rithm 3 are used as subroutines in Algorithm 4 as the
main entry point of the backtracking algorithm for
searching the solution recursively. The invocation of
SEARCH(1, 1) in Algorithm 4 initiates the process
of the backtracking approach starting at cell (1, 1).
The analysis of the asymptotic complexity of our

proposed backtracking algorithm is discussed in the
following theorem.

Theorem 2. The running time of Algorithm 4 for
solving any Juosan instance of size m × n has an
asymptotic upper bound of O(2mn).

Proof. In the worst-case scenario, the algorithm
must examine every possible path in its state space
tree. Since each cell can be filled by one of two
symbols, each tree level expands by a maximum
of two possibilities starting from the initial grid

Ammar et.al., Note on Algorithmic Investigations of Juosan Puzzles 25

Algorithm 4 SEARCH(i, j) searches for the solutions recursively (i.e., with the backtracking algorithm).
Invoking SEARCH(1,1) initiates the process of filling the grid, starting at cell (1, 1).

Require: A cell (i, j) in an m× n grid of a Juosan puzzle.
Ensure: The procedure recursively searches for a solution (if any).

1: if i ≤ m then
2: for all s ∈ { , } do
3: FILL(i, j, s)
4: if not MUSTBACKTRACK(i, j) then
5: if j + 1 < n then
6: (nextCellRow, nextCellCol)← (i, j + 1)
7: else
8: (nextCellRow, nextCellCol)← (i+ 1, 1)
9: end if

10: SEARCH(nextCellRow, nextCellCol)
11: end if
12: UNFILL(i, j)
13: end for
14: else ▷ all cells in current are filled
15: S ← current ▷ set current as the solution array S
16: terminate the algorithm
17: end if
18: if (i, j) = (1, 1) then
19: output(“no solution”) ▷ backtracking from (1, 1) as all possibilities have been explored
20: end if

state. This implies that there are at most 2i grid
states at level i of the state space tree. Given that a
solution means that all mn cells must be filled, the
depth of the state space tree is at most mn. Thus,
the maximum number of grid states is bounded by
1+2+22+· · ·+2mn = 2mn+1−1 which is O(2mn).
For each grid state, only constant-time operations
are performed, including the use of Algorithm 1,
Algorithm 2, and Algorithm 3. As a result, the
asymptotic upper bound for the running time of this
algorithm is O(2mn).

Furthermore, Algorithm 4 requires several addi-
tional grids of size mn to store information, resulting
in an asymptotic space complexity of O(mn).

5. Tractability of Particular Juosan Puz-
zles

Some NP-complete problems may have sub-
problems or special cases that belong to the P
class. For example, a general 3-SAT problem is NP-
complete, but 2-SAT problem can be solved in lin-
ear time (thus polynomial time) through implication
graph [34]. Similarly, although the general Nono-
gram puzzle is NP-complete, a certain subclass of
the problem, in which each row or column has only
one block of connected cells, can be converted to 2-
SAT and solved in polynomial time [35]. Finally, the

Yin-Yang puzzle is also an NP-complete problem,
but the puzzle with sizes 1 × n, 2 × n, m × 1, or
m× 2 can be solved in polynomial time, including
finding all possible solutions [23].

In this section, we show that Juosan puzzles of
sizes 1×n, 2×n, m×1, and m×2 for any positive
integers m and n, as well as Juosan puzzles without
numerical constraints, are all solvable in polynomial
time. Since Juosan puzzles of sizes m×1 and m×2
can be correspondingly transformed into puzzles of
sizes 1×m and 2×m, we only investigate the case
of 1× n and 2× n puzzles.

5.1. Tractability of 1× n Juosan Puzzles

A 1 × n Juosan puzzle is a Juosan puzzle with
exactly 1 row and n columns. Here, an instance of
this puzzle is a collection of n cells grouped into one
or more territories, where territory is a contiguous
collection of cells. A 1 × n Juosan instance may
contain r territories where 1 ≤ r ≤ n. A solu-
tion to this instance is obtained by filling each cell
with either or symbols without making three
consecutive symbols. A territory may contain a
positive integer k where k is between 1 and the
number of cells in such a territory. If a territory
contains a positive integer k, then k must equal the
number of either symbols or symbols in this
territory. Moreover, if a territory does not contain

26 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

k, then the number of and symbols can be
any number. In this case, we can fill a territory with
an alternating configuration of and symbols.
In other words, if k is not defined for a particular
territory, every two adjacent cells in this territory are
filled with different symbols. We formally define the
alternating configuration of a 1× n Juosan instance
in Definition 3.

Definition 3. Suppose we consider a 1×n Juosan in-
stance. An alternating configuration of this instance
is obtained by filling the first cell with , the second
cell with , and so on alternatingly until the last
cell. That is, the odd-indexed cell is filled with
while the even-indexed cell is filled with .

Notice that in Definition 3, we can swap the
position of and symbols. Furthermore, if a
territory does not contain a number k, then the
alternating territory in Definition 3 also complies
with the Juosan rules. This alternating configuration
is essential for constructing the solution for any
Juosan instance of size 1×n. We discuss the general
construction of the solution to any 1 × n Juosan
puzzle in the proof of the following theorem.

Theorem 3. Any instance of 1 × n Juosan puzzles
can be solved in O(n) time.

Proof. Suppose we consider a 1 × n Juosan in-
stance where the cells are grouped into r territories
t1, t2, . . . , tr. Each territory may or may not contain
a positive integer ki. If a territory ti does not contain
a positive integer ki, then we simply fill ti with
alternating symbols of and in its cells as
described in Definition 3. Such a process clearly can
be done in linear time in terms of the number of cells
in ti. If a territory ti contains a positive integer ki,
then we firstly fill each cell in ti with alternating
symbols of and as in Definition 3. Now, let us
respectively denote Di and Pi as the number of
symbols and symbols occurring in ti. Initially, we
have Di = ⌈ni/2⌉ and Pi = ⌊ni/2⌋ where ni is the
number of cells in ti. Observe that replacing some

symbols with symbols decreases the value of
Di while simultaneously increases the value of Pi.
Our goal is to set ki = Di or ki = Pi. If either
ki = Di or ki = Pi, then we are done. Otherwise,
we perform the following steps:

1) If ki > Di, then we change ki−Di symbols of
with symbols so that ki = Di and there

are no three consecutive symbols. That is,
we increase the value of Di to exactly ki by
replacing some symbols with symbols.
Observe that the number of symbols after
the replacement is Di + (ki −Di) = ki.

2) If ki < Di, then we change Pi−ki symbols of
with symbols so that ki = Pi and there

are no three consecutive symbols. That is,
we decrease the value of Pi to exactly ki by
replacing some symbols with symbols.
Observe that the number of symbols after
this replacement is Di + (Pi − ki) = ni − ki,
hence the number of symbols after this
replacement is ni − (ni − ki) = ki.

Notice that the replacement takes linear time in
terms of the number of cells in ti for any territory
ti ∈ {t1, t2, . . . , tr}. As a result, the replacement for
the cells in a 1 × n Juosan instance takes at most
O(n) time.

The steps in the proof of Theorem 3 can be
modified for constructing the solution of any m× 1
Juosan puzzle in O(m) by swapping the symbols
with the symbols. We illustrate the construction
steps for a 1 × 7 Juosan puzzle in the following
example.

Example 1. Consider a Juosan instance of size 1×7
with only one territory containing a positive integer
k. We obtain a solution for such an instance by
first filling each cell with alternating and
symbols as in Definition 3. At this point, we have
D = ⌈7/2⌉ = 4 symbols of and P = ⌊7/2⌋ = 3
symbols of . If k = 6, then k > D, which means
we replace k −D = 6− 4 = 2 symbols of with

symbols resulting in D increased to exactly k.
Similarly, if k = 2, then k < D, which means we
replace P − k = 3 − 2 = 1 symbol of with
symbol resulting in P decreased to exactly k. See
Figure 4 for more illustration.

(a) A 1 × 7 Juosan instance with alternating and
.

6

(b) Two symbols of replaced to match k = 6.
2

(c) One symbol of replaced to match k = 2.

Figure 4. Solving a 1 × 7 Juosan instance containing a
positive integer k = 6 or k = 2.

The method described in the proof of Theorem 3
gives us a linear time algorithm for solving any 1×n
Juosan instance. However, this algorithm does not
recover all possible solutions to a Juosan instance of
size 1× n. In some puzzles, such as Yin-Yang puz-
zles of size 1×n and 2×n, the number of solutions to
these puzzles is bounded by O(n) (see [23, Theorem

Ammar et.al., Note on Algorithmic Investigations of Juosan Puzzles 27

2 and Theorem 3]), and thus discovering all solutions
to these instances can be done in polynomial time.
Nevertheless, in the subsequent analysis, we shall
show that the number of solutions to any arbitrary
Juosan instance of size 1 × n is exponential in
terms of n. This is unsurprising because some easy
decision problems have exponential time results for
their corresponding counting problems [30].

In the subsequent analysis, suppose we consider
a Juosan instance of size 1 × n divided into r
territories t1, t2, . . . , tr. Each territory may or may
not contain a number ki signifying the number of
either or symbols within such territory. Firstly,
we discuss the number of possible Juosan solutions
in a territory that does not contain a number. We
observe the following lemma.

Lemma 1. Suppose we consider a territory ti con-
taining p ≤ n cells within a 1 × n Juosan puz-
zle. Suppose s(p) describes the number of solutions
to such a territory. If this territory does not con-
tain a number, then s(p) satisfies the recurrence
s(p) = s(p − 1) + s(p − 2) + s(p − 3), with initial
conditions s(1) = 2, s(2) = 4, and s(3) = 7.

Proof. Since this territory does not contain a num-
ber, the number of and can be any number, so
long as there are no three consecutive symbols.
Thus, s(p) can be considered as the number of
strings of length p whose characters are taken from
the set { , } that contains no three consecutive

symbols. Clearly s(1) = 2, s(2) = 4, and
s(3) = 7. Moreover, such strings have three types
of endings, i.e., either they end with , , or

. In other words, such strings have the form of
α , α , or α where α is again a string
whose characters are taken from the set { , } that
contains no three consecutive symbols of length
p − 1, p − 2, and p − 3, respectively. Any such α
results in a valid string. Thus, we have a one-to-one
correspondence since the three cases are disjoint, and
the result follows.

The exact solution of the recurrence relation in
Lemma 1 is discussed in the following lemma.

Lemma 2. The exact solution of the
recurrence relation in Lemma 1 is s(p) =⌊

3δ
(

1
3 (γ++γ−+1)

)p+2

δ2−2δ+4

⌉
where γ± =

3
√

19± 3
√
33

and δ =
3
√

586 + 102
√
33. Here, the function ⌊· · · ⌉

denotes the nearest integer rounding function.

Proof. Notice that the sequence s(p) is similar to
the tribonacci sequence defined by t(1) = 1, t(2) =
1, t(3) = 2, and the recurrence relation t(p) =
t(p − 1) + t(p − 2) + t(p − 3) for p ≥ 4 [36].

The difference between the two is their initial con-
ditions, where s(1) = 2, s(2) = 4, and s(3) = 7,
resulting in s(p) being equivalent to the tribonacci
sequence, but shifted forward by two terms. In other
words, s(p) = t(p + 2). According to [37], the
explicit formula for the tribonacci sequence is t(p) =⌊

3δ
(

1
3 (γ++γ−+1)

)p

δ2−2δ+4

⌉
where γ± =

3
√

19± 3
√
33 and

δ =
3
√

586 + 102
√
33.3 Since s(p) = t(p + 2), the

theorem is proven.

Secondly, we consider the case of a territory that
contains a number. We observe the following lemma.

Lemma 3. Suppose we consider a territory ti con-
taining p cells within a 1 × n Juosan puzzle that
contains a number k. Suppose s(p, k) describes the
number of solutions to such a territory. Then, we
have the following:

s(p, k) =

{
F (p/2, p/2), if p is even and k = p/2

F (k, p− k) + F (p− k, k), otherwise

where F (a, b) denotes the number of solutions to a
territory containing a + b cells with exactly a cells
filled with and b cells filled with without three
consecutive symbols. Here, F (a, b) follows the
recurrence relation:

F (a, b) =



0 if b = 0, a > 2
1 if a = 0 or (a, b) = (2, 0)
b+ 1 if a = 1
F (a, b− 1)
+F (a− 1, b− 1)
+F (a− 2, b− 1) if a ≥ 2, b ≥ 1

(1)

Proof. The proof of this lemma is similar to the
proof of Lemma 1. Since a territory of size p
containing a number k must either have exactly k
number of or symbols in it, then s(p, k) =
F (k, p − k) + F (p − k, k). However, if p is even
and k = p/2, then s(p, k) = F (p/2, p/2) as
k = p−k = p/2 and to avoid over-counting. Further-
more, by definition, the value F (a, b) is equal to the
number of strings of length a+ b whose characters
are taken from the set { , } that consist of exactly
a characters of and b characters of without
three consecutive symbols. Clearly, F (a, b) holds
for the aforementioned initial conditions. Moreover,
such strings with no three consecutive characters
also have the form of α , α , or α where
α is again a string whose characters are taken from
the set { , } that contains no three consecutive

3We discuss the derivation of this closed form further in the
Appendix.

28 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

symbols. Each type of ending corresponds to a
pattern of extra symbols of and following
α. The extra symbols for the ending types α , α

, and α correspond respectively to the
relations of F (a, b) with F (a, b−1), F (a−1, b−1),
and F (a − 2, b − 1). Thus, we have a one-to-one
correspondence since the three cases are disjoint, and
the result follows.

In the following analysis, we use bivariate gener-
ating function methods to find the explicit solution of
the recurrence relation (1) as in [32]. The following
lemma discusses the derivation of this generating
function.

Lemma 4. The corresponding (ordinary) bivari-
ate generating function for the recurrence relation
F (a, b) in (1) is

∑
a≥0,b≥0

F (a, b)xayb =
x2 + x+ 1

1− y(x2 + x+ 1)

Proof. Let us define an ordinary bivariate generating
function G(x, y) =

∑
a≥0,b≥0 F (a, b)xayb. Based

on F (a, b) for the general case a ≥ 2, b ≥ 1, we
have: ∑

a≥2,b≥1

F (a, b)xayb

=
∑

a≥2,b≥1

F (a− 2, b− 1)xayb

+
∑

a≥2,b≥1

F (a− 1, b− 1)xayb

+
∑

a≥2,b≥1

F (a, b− 1)xayb

(2)

In (2), we have four summands (three of them are on
the right-hand side of the equal sign). Let us break
down each one in the following equations:

∑
a≥2,b≥1

F (a, b)xayb

= G(x, y)−
(∑

b≥0

F (0, b)yb
)

(3)

−
(∑

b≥0

F (1, b)xyb
)
− F (2, 0)x2

= G(x, y)− 1

1− y
− x

(1− y)2
− x2

∑
a≥2,b≥1

F (a− 2, b− 1)xayb

= x2y
∑

a≥2,b≥1

F (a− 2, b− 1)xa−2yb−1 (4)

= x2y
∑

p≥0,q≥0

F (p, q)xpyq

= x2y ·G(x, y)

∑
a≥2,b≥1

F (a− 1, b− 1)xayb

= xy
∑

a≥2,b≥1

F (a− 1, b− 1)xa−1yb−1

= xy
∑

p≥1,q≥0

F (p, q)xpyq (5)

= xy
(
G(x, y)−

∑
q≥0

F (0, q)yq
)

= xy
(
G(x, y)− 1

1− y

)
∑

a≥2,b≥1

F (a, b− 1)xayb

= y
∑

a≥2,b≥1

F (a, b− 1)xayb−1

= y
∑

p≥2,q≥0

F (p, q)xpyq (6)

= y
(
G(x, y)−

∑
q≥0

F (0, q)yq −
∑
q≥0

F (1, q)xyq
)

= y
(
G(x, y)− 1

1− y
− x

(1− y)2

)
We substitute these results to the previous equa-

tion (2) to obtain the following expression:

G(x, y)− 1

1− y
− x

(1− y)2
− x2

= x2y ·G(x, y)

+ xy
(
G(x, y)− 1

1− y

)
+ y

(
G(x, y)− 1

1− y
− x

(1− y)2

)
It is easy to obtain G(x, y) = x2+x+1

1−y(x2+x+1)
with basic algebra. This completes the proof for the
lemma.

We derive the explicit solution for s(p, k) in
Lemma 3 in the following lemma.

Ammar et.al., Note on Algorithmic Investigations of Juosan Puzzles 29

Lemma 5. Suppose we consider a territory ti con-
taining p cells within a 1 × n Juosan puzzle that
contains a number k. Suppose s(p, k) describes the
number of solutions to such a territory. Then, we
have the following:

F̃ (a, b) =

min
{
b+1,

⌊
a/2

⌋}∑
j=0

(
b+ 1

j

)(
b+ 1− j

a− 2j

)

s(p, k) =

{
F̃ (p/2, p/2), if p is even and k = p/2

F̃ (k, p− k) + F̃ (p− k, k), otherwise

Proof. We derive the explicit formula, F̃ (a, b), for
the recurrence relation F (a, b) in Lemma 3 by
using the generating function in Lemma 4 and
extract the coefficient from it. In other words,
F̃ (a, b) = [xayb] x2+x+1

1−y(x2+x+1) (the notation [xayb]
denotes the coefficient operator to denote the coeffi-
cient of xayb in a series). To extract this coefficient,
[38] outlines a calculation that shows F̃ (a, b) =∑min

{
b+1,

⌊
a/2

⌋}
j=0

(
b+1
j

)(
b+1−j
a−2j

)
. Finally, the value

s(p, k) can be obtained analogously to the one men-
tioned in the proof of Lemma 3.

Finding the closed-form expression of F̃ (a, b)
in Lemma 5 is particularly challenging. Instead of
finding such an expression, we provide the upper
bound of s(p, k) based on the solution in Lemma 5
in the following Lemma 6.

Lemma 6. The asymptotic upper bound on the num-
ber of solutions for territory with p cells in a 1× n
Juosan puzzle, whether numbered or unnumbered, is
O((13 (γ+ + γ− + 1))p) where γ± =

3
√

19± 3
√
33

or roughly O(1.8392p).

Proof. This bound clearly holds for unnumbered ter-
ritories, as their explicit formula (already described
in Lemma 2) is simply (13 (γ++γ−+1))p multiplied
by a constant. Furthermore, note that unnumbered
territories do not have constraints on the number
of ’s or ’s that can be placed within them.
This implies that the number of solutions for the
unnumbered case effectively sums up the number of
solutions for the numbered case with k = 1, 2, . . . , p.
Since the solutions for the numbered case form a
subset of the solutions for the unnumbered case,
the same upper bound applies. Thus, the proof is
complete.

The constant (γ+ + γ− + 1)/3 in Lemma 6 is
also called tribonacci constant, and it is the only
real root of the polynomial x3 − x2 − x − 1 [37].
Finally, the asymptotic upper bound on the number
of solutions to a 1×n Juosan puzzle is discussed in
the following theorem.

Theorem 4. The asymptotic upper bound on the
number of solutions to a 1 × n Juosan puzzle is
O((13 (γ+ + γ− + 1))n) where γ± =

3
√

19± 3
√
33

or roughly O(1.8392n).

Proof. Suppose a 1× n Juosan puzzle is comprised
of r territories t1, t2, . . . , tr with respective sizes
s1, s2, . . . , sr. According to Lemma 6, the number
of solutions for each territory ti, when considering
it in isolation from all other territories, is bounded
by O((13 (γ+ + γ− + 1))si). To ease our analysis,
let us consider a hypothetical case where we can
color the territories independently. In such a sce-
nario, the asymptotic upper bound for the number
of solutions for the entire 1 × n puzzle can be
obtained by multiplying the upper bounds for each
territory, resulting in O((13 (γ++γ−+1))s1+···+sr) =
O((13 (γ+ + γ− + 1))n). However, since filling the
territories independently is impossible, the number
of solutions for a 1×n Juosan puzzle must be lower.
Hence, the upper bound is still valid.

The result in Theorem 4 provides an insight that
the counting complexity related to the number of so-
lutions for a 1×n Juosan puzzle is exponential with
respect to n, although such a puzzle is solvable in
linear time. Nevertheless, we suspected that finding
the closed form or at least the tight bound for the
expression in Lemma 5 is challenging.

5.2. Tractability of 2× n Juosan Puzzles

A 2 × n Juosan puzzle is a Juosan puzzle with
exactly 2 rows and n columns. An instance of this
puzzle is a collection of 2n cells grouped into one
or more rectangular territories. This instance may
contain r territories where 1 ≤ r ≤ 2n. As in the
1 × n Juosan puzzle, the solution to an instance of
2 × n Juosan puzzle is obtained by putting either

or symbols to each cell without creating three
consecutive symbols. In addition, every territory
may contain a positive integer k denoting the number
of either or symbols in it. If the integer k is
not defined for a particular territory, then we can put
any number of or symbols in such territory.
Furthermore, this territory has at least one trivial so-
lution, a checkered-like pattern where orthogonally
adjacent cells are filled with distinct symbols. We
formally define such a configuration in Definition 4.

Definition 4. Suppose we consider a 2 × n Juosan
puzzle. A checkered-like configuration of this in-
stance is obtained as follows:

1) For the first row, the first cell is filled with ,
the second cell is filled with , and so on
alternatingly until the last cell.

30 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

2) For the second row, the first cell is filled with
, the second cell is filled with , and so on

alternatingly until the last cell.
In other words, two orthogonally adjacent cells con-
tain different symbols.

Notice that in Definition 4, we can swap the
position of and symbols. Moreover, the con-
figuration in Definition 4 complies Juosan rule if a
territory does not contain a number k. As the alter-
nating configuration in Definition 3, the checkered-
like configuration in Definition 4 is important for
constructing the solution to any Juosan instance of
size 2× n. The general construction of the solution
to any 2×n Juosan puzzle is discussed in the proof
of the following theorem.

Theorem 5. Any instance of 2 × n Juosan puzzle
can be solved in O(n) time.

Proof. The proof of this theorem is similar to the
proof of Theorem 3. One key difference is the shape
of a territory is a rectangle with either one row or
two rows. For a territory that does not contain a pos-
itive integer, we fill this territory with the alternating
configuration as in Definition 3 if it has one row or
the checkered-like configuration as in Definition 4
if it has two rows, and we are done. This process
can be done in linear time in terms of the number
of cells in the territory. For a territory that contains
a positive integer, we perform symbol replacements
analogous to those described in the proof of Theo-
rem 3 if necessary. Notice that replacing symbols
with symbols does not violate the puzzle’s rule
regarding the number of vertically consecutive
symbols since we consider an instance with two
rows. Consequently, the replacement for the cells in
a 2×n Juosan puzzle takes as most O(n) time.

The construction steps in the proof of Theorem
5 can be adapted for constructing the solution of any
m × 2 Juosan puzzle in O(m) by swapping the
symbols with the symbols.

5.3. Tractability of m × n Juosan Puzzles
without Numerical Constraints

An m × n Juosan puzzle without numerical
constraints is a Juosan puzzle whose regions do
not have constraint numbers. Using the convention
in Section 2, formally, we have Ni = −1 for all
1 ≤ i ≤ r where r denotes the number of territories
in the puzzle. As a consequence, the number of
and symbols in a region can be any number,
so long as there are no more than two horizon-
tally consecutive symbols or no more than two
vertically consecutive symbols. In this context,

we present a polynomial-time algorithm for solving
such instances. The key concept involves filling the
puzzle with a checkerboard-like pattern. We formally
define this pattern in Definition 5.

Definition 5. A checkerboard-like pattern for an
m×n Juosan puzzle can be obtained by performing
these steps:

1) Examine the first cells of each row. Fill the first
cell of the odd-numbered row from the top with
the symbol , and fill the first cell of the even-
numbered row with the symbol .

2) Proceed to fill the remaining cells in each row,
starting from the second cell. We fill the re-
maining cells using alternating symbols. This
means that each cell should have a different
symbol from the cell to its left.

Mathematically an m× n checkerboard-like pattern
is a a two-dimensional array C such that Ci,j =
if |i − j| is even and Ci,j = otherwise. This
construction ensures that two orthogonally adjacent
cells contain different symbols.

Since the number of and symbols are irrel-
evant in this case, our focus lies solely on the rules
regarding three consecutive cells. By constructing
the checkerboard-like pattern, we ensure the absence
of three vertically consecutive symbols or three
horizontally consecutive symbols, given that two
orthogonally adjacent cells are filled with different
symbols. We discuss the time complexity of this
construction process in Theorem 6.

Theorem 6. The construction of a checkerboard-like
pattern of an m × n Juosan puzzle can be done in
O(mn) time.

Proof. Referring to Definition 5, we divide the con-
struction process into two steps. Initially, we fill
m cells, followed by filling m(n − 1) cells in the
subsequent step, resulting in a total of mn cells
to be filled. With each cell filling operation tak-
ing O(1) time, the overall time complexity for the
construction process is O(mn). Thus, the proof is
complete.

Theorem 6 implies that solving an m×n Juosan
puzzle whose all territories do not have constraint
numbers can be done in polynomial time. In other
words, eliminating the constraint numbers from all
territories in Juosan puzzles removes the hardness of
such puzzles.

6. Experimental Results

The following section delves into the experi-
ments conducted to evaluate the running time of

Ammar et.al., Note on Algorithmic Investigations of Juosan Puzzles 31

the proposed algorithm. The experiments were per-
formed on a 64-bit Windows 11 system using the
C++ programming language and g++ compiler of
version 12.2.0. The programming language C++ was
chosen as it is relatively faster than other commonly
used programming languages like Java or Python
[39]. The system used for the experiment also in-
cluded an Intel(R) Core(TM) i5-1035G1 CPU @
1.00GHz with 4 GB of RAM. Interested readers
can access the source codes, test cases, and other
relevant documents related to the experiment at
https://github.com/tsaqifammar/juosan-backtracking.

The experiment tested the C++ implementation
of the backtracking algorithm described in Section
4, using test cases collected from [40]. The test
cases consist of various Juosan puzzles of various
dimensions, ranging from 6 × 6 to 30 × 45, but
each is guaranteed to have a unique solution. There
are seventy test cases, with the majority (fifty-eight)
being 10 × 10 in size. The goal was to determine
the average running time of three runs needed for
the algorithm to solve a given instance.

When running the experiment, we were limited
by our computational device, which prevented us
from evaluating some of the larger test cases. From
the test cases in [40], we successfully solved all test
cases—except those of sizes 15 × 24, 25 × 40, and
30 × 45—in less than fifteen seconds. The running
times of the algorithm for solving the test cases
that were able to be evaluated are summarized in
Table 1, grouped based on their sizes. The running
time is measured in milliseconds up to three decimal
places except for the Juosan instance of size 15×24.
Note that the algorithm’s running time is not only
determined by the instance’s size. Other factors like
the number and arrangement of territories also in-
fluence the resulting running time. Therefore, two
test cases of equal size may produce significantly
different outcomes, and larger test cases might have
a faster running time than the smaller ones.

Table 1. The resulting running times taken (in millisec-
onds) for the backtracking algorithm to solve the test
cases, grouped on their sizes.

Size # Max. Min. Avg.
6× 6 2 0.018 0.004 0.011
10× 10 58 23.407 0.036 1.214
12× 12 1 8.709 8.709 8.709
10× 18 1 128.912 128.912 128.912
15× 15 3 13537.167 617.870 4951.601
16× 16 1 2850.790 2850.790 2850.790
12× 25 1 9298.723 9298.723 9298.723
15× 24 1 348315755 348315755 348315755

7. Concluding Remarks

In this study, we presented an algorithm to verify
a Juosan solution of size m×n in O(mn) time and
proposed an optimized backtracking algorithm that
has an asymptotic running time of O(2mn) to solve
an arbitrary Juosan puzzle. Despite the exponential-
time upper bound, each of the test cases from [40],
except those of sizes 15× 24, 25× 40, and 30× 45,
were solved successfully in less than fifteen seconds.

Some NP-complete problems may have sub-
problems or special cases that belong to the P class.
In the case of Juosan puzzles, Theorem 3 and The-
orem 5 shows that puzzles of sizes 1 × n, 2 × n,
m× 1, and m× 2 for any positive integers m and n
are solvable in linear time, making them tractable. In
addition, in Theorem 6, we also prove that any m×n
Juosan puzzles without numerical constraints are
tractable. We provide a checkerboard-like pattern as
one of the solutions to these instances. Our solution
also implies that any m × n Juosan puzzle without
constraint numbers in all of its territories can be
solved in O(mn) time.

We also mathematically investigated the number
of solutions for Juosan puzzles of size 1×n, which
has an upper bound of O((13 (γ+ + γ− + 1))n)

where γ± =
3
√

19± 3
√
33 or roughly O(1.8392n)

as shown in Theorem 4. This outcome is not un-
expected given that some easy decision problems
exhibit exponential time complexity for their cor-
responding counting problems [30]. Notably, our
current upper bound for the number of solutions of
a numbered territory within a 1 × n Juosan puzzle
is not very tight, as finding a closed form or a tight
upper bound for the found formula is challenging.
This could potentially serve as an interesting direc-
tion for future research. Furthermore, exploring the
complexity class for finding all possible solutions to
a Juosan instance could be an interesting route for
further investigation. We conjecture that it belongs
to the #P-complete class. Another potential research
direction is to identify additional conditions to help
further prune the search space tree generated by the
backtracking algorithm.

As a final suggestion, we propose exploring
the use of SAT-based solvers to solve Juosan puz-
zles. The use of SAT-based solvers for solving NP-
complete problems has been shown to be highly
effective, such as Sudoku [26], and could be adapted
to Juosan puzzles. In addition, the solver can be
extended to search for all possible solutions to a
Juosan puzzle, which can facilitate the discovery of
new insights about the structure of Juosan puzzles
and interesting puzzle variations.

https://github.com/tsaqifammar/juosan-backtracking

32 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

Acknowledgement
We thank Markus Scheuer at the Mathematics

Stack Exchange community for his insight we use
in the proof of Lemma 5.

References

[1] Nikori, Nikori no penpa. 2015, Nov. 2014.
[2] C. Iwamoto and T. Ibusuki, “Kurotto

and Juosan are NP-complete,” in The
21st Japan Conference on Discrete and
Computational Geometry, Graphs, and
Games (JCDCG3 2018), 2018, pp. 46–48.
[Online]. Available: https://link.springer.com/
chapter/10.1007/978-3-030-90048-9 14

[3] C. Iwamoto and T. Ibusuki, “Polynomial-
time reductions from 3SAT to Kurotto
and Juosan puzzles,” IEICE Transactions
on Information and Systems, vol. 103,
no. 3, pp. 500–505, 2020. [Online].
Available: https://www.jstage.jst.go.jp/article/
transinf/E103.D/3/E103.D 2019FCP0004/ pdf

[4] D. Miyahara, L. Robert, P. Lafourcade,
S. Takeshige, T. Mizuki, K. Shinagawa, A. Na-
gao, and H. Sone, “Card-based ZKP protocols
for Takuzu and Juosan,” in 10th International
Conference on Fun with Algorithms (FUN
2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[5] Nikoli, “Juosan - nikoli,” https:
//www.nikoli.co.jp/en/puzzles/juosan/, Nov.
2022, accessed: 2022-11-30.

[6] M. Danesi, An anthropology of puzzles: The
role of puzzles in the origins and evolution of
mind and culture. Taylor & Francis, 2018.

[7] R. A. Hearn and E. D. Demaine, Games, puz-
zles, and computation. CRC Press, 2009.

[8] E. D. Demaine, “Playing games with algo-
rithms: Algorithmic combinatorial game the-
ory,” in International Symposium on Math-
ematical Foundations of Computer Science.
Springer, 2001, pp. 18–33.

[9] G. Kendall, A. Parkes, and K. Spoerer, “A sur-
vey of NP-complete puzzles,” ICGA Journal,
vol. 31, no. 1, pp. 13–34, 2008.

[10] R. Uehara, “Computational complexity of puz-
zles and related topics,” Interdisciplinary Infor-
mation Sciences, pp. 1–22, 2023.

[11] N. Ueda and T. Nagao, “NP-completeness
results for Nonogram via parsimonious re-
ductions,” Department of Computer Science,
Tokyo Institute of Technology, Tech. Rep.,
1996.

[12] T. Yato and T. Seta, “Complexity and com-
pleteness of finding another solution and its

application to puzzles,” IEICE transactions on
fundamentals of electronics, communications
and computer sciences, vol. 86, no. 5, pp.
1052–1060, 2003.

[13] M. Holzer, A. Klein, and M. Kutrib, “On the
NP-completeness of the Nurikabe pencil puzzle
and variants thereof,” in Proceedings of the 3rd
International Conference on FUN with Algo-
rithms. Citeseer, 2004, pp. 77–89.

[14] M. Holzer and O. Ruepp, “The troubles of
interior design–a complexity analysis of the
game Heyawake,” in International Conference
on Fun with Algorithms. Springer, 2007, pp.
198–212.

[15] A. Ishibashi, Y. Sato, and S. Iwata, “NP-
completeness of two pencil puzzles: Yajilin and
Country Road,” Utilitas Mathematica, vol. 88,
pp. 237–246, 2012.

[16] J. Kölker, “Kurodoko is NP-complete,” Infor-
mation and Media Technologies, vol. 7, no. 3,
pp. 1000–1012, 2012.

[17] A. Allen and A. Williams, “Sto-Stone is NP-
Complete,” in CCCG, 2018, pp. 28–34.

[18] C. Iwamoto and M. Haruishi, “Computational
complexity of Usowan puzzles,” IEICE Trans-
actions on Fundamentals of Electronics, Com-
munications and Computer Sciences, vol. 101,
no. 9, pp. 1537–1540, 2018.

[19] A. Adler, J. Bosboom, E. D. Demaine, M. L.
Demaine, Q. C. Liu, and J. Lynch, “Tatamibari
is NP-Complete,” in 10th International
Conference on Fun with Algorithms (FUN
2021), ser. Leibniz International Proceedings
in Informatics (LIPIcs), M. Farach-Colton,
G. Prencipe, and R. Uehara, Eds.,
vol. 157. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik,
2020, pp. 1:1–1:24. [Online]. Available: https:
//drops.dagstuhl.de/opus/volltexte/2020/12762

[20] E. D. Demaine, J. Lynch, M. Rudoy, and
Y. Uno, “Yin-Yang Puzzles are NP-complete,”
in 33rd Canadian Conference on Computa-
tional Geometry (CCCG) 2021, 2021.

[21] C. Iwamoto and T. Ide, “Moon-or-
Sun, Nagareru, and Nurimeizu are
NP-complete,” IEICE Transactions on
Fundamentals of Electronics, Communications
and Computer Sciences, pp. 1187–
1194, 2022. [Online]. Available: https:
//www.jstage.jst.go.jp/article/transfun/advpub/
0/advpub 2021DMP0006/ article/-char/ja/

[22] C. Iwamoto and T. Ide, “Five Cells
and Tilepaint are NP-Complete,” IEICE
Transcations on Information and Systems,
vol. 105, no. 3, pp. 508–516, 2022. [Online].

https://link.springer.com/chapter/10.1007/978-3-030-90048-9_14
https://link.springer.com/chapter/10.1007/978-3-030-90048-9_14
https://www.jstage.jst.go.jp/article/transinf/E103.D/3/E103.D_2019FCP0004/_pdf
https://www.jstage.jst.go.jp/article/transinf/E103.D/3/E103.D_2019FCP0004/_pdf
https://www.nikoli.co.jp/en/puzzles/juosan/
https://www.nikoli.co.jp/en/puzzles/juosan/
https://drops.dagstuhl.de/opus/volltexte/2020/12762
https://drops.dagstuhl.de/opus/volltexte/2020/12762
https://www.jstage.jst.go.jp/article/transfun/advpub/0/advpub_2021DMP0006/_article/-char/ja/
https://www.jstage.jst.go.jp/article/transfun/advpub/0/advpub_2021DMP0006/_article/-char/ja/
https://www.jstage.jst.go.jp/article/transfun/advpub/0/advpub_2021DMP0006/_article/-char/ja/

Ammar et.al., Note on Algorithmic Investigations of Juosan Puzzles 33

Available: https://www.jstage.jst.go.jp/article/
transinf/E105.D/3/E105.D 2021FCP0001/ pdf

[23] M. I. Putra, M. Arzaki, and G. S. Wulan-
dari, “Solving Yin-Yang Puzzles Using Ex-
haustive Search and Prune-and-Search Algo-
rithms,” (IJCSAM) International Journal of
Computing Science and Applied Mathematics,
vol. 8, no. 2, pp. 52–65, 2022.

[24] E. C. Reinhard, M. Arzaki, and G. S.
Wulandari, “Solving Tatamibari Puzzle Using
Exhaustive Search Approach,” Indonesia
Journal on Computing (Indo-JC), vol. 7,
no. 3, pp. 53–80, Dec. 2022. [Online].
Available: https://socj.telkomuniversity.ac.id/
ojs/index.php/indojc/article/view/675

[25] M. Banbara, K. Hashimoto, T. Horiyama, S.-i.
Minato, K. Nakamura, M. Nishino, M. Sakai,
R. Uehara, Y. Uno, and N. Yasuda, “Solving
rep-tile by computers: Performance of solvers
and analyses of solutions,” arXiv preprint
arXiv:2110.05184, 2021.

[26] C. Bright, J. Gerhard, I. Kotsireas, and
V. Ganesh, “Effective problem solving using
SAT solvers,” in Maple Conference. Springer,
2019, pp. 205–219.

[27] C. Bessiere, C. Carbonnel, E. Hebrard, G. Kat-
sirelos, and T. Walsh, “Detecting and exploit-
ing subproblem tractability,” in IJCAI: Inter-
national Joint Conference on Artificial Intelli-
gence, 2013, pp. 468–474.

[28] J. Dreier, S. Ordyniak, and S. Szeider, “CSP
Beyond Tractable Constraint Languages,” in
28th International Conference on Principles
and Practice of Constraint Programming (CP
2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2022.

[29] L. G. Valiant, “The complexity of computing
the permanent,” Theoretical computer science,
vol. 8, no. 2, pp. 189–201, 1979.

[30] A. Antonopoulos, E. Bakali, A. Chalki,
A. Pagourtzis, P. Pantavos, and S. Zachos,
“Completeness, approximability and exponen-
tial time results for counting problems with
easy decision version,” Theoretical Computer
Science, vol. 915, pp. 55–73, 2022.

[31] D. Lichtenstein, “Planar Formulae and Their
Uses,” SIAM Journal on Computing, vol. 11,

no. 2, pp. 329–343, 1982. [Online]. Available:
https://doi.org/10.1137/0211025

[32] T. Koshy, Discrete mathematics with applica-
tions. Elsevier, 2004.

[33] R. Neapolitan and K. Naimipour, Foundations
of algorithms. Jones & Bartlett Publishers,
2010.

[34] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A
linear-time algorithm for testing the truth of
certain quantified boolean formulas,” Informa-
tion processing letters, vol. 8, no. 3, pp. 121–
123, 1979.

[35] S. Brunetti and A. Daurat, “An algo-
rithm reconstructing convex lattice sets,”
Theoretical Computer Science, vol. 304,
no. 1, pp. 35–57, 2003. [Online]. Avail-
able: https://www.sciencedirect.com/science/
article/pii/S0304397503000501

[36] M. Feinberg, “Fibonacci-tribonacci,” The Fi-
bonacci Quarterly, vol. 1, no. 1, pp. 71–74,
1963.

[37] T. Noe, T. I. Piezas, and E. W.
Weisstein, “Tribonacci number. From
MathWorld—A Wolfram Web Resource,”
last visited on 17/3/2023. [Online].
Available: https://mathworld.wolfram.com/
TribonacciNumber.html

[38] M. Scheuer, “Number of binary strings with
k ones or k zeros and no three consecutive
ones,” Mathematics Stack Exchange, last
visited on 3/4/2023. [Online]. Available: https:
//math.stackexchange.com/q/4617173

[39] L. Prechelt, “An empirical comparison of seven
programming languages,” Computer, vol. 33,
no. 10, pp. 23–29, 2000.

[40] Otto Janko, “Juosan,” https://www.janko.at/
Raetsel/Juosan/index.htm, Oct. 2022, accessed:
2022-10-11.

[41] W. Spickerman, “Binet’s formula for the Tri-
bonacci sequence,” Fibonacci Quart, vol. 20,
no. 2, pp. 118–120, 1982.

[42] S. Plouffe, Approximations de séries
génératrices et quelques conjonctures.
Université du Québec à Montréal, 1992.

[43] Y. Soykan, “Tribonacci and Tribonacci-Lucas
Sedenions,” Mathematics, vol. 7, no. 1, p. 74,
2019.

https://www.jstage.jst.go.jp/article/transinf/E105.D/3/E105.D_2021FCP0001/_pdf
https://www.jstage.jst.go.jp/article/transinf/E105.D/3/E105.D_2021FCP0001/_pdf
https://socj.telkomuniversity.ac.id/ojs/index.php/indojc/article/view/675
https://socj.telkomuniversity.ac.id/ojs/index.php/indojc/article/view/675
https://doi.org/10.1137/0211025
https://www.sciencedirect.com/science/article/pii/S0304397503000501
https://www.sciencedirect.com/science/article/pii/S0304397503000501
https://mathworld.wolfram.com/TribonacciNumber.html
https://mathworld.wolfram.com/TribonacciNumber.html
https://math.stackexchange.com/q/4617173
https://math.stackexchange.com/q/4617173
https://www.janko.at/Raetsel/Juosan/index.htm
https://www.janko.at/Raetsel/Juosan/index.htm

34 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

Appendix

The section delves into the explicit tribonacci
sequence formula, as mentioned in Lemma 2.

Theorem 7. The explicit formula for the tribonacci
sequence t(p) defined by t(1) = 1, t(2) = 1,
t(3) = 2, and the recurrence relation t(p) =
t(p − 1) + t(p − 2) + t(p − 3) for p ≥ 4 is t(p) =⌊

3δ
(

1
3 (γ++γ−+1)

)p

δ2−2δ+4

⌉
where γ± =

3
√

19± 3
√
33 and

δ =
3
√

586 + 102
√
33.

There are numerous ways to obtain an explicit
formula for the tribonacci sequence (see [37] for an
extensive bibliography). Recall that t(p) = t(p −
1) + t(p − 2) + t(p − 3) is a homogeneous lin-
ear recurrence relation of order 3. This recurrence
relation corresponds to the characteristic equation
r3 − r2 − r − 1 = 0.

One method to obtain the closed-form solution
of this sequence is using the generating function
and other more advanced techniques described by
Spickerman [41], Plouffe [42], and Soykan [43].
To avoid using cumbersome notation, we write
our sequence using subscript notation (instead of
function), we have t1 = t2 = 1, t3 = 2, and
tp = tp−1 + tp−2 + tp−3 for p ≥ 4. We also
define t0 = 0 to ease our mathematical analysis. Let
G(x) = t0+t1x+t2x

2+· · ·+tnx
n+· · · =

∑∞
i=0 tix

i

be the generating function of our recurrence relation.
It is easy to obtain (1 − x − x2 − x3)G(x) = 1,
thus G(x) = 1/(1 − x − x2 − x3). Now, suppose
p(x) = 1− x− x2 − x3. According to [41, 43] this
polynomial has three roots, one real root and two
complex conjugate roots, namely

r1 =
1 + γ+ + γ−

3
, (7)

r2 =
1 + ωγ+ + ω2γ−

3
, (8)

r3 =
1 + ω2γ+ + ωγ−

3
, (9)

where

γ± =
3

√
19± 3

√
33, (10)

ω =

√
3i− 1

2
= exp(2πi/3), (11)

where i is a number satisfying i2 = −1. The real
root r1 is also called tribonacci constant and it is
approximately 1.83929. Notice that r3 is the com-
plex conjugate of r2 (i.e., r3 = r2). By considering

the partial fraction of the generating function G(x),
we have

G(x) =
1

1− x− x2 − x3

=
A

1− r1x
+

B

1− r2x
+

C

1− r2x
, (12)

where

A =
r21

(r1 − r2)(r1 − r2)
, (13)

B =
r22

(r2 − r1)(r2 − r2)
, (14)

C =
r2

2

(r2 − r1)(r2 − r2)
. (15)

Thus, we obtain

tp =
rp+2
1

(r1 − r2)(r1 − r2)

+
rp+2
2

(r2 − r1)(r2 − r2)
(16)

+
r2

p+2

(r2 − r1)(r2 − r2)
. (17)

By multiplying the numerators and denominators of
(16) by r1 − r2 and (17) by r1 − r2, we obtain

tp =
rp+2
1

|r1 − r2|2

+
(r1 − r2)r

p+2
2

−2iIm(r2)|r1 − r2|2

+
(r1 − r2)r2

p+2

2iIm(r2)|r1 − r2|2
, (18)

where |z| denotes the complex modulus of the
complex number z (i.e., if z = αi + β, then
|z| =

√
α2 + β2), Re(z) denotes the real part of

the complex number z (i.e., if z = αi + β, then
Re(z) = β), and Im(z) denotes the imaginary part
of the complex number z (i.e., if z = αi + β, then
Im(z) = α).

Recall that every complex number z can be
expressed as z = ρ(cos θ + i sin θ) where ρ ∈
R with ρ = |z| and θ ∈ [0, 2π] with θ =
arctan(Im(z)/Re(z)). Thus, we may write r2 =
ρ(cos θ1 + i sin θ1) where ρ = |r2| and θ1 =
arctan(Im(r2)/Re(r2)). We may also write r2 =
ρ(cos θ2 + i sin θ2) where ρ = |r2| = |r2| and
θ2 = arctan(Im(r2)/Re(r2)). Notice that θ1 and θ2
are related since Re(r2) = Re(r2) and Im(r2) =
−Im(r2).

According to the well known de Moivre formula,
if z = ρ(cos θ + i sin θ), then zn = ρn(cosnθ +
i sinnθ) for any n ∈ N. Hence, we have rp2 =
ρp(cos pθ1 + i sin pθ1) and r2

p = ρp(cos pθ2 +

Ammar et.al., Note on Algorithmic Investigations of Juosan Puzzles 35

i sin pθ2). By combining terms and using the afore-
mentioned relationship, we get

tp =
r21

|r1 − r2|2
· rp1

+
ρ(ρ− 2r1 cos θ1)

|r1 − r2|2
ρp cos pθ1

+
ρ2 cos θ1 − r1ρ(1− 2 sin2 θ1)

|r1 − r2|2 sin θ1
· ρp sin pθ1.

(19)

To obtain the quantity δ =
3
√

586 + 102
√
33, one

may use the lattice reduction algorithm such as the
LLL algorithm to simplify (19). We refer the reader
to [42] for further discussion and analysis.

	Introduction
	Preliminaries, Related Works, and Important Observation
	Formal Definition and Data Structure Representation of Juosan Puzzles
	Overview of the NP-Completeness of Juosan Puzzles
	Important Observation: Invalid 2 3 and 3 2 Subgrids

	Verifying Juosan Solutions in Polynomial Time
	Constraint Checking Related to Numbers Within Territories
	Constraint Checking Related to Three Consecutive Cells
	Main Verification Algorithms

	Backtracking Method for Solving Juosan Puzzles
	Tractability of Particular Juosan Puzzles
	Tractability of 1 n Juosan Puzzles
	Tractability of 2 n Juosan Puzzles
	Tractability of m n Juosan Puzzles without Numerical Constraints

	Experimental Results
	Concluding Remarks

