
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
17/1 (2024), 49-58. DOI: http://dx.doi.org/10.21609/jiki.v17i1.1198

Implementation Genetic Algorithm for Optimization of Kotlin Software
Unit Test Case Generator

Mohammad Andiez Satria Permana, Muhammad Johan Alibasa, Sri Widowati

School of Computing, Telkom University, Bandung, Indonesia

Email: andiezpermana@student.telkomuniversity.ac.id, alibasa@telkomuniversity.ac.id
sriwidowati@telkomuniversity.ac.id

Abstract

Unit testing has a significant role in software development and its impacts depend on the quality of test cases
and test data used. To reduce time and effort, unit test generator systems can help automatically generate
test cases and test data. However, there is currently no unit test generator for Kotlin programming language
even though this language is popularly used for android application developments. In this study, we propose
and develop a test generator system that utilizes genetic algorithm (GA) and ANTLR4 parser. GA is used
to obtain the most optimal test cases and data for a given Kotlin code. ANTLR4 parser is used to optimize
the mutation process in GA so that the mutation process is not totally random. Our model results showed
that the average value of code coverage in generated unit tests against instruction coverage is 95.64%, with
branch coverage of 76.19% and line coverage of 96.87%. In addition, only two out of eight generated
classes produced duplicate test cases with a maximum of one duplication in each class. Therefore, it can be
concluded that our optimization with GA on the unit test generator is able to produce unit tests with high
code coverage and low duplication.

Keywords: unit test generator, test case, optimization, Kotlin, genetic algorithm (GA)

1. Introduction

Android application development has been pop-
ular since the last few decades. The Kotlin language
is in great demand compared to its predecessor
language, Java. One of the reasons is that Kotlin
is found to be more effective than Java to build an
android application [1]. To develop a high quality
application, unit testing is crucial to make sure the
implementation is correct. This unit testing process
requires effort and time costs since the developers
need to write test cases and test data. This issue
encourages researchers and industries to develop
automatic unit test generator systems. However, at
the time of this paper is being written, there is no
software or tool that can be used as a unit test
generator for the Kotlin programming language. In
addition, generating effective and efficient test cases
can be challenging, especially in complex software
systems. The generated test cases may have dupli-
cations or errors [2].

To overcome this challenge, we have explored
various approaches to fix the problem of the gener-
ation of test cases. One such approach is using opti-
mization problems [3, 4]. Optimization problems are
finding optimal results by maximizing or minimizing
a function [5]. Optimization can use algorithms such
as grid search, random search, and genetic algorithm
(GA) [6]. GA is a powerful optimization technique
that mimics natural selection, where a population of
potential solutions evolves to find optimal or near-
optimal solutions to a given problem. GA can be
used in complex problems with many parameters
[7]. Several issues of implementing GA in test case
generations include test case that might be duplicates
and mutation process that can take long time. There-
fore, there should be improvements on the mutation
process to minimize the previous issues.

In this research, we propose and develop an
automatic test case generator system that uses GA
in optimizing the results of generating test cases.
In our system, we also utilize ANTLR4 parser to

49

http://dx.doi.org/10.21609/jiki.v17i1.1198


50 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

modify the mutation issues so that it can minimize
the duplication issue and reduce the time to find the
optimal solutions. By using ANTLR4, the mutation
process can be optimized by using the correct static
types from the parameters and the return value.

The structure of this paper is as follows: the
second section discussed related works surrounding
the topic. The third section explained our unit test
generation and optimization method with GA. The
evaluation and discussion of the research results
were explained in the fourth section. Finally, the fifth
section discussed the conclusion and future works.

2. Related Works

The test case generator has several approaches.
One of them is the random input program approach
that will be created. Various input probabilities can
be used, ranging from uniform or biased inputs, such
as random integers from zero to one [8]. Another
approach is using fuzz testing or fuzzing. Fuzzing
consists of taking well-formed inputs and repeatedly
modifying them, more or less randomly, to generate
new inputs [9].

In the research conducted by Bayusandya Tres-
nayatna et al. [2], another approach used is to use
a basis path to generate test cases and test data.
The basis path method analyzes the program domain
to obtain appropriate test data based on Cyclomatic
Complexity (CC) which helps the tester to estimate
the number of test cases needed. This research also
requires Abstract Syntax Tree (AST) by parsing
source code using an ANTLR4 parser.

Abstract Syntax Tree (AST) is a tree designed to
represent the abstract syntactic structure of source
code. It is used widely in programming languages
and software engineering tools [10]. One way to
generate an AST is by using a parser. ANTLR is
a parser used to read, process, execute or translate
structured text. This parser is widely used to create
AST [11]. The process in ANTLR involves a formal
grammar file to generate the parser. The grammar file
includes the lexical rules and syntax of the parser
[12].

For the resulting test cases to have results that
have few problems, such as duplication of test cases,
several approaches can be used. One way is the
optimization problem. Optimization problems have
begun to be used in test case generators using grid
search, random search, and genetic algorithms [6].
The genetic algorithm is one of the most used be-
cause it has the most efficient in time and space
compared with the other algorithm [3, 13, 14].

The genetic algorithm is an optimization al-
gorithm that uses a sequential approach to solve

problems. It uses several processes to distinguish
individuals at each solution iteration by swapping,
adding, and selecting the parameters under test. Like
evolution in biology, it simulates the process of
natural selection. In this case, individuals with the
best ability, called fitness value, will survive in the
next iteration [6].

The process of population generation, swapping,
and mutation in the genetic algorithm is done ran-
domly just like in the process of evolution. An
individual could be the reference for the random-
ization of this algorithm process. This individual
will be compared with other randomized individuals.
Compared to other search algorithms, such as grid
search and random search algorithms [6], genetic al-
gorithms do not require additional information about
the problem to be solved. This particular feature
addresses an unresolvable issue by other optimiza-
tion algorithms due to factors such as discontinuity,
degradation, and non-linearity [5, 15].

Pynguin is a unit test generator library that uses
a genetic algorithm to optimize the results [3]. Pyn-
guin is used to generate unit tests from the Python
programming language. Pynguin uses search-based
test creation to create tests that maximize code cov-
erage [14]. This library is open-source so anyone
can refer to Pynguin. Pynguin is based on previous
research on the Java language, namely EvoSuite [3].

EvoSuite is a software tool created to generate
test cases in the Java programming language. The
generated tests have the achievement of high code
coverage and include assertions that are appropri-
ate to the subject being tested. Evosuite also uses
a meta-heuristic search algorithm to generate test
cases and test data. Evosuite aims to produce test
suites with high code coverage with this method.
[13, 16].

3. Methodology

The proposed method consists of several parts:
parsing source code using ANTLR4 to collect AST,
AST translation, initiating parent from AST to trans-
late the methods that want to generate the test cases,
and process optimization using GA. Each part con-
tains several sub-parts, which will be discussed in
this section.

Furthermore, the unit tests that have been created
will be run on the Kotlin application manually. Each
unit test that has been made will be recalculated
for its code coverage and checked to determine
whether the proposed method impacts the resulting
code coverage unit test. This research was conducted
to see whether optimization with GA on the unit
test generator can produce test cases that have high



Permana et.al., Implementation GA for Optimization of Kotlin Software Unit Test Case Generator 51

Figure 1. System diagram for unit test generator.

code coverage, especially in the Kotlin programming
language.

3.1. Source Code

Figure 2. Source code subject of function determining an
integer is a prime number.

The source code used in this research is based on
the Kotlin programming language. Subjects used for
testing there are four classes. Based on Table 1, each
class has one function with a different parameter

data type and number of parameters. The source
codes used in this research are function isPrime1,
checkTriangleValidity2, and nthFibonacci 3. In ad-
dition to the previous source codes, we added a
function that we created to check the ability to cover
all paths. Figure 2 shows the function isPrime used
in this research. The source code is tested one by
one in the GA program that has been created. The
unit test results will be retested to analyze the code
coverage used.

3.2. Source Code Parsing Using ANTLR4

The source code used in this research is based on
the Kotlin programming language. The library used
to get the AST from the source code is kotlinx.ast4.
The AST will be generated by changing the source
code through the ANTLR4 parser with the help of
the grammar included in the library. The resulting
AST will be in the form of a summary which can
be seen in Figure 3.

Figure 3. AST summary from kotlinx.ast4 library.

This library will generate an AST summary
using KlassDeclaration objects and other markers.
In Figure 4, each KlassDeclaration has parameters
consisting of two, three, or more parts. The first part
of the KlassDeclaration represents the type of the ex-
isting block, such as ”parameter” for parameters and

1https://www.geeksforgeeks.org/java-program-to-check-if-a-
number-is-prime-or-not/ Function isPrime
2https://www.geeksforgeeks.org/check-whether-triangle-valid-
not-sides-given/ Function checkTriangleValidity
3https://www.geeksforgeeks.org/java-program-for-program-
for-fibonacci-numbers/ Function nthFibonacci
4https://github.com/kotlinx/ast Generic AST parsing library for
kotlin multiplatform

https://www.geeksforgeeks.org/java-program-to-check-if-a-number-is-prime-or-not/
https://www.geeksforgeeks.org/java-program-to-check-if-a-number-is-prime-or-not/
https://www.geeksforgeeks.org/check-whether-triangle-valid-not-sides-given/
https://www.geeksforgeeks.org/check-whether-triangle-valid-not-sides-given/
https://www.geeksforgeeks.org/java-program-for-program-for-fibonacci-numbers/
https://www.geeksforgeeks.org/java-program-for-program-for-fibonacci-numbers/
https://github.com/kotlinx/ast


52 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

Table 1. Source codes used as the subject.

Class Function Parameter Return TypeNumber of Param Data Type
Integer isPrime1 1 Integer Boolean

TestVersion testFunction 2 Integer, Integer Integer
Triangle checkTriangleValidity2 3 Integer, Integer, Integer String

NthFibonacci nthFibonacci3 1 Integer Integer

”fun” for functions. Second is the name of the block,
for example, the name of the parameter, function, or
class. The third is the data type that represents the
declaration. The class will be the implementation or
extends class; the function is the return data type
that will be returned and the parameters that define
the data types in those parameters. The sequence
will change when the type of block represented in
the first part has modifiers such as private, open, or
public. The entire series will shift to the right.

Figure 4. KlassDeclaration object from kotlinx.ast4 li-
brary.

This research only requires parameters in the
functions in the source code and the return data
type. Both of these requirements can be obtained
from the summary type AST. Requirements can be
seen in Figure 4 with the KlassDeclaration object,
which has parameter tags for parameters in each
function. Note that the parameter for the function
comes after the KlassDeclaration object, which has
the name “fun.” The limit of the parameters of each
function is known by checking whether after the
last KlassDeclaration with type ”parameter” is a
KlassDeclaration with type ”fun” or not at all. The
function’s return data type can be seen from the last
section in KlassDeclaration to the kind ”fun.”

3.3. AST Translation

The work in this section will convert the AST
into an object class that will facilitate the process
in the following area. There are three main classes,
File, ClassBody, and Function, to hold the identifiers
in the AST. The File object class has the name
information of the Kotlin file that is read and the
name of the package used in the Kotlin file. The
package is used if the result wants to directly use
the generated unit test result without changing the
package manually. ClassBody is used to store the
name of the class in the Kotlin file along with the
functions in it. The Function class is a container for
objects in the function, such as input parameters,

return data types, and whether the parameters and
return data types are nullable.

Algorithm 1: Generate Parent
Input:

parent count: Number of parents
functions: List of object Function
class name: Class name
is companion: Check companion object

Output: ClassParent generated and append
procedure generate class parent(self)

for range from 0 to parent count do
class parent := ClassParent();
temp := [];
foreach fun in self.functions do

rand := random.randint(1, 50);
parent := Parent();
parent.branch := fun.branch;
parent.tag := fun.name;
for i in range(0, rand) do

assertion :=
generate assertion;

(see Algorithm 2)
par-

ent.assertions.append(assertion);
end

class parent.parents.append(parent);
code coverage, parent.branch :=

count fitness;
(see Algorithm 3)
parent.code coverage :=

code coverage;
temp.append(code coverage);

end
class parent.code coverage :=

sum(temp) / len(temp);

self.class parents.append(class parent);
end



Permana et.al., Implementation GA for Optimization of Kotlin Software Unit Test Case Generator 53

3.4. Initiating Parent

The previous object class from Section 3.3 will
be used for parent creation. Creating a parent con-
sists of object classes, such as ClassParent, Parent,
and Assertion. The first is the ClassParent object
which holds information about the code coverage for
the entire file and its functions. The parent contains
an assertion list containing the assertions used for the
test case results and the code coverage value in the
function. Assertion is a class that holds assertions,
whether they assert equals or not equals. This class
contains the function’s name to call the intended
function to get the original value of the function.
Then there is a list of original values that will fill
in the parameters in the function according to the
data type. Another variable inside the Assertion class
contains the expected value, the comparison value in
the assertion with the original value generated in the
function.

Algorithm 2: Generate Assertion
Input:

class name: Class name
fun: An object Function
i: Iteration

Output:
assertion: A generated Assertion object

function generate assertion(class name:
string, function:Function, i:integer)

assertion := Assertion();
assertion.type := AssertType.EQUALS;
assertion.name := fun.name + ” ” + str(i);
if fun.return type == None then

return None;
end

foreach param in fun.params do
data type := param.data type;
Generate real value based on
data type and nullable;
assertion.real.append(real value);

end
data type := fun.return type;
Run Kotlin program using the
function under test;
Get expected value from Kotlin program;
Translate value based on data type;
assertion.expected := expected value;
return assertion;

The population initiation process generates a
ClassParent object based on a ClassBody object. A
parameter in the GA class determines the population
size [7], which will be explained in Section 3.5.

Based on Algorithm 1, each iteration of the popula-
tion generated will perform a loop to initialize the
Parent class based on the Function class list. At each
iteration of the looping function, a random number
is selected to get the number of Assertions in each
Parent object.

The initial assertion will rely on randomizing the
original parameter value of the function based on the
data type [17]. Based on Algorithm 2, the number of
parameters, whether integer, float, or double, will be
randomized from -100 to 100. Boolean parameters
will be randomized between true and false. The
string parameter will be randomized with a string
length from 1 to 20, with letters, numbers, and
characters. The values of these assertion parameters
will be entered sequentially with the parameters in
the class function, so there is no need to recheck the
data type in the future.

The step to get the expected value requires a
function call process with the values generated in the
previous step. A Kotlin application is needed in this
GA application to be able to run functions and also
run tests to get code coverage. Added explanation to
Algorithm 2, the action taken is to copy the Kotlin
file, which is the subject, into the Kotlin application.
The program will write a new Kotlin main file by
taking the function result with the previous random
parameter value and printing it on the command
line. With the help of the subprocess module in
Python, programs can run command shells to run
Kotlin applications. The value will be taken from the
command line and entered into the expected variable
in the Assertion class.

The code coverage calculation process is carried
out for each iteration of the looping function. Ja-
CoCo5 is one of the libraries used to get code cov-
erage values in Java programs but can be used in the
Kotlin language. JaCoCo5 will generate a report in
CSV format and contain the number of instructions
(byte codes), branches, and lines that are covered
and not. The list of assertions made will be written
to a file in the test section of Kotlin application to
run the JaCoCo5 report. The program reads the CSV
report file to get the coverage statement and includes
it in the Parent object.

The last is calculating the average code coverage
to be included in the code coverage variable in the
ClassParent object. Calculations in this section are
used if there is more than one function in one class.

5https://www.eclemma.org/jacoco created by the EclEmma
team

https://www.eclemma.org/jacoco


54 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

3.5. Genetic Algorithm Process

GA has several processes in it. Based on re-
search conducted by Faisal Dharma et al. [18], the
GA process goes through several steps described
in Figure 1. This research makes the GA process
in one GA class consisting of the population size
parameter used as an iteration in the parent initia-
tion process, list object class Function, class name,
and is companion with a Boolean data type. The
is companion variable is used when a class has a
companion object or static modifier in Java. The goal
is to write a function call that will be made unit test.

3.5.1. Fitness Function. The fitness function calcu-
lation uses the code coverage of the assertions made
through JaCoCo5. According to research by B. I.
Al-Ahmad et al. [19], JaCoCo5 has five types of
coverage. The coverage includes instruction, branch,
line, method, and cyclomatic complexity coverage.
This research uses instruction coverage as fitness
value because instruction coverage provides better
precision than coarser coverage metrics [20]. The
instruction coverage can be seen in Equation (1).

CovIci =
CIci

TNCIri
(1)

where CovIci: Instruction coverage weight of the
class, CIci: Covered Instructions of class ci,
TNCIri: Total Number of all Classes’ Instructions
in each release ri [19].

Addition from Algorithm 3, calculating fitness
value using JaCoCo5 can be done by writing a new
file in the Kotlin application test section. Fitness
calculation results can be obtained by running Ja-
CoCo5 test report feature through the command line.
The resulting test report will be in CSV format and
translated using Pandas6 libary. Fitness calculations
are carried out in the population generation in Sec-
tion 3.3, cross-over in Section 3.5.3, and mutation
in Section 3.5.4.

3.5.2. Selection Parent. The selection process is
done to select two parents that will be used in the
cross-over process. This research uses the roulette
wheel method based on research conducted by Faisal
Dharma et al. [18]. Parent selection will be taken
from a random number done N times. The selected
parent must not use the same parent. The last par-
ent selection process will be repeated if the same
selected parent is selected.

6https://pandas.pydata.org/

Algorithm 3: Count Fitness Value
Input:

parent: Object Parent
fun name: Function name
functions: List of object Function
is companion: Check companion object

Output:
code coverage: Code coverage
branch: Number of branch

function count fitness(self, parent:Parent,
fun name:str)

Create file test in Kotlin program;
Copy subject Kotlin file to Kotlin program;
Run JaCoCo5 test report;
data frame =
pd.read csv(”jacocoTestReport.csv”);
class name := self.class name;
if self.is companion then

class name += ”.Companion”;
end

df result = df.loc[data frame[’CLASS’] ==
class name];
instruction covered =
df result[’INSTRUCTION COVERED’];
instruction missed =
df result[’INSTRUCTION MISSED’];
branch covered =
df result[’BRANCH COVERED’];
branch missed =
df result[’BRANCH MISSED’];

branch = int(branch covered + branch missed);
instruction = int(instruction covered +
instruction missed);
coverage = float(instruction covered) /
float(instruction);
return coverage, branch;

3.5.3. Cross-over. This research performs the cross-
over process by swapping the parameter values in the
Assertion class on the two selected parents. There is
a for loop to explore the list of class assertions in
each parent. The number of iterations is determined
by seeing which assertion list length is the least of
the two parents. The parameter values selected will
be randomized between one parent and the second
parent. The parameter values in the Assertion class
have been sorted according to the parameters in the
function being tested. The parameter values will be
saved for the next generation.

Each iteration of the assertion list is checked for
duplication using the same method as calculating

https://pandas.pydata.org/


Permana et.al., Implementation GA for Optimization of Kotlin Software Unit Test Case Generator 55

fitness. The new assertion will be inserted into the
parent and tested for code coverage. Suppose there is
no increase in the code coverage value of the added
assertion. In that case, the assertion is included in
the duplication and not used [14]. Otherwise, the
assertion will be included in the new generation.
Iteration can end if the code coverage has reached
100%. The code coverage value obtained is stored
in the object for the next generation.

3.5.4. Mutation. Mutation in the GA process is
done by changing the parameter values in the parent
[3]. The mutation value is determined based on the
data type of the parameter value. In numeric data
types, there is a random subtraction or addition of
values. Randomized values also include negative and
positive values. The Boolean data type will use
random selection for Boolean operations such as
”and” and ”or”. The string data type will truncate
an existing string by a specific limit and replace it
with another random string.

Like in the cross-over process, there is a process
to get the expected value similarly. After the ex-
pected value is obtained, the last process is obtaining
code coverage in the same way as in the cross-over
process.

3.5.5. Elitism. The elitism process is required to
select the population that deserves to be continued in
the next generation as the new parent. With the help
of sorting, elitism is done by sorting the number of
assertions obtained from the cross-over and gener-
ation process. The smallest number will be at the
top of the list. It is also sorted by code coverage or
fitness value from largest to smallest. The number
of parents taken is by the GA parameter number
of parent classes. From this process, we will get a
population with extensive code coverage and a small
number of duplications.

At the end of the GA process, the parents are
checked based on their fitness value. The best parent
will be checked if its fitness value exceeds 85% to
complete the iteration of the GA process. The final
result of the GA process is a printed unit test file of
the best parent generated in Kotlin file format.

4. Result and Discussion

This research chose a different number of parents
and maximum generation in the GA process. Each
class used pairs of parents and maximum genera-
tions: four parents and five maximum generations;
eight parents and seven maximum generations. This
difference was made to check if there was an effect
on the results of the number of parents and the

number of maximum generations. This research pro-
duces four Kotlin files that contain unit tests and test
cases. Recalculation of code coverage with JaCoCo5
is also done by including branch coverage and line
coverage, which can be seen in Equation (2) and (3).

CovBci =
CBci

TNCBri
(2)

where CovBci : Branch coverage weight of the class,
CBci: Covered Branches of class ci, TNCBri: Total
Number of all Classes’ Branches in each release ri
[19].

CovLci =
CLci

TNCLri
(3)

where CovLci: Line coverage weight of the class,
CLci: Covered Lines of class ci, TNCLri: Total
Number of all Classes’ Lines in each release ri [19].

Table 2. Generated unit test’s code coverages with four
parents and five maximum generations.

Generated Instruction Branch Line
Unit Test Cov. Cov. Cov.

TestVersionTest 100% 100% 100%
TriangleTest 95.45% 66.67% 75%

NthFibonacciTest 93.94% 66.67% 100%
IntegerTest 86.36% 64.29% 100%

Table 3. Generated unit test’s coverage counts with four
parents and five maximum generations.

Generated Instruction Branch Test
Unit Test ctx miss ctx miss. Case

TestVersionTest 16 0 4 0 3
TriangleTest 21 1 4 2 2

NthFibonacciTest 31 2 4 2 1
IntegerTest 38 6 9 5 2

Table 4. Generated unit test’s code coverages with eight
parents and seven maximum generations.

Generated Instruction Branch Line
Unit Test Cov. Cov. Cov.

TestVersionTest 100% 100% 100%
TriangleTest 100% 66.67% 100%

NthFibonacciTest 93.94% 66.67% 100%
IntegerTest 95.45% 78.57% 100%

The experiment generates two unit tests on each
class with differences in the number of parents and
maximum generation. Table 2 and 4 show the code
coverage results obtained from the unit test generator
in experiments with different parameters. Instruction
coverage generated by the first experiment on the
TestVersion class from Table 1 gets the instruction,



56 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

Table 5. Generated unit test’s coverage counts with eight
parents and seven maximum generations.

Generated Instruction Branch Test
Unit Test ctx miss ctx miss. Case

TestVersionTest 16 0 4 0 3
TriangleTest 22 0 4 2 2

NthFibonacciTest 31 2 4 2 1
IntegerTest 42 2 11 3 4

branch, and line coverage of 100%. This code cov-
erage also obtained the same results in the second
experiment. The amount of coverage on the TestVer-
sion class is all instructions and branches, as seen in
Table 3 and 5. The number of test cases generated
is the same in both experiments of 3 test cases.

The Integer, Triangle, and NthFibonacci classes
from Table 1 have different results in the two ex-
periments. The unit test generated by the Integer
class produces unit tests in Table 2 and 4 with differ-
ent instruction, branch, and line coverage. The first
experiment produces 86.36% instruction coverage,
64.29% branch coverage, and 100% line coverage.
The second experiment, which can be seen in Ta-
ble 4, experienced an increase in code coverage
to 95.45% instruction coverage and 78.57% branch
coverage. In Table 3 and 5, it can be seen that the
Integer class has 38 out of 44 instructions covered
in the first experiment and 42 out of 44 instructions
from the second experiment. However, 9 out of 14
branches and 11 out of 14 are covered. The resulting
test cases differ on different parameters, with the
first experiment totaling 2 test cases and the second
counting 4 test cases.

Judging from Table 3 and 5, the Triangle class
produces a difference in the number of instructions
covered. There are 21 out of 22 instructions in
the first experiment. In the second experiment, all
instructions are covered. However, the branches cov-
ered have the same number of 4 out of 6 branches
covered in both experiments. This affects the results
of instruction coverage which can be seen in Ta-
ble 2. Instruction coverage increased from the first
experiment, which resulted in 95.45% to 100% in
the second experiment. The branch coverage results
remained the same at 66.67% in both experiments.
The number of test cases generated was 2 test cases
in both experiments.

The last class, NthFibonacci, has no change in
code coverage and the number of codes covered in
both experiments based on Tables 2, 3, 4, and 5.
The resulting code coverage is 93.94% in instruction
coverage, 66.67% in branch coverage, and 100% in
line coverage. The covered instructions amounted to
31 out of 33 instructions, and 4 out of 6 branches

were covered. The number of test cases generated is
1 test case.

Figure 5. IntegerTest class from the first experiment.

Figure 6. IntegerTest class from the second experiment.

There is a difference in the number of test cases
generated from experiments with the number of
parents and maximum generation. The results seen
in Figure 5 and 6 are in the IntegerTest class in
which the first experiment produced 2 test cases
and the second experiment produced 4 test cases.
In Figure 6, it can be seen that there is duplication
which causes the number of test cases generated to
be excessive. The test case in Figure 2 is optimal,
but this can happen because the mutation process
causes changes in the optimal parameter values.

Looking at Table 3 and 5, the resulting branch
coverage has a value significantly different from
instruction coverage. Since this research uses in-
struction coverage, it can be concluded that high in-
struction coverage does not always give high branch
coverage.

5. Conclusion and Future Works

The source code derived from the Kotlin pro-
gramming language has successfully generated the
unit tests of this research. This research uses the help
of ANTLR4 as a parser to generate ASTs used in
the GA process. The resulting unit test is the most
optimum based on the fitness value of instruction
coverage. The average value of code coverage in the
unit test on instruction coverage is 95.64%, branch



Permana et.al., Implementation GA for Optimization of Kotlin Software Unit Test Case Generator 57

coverage is 76.19%, and line coverage is 96.87%.
Only two classes generate duplicate test cases, but
there is only one duplication in each class. To get
maximum results, determining the number of parents
and maximum generation has affected the resulting
unit test.

This research still uses instruction coverage as
a fitness value, and there is still duplication in the
results. Implementation of a combination of another
type of code coverage can be used as a fitness value
to get better results. Furthermore, the source code
used is based on Kotlin language with limitations
for the data type of parameters and return value. The
data types that can be used are limited to integer,
double, float, boolean, and string data types. In
addition, this research can be translated into Kotlin
language to run the expected value retrieval and code
coverage faster. Optimization in code can also be
done in the future by improving better duplication
checks.

References

[1] L. Ardito, R. Coppola, G. Malnati, and
M. Torchiano, “Effectiveness of kotlin vs. java
in android app development tasks,” Information
and Software Technology, vol. 127, p. 106374,
2020.

[2] B. Tresnayatna, S. Widowati, and I. L.
Hakim, “Pembangkit test case untuk pengujian
perangkat lunak menggunakan metode basis
path,” eProceedings of Engineering, vol. 6,
no. 1, 2019.

[3] S. Lukasczyk, F. Kroiß, and G. Fraser, “Au-
tomated unit test generation for python,” in
Search-Based Software Engineering: 12th In-
ternational Symposium, SSBSE 2020, Bari,
Italy, October 7–8, 2020, Proceedings 12.
Springer, 2020, pp. 9–24.

[4] G. Fraser, “A tutorial on using and extending
the evosuite search-based test generator,” in
Search-Based Software Engineering: 10th In-
ternational Symposium, SSBSE 2018, Montpel-
lier, France, September 8-9, 2018, Proceedings
10. Springer, 2018, pp. 106–130.

[5] J. Carr, “An introduction to genetic algo-
rithms,” Senior Project, vol. 1, no. 40, p. 7,
2014.

[6] P. Liashchynskyi and P. Liashchynskyi, “Grid
search, random search, genetic algorithm:
a big comparison for nas,” arXiv preprint
arXiv:1912.06059, 2019.

[7] A. Alhroob, W. Alzyadat, A. T. Imam, and
G. M. Jaradat, “The genetic algorithm and
binary search technique in the program path

coverage for improving software testing using
big data.” Intelligent Automation & Soft Com-
puting, vol. 26, no. 4, 2020.

[8] G. Candea and P. Godefroid, “Automated soft-
ware test generation: some challenges, solu-
tions, and recent advances,” Computing and
Software Science: State of the Art and Perspec-
tives, pp. 505–531, 2019.

[9] M. Olsthoorn, D. Stallenberg, A. Van Deursen,
and A. Panichella, “Syntest-solidity: automated
test case generation and fuzzing for smart
contracts,” in Proceedings of the ACM/IEEE
44th International Conference on Software En-
gineering: Companion Proceedings, 2022, pp.
202–206.

[10] J. Zhang, X. Wang, H. Zhang, H. Sun,
K. Wang, and X. Liu, “A novel neural source
code representation based on abstract syntax
tree,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE).
IEEE, 2019, pp. 783–794.

[11] Z. Chang, Y. Sun, T.-Y. Wu, and M. Guizani,
“Scratch analysis tool (sat): a modern scratch
project analysis tool based on antlr to assess
computational thinking skills,” in 2018 14th
International Wireless Communications & Mo-
bile Computing Conference (IWCMC). IEEE,
2018, pp. 950–955.

[12] W. Zhu, N. Yoshida, T. Kamiya, E. Choi, and
H. Takada, “Msccd: grammar pluggable clone
detection based on antlr parser generation,” in
Proceedings of the 30th IEEE/ACM Interna-
tional Conference on Program Comprehension,
2022, pp. 460–470.

[13] S. Vogl, S. Schweikl, G. Fraser, A. Arcuri,
J. Campos, and A. Panichella, “Evosuite at
the sbst 2021 tool competition,” in 2021
IEEE/ACM 14th International Workshop on
Search-Based Software Testing (SBST). IEEE,
2021, pp. 28–29.

[14] S. Lukasczyk and G. Fraser, “Pynguin: Au-
tomated unit test generation for python,” in
Proceedings of the ACM/IEEE 44th Interna-
tional Conference on Software Engineering:
Companion Proceedings, 2022, pp. 168–172.

[15] S. Mirjalili, J. Song Dong, A. S. Sadiq, and
H. Faris, “Genetic algorithm: Theory, litera-
ture review, and application in image recon-
struction,” Nature-Inspired Optimizers: Theo-
ries, Literature Reviews and Applications, pp.
69–85, 2020.

[16] G. Fraser and A. Arcuri, “Evosuite: automatic
test suite generation for object-oriented soft-
ware,” in Proceedings of the 19th ACM SIG-
SOFT symposium and the 13th European con-



58 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

ference on Foundations of software engineer-
ing, 2011, pp. 416–419.

[17] S. D. Immanuel and U. K. Chakraborty, “Ge-
netic algorithm: an approach on optimization,”
in 2019 international conference on communi-
cation and electronics systems (ICCES). IEEE,
2019, pp. 701–708.

[18] F. Dharma, S. Shabrina, A. Noviana, M. Tahir,
N. Hendrastuty, and W. Wahyono, “Prediction
of indonesian inflation rate using regression
model based on genetic algorithms,” Jurnal
Online Informatika, vol. 5, no. 1, pp. 45–52,

2020.
[19] I. Bilal, I. Al-Taharwa, S. Rami, I. M.

Alkhawaldeh, and N. Ghatasheh, “Jacoco-
coverage based statistical approach for ranking
and selecting key classes in object-oriented
software,” J. Eng. Sci. Technol, vol. 16, pp.
3358–3386, 2021.

[20] A. Pilgun, “Instruction coverage for android
app testing and tuning,” Ph.D. dissertation,
University of Luxembourg, Esch-sur-Alzette,
Luxembourg, 2020.


	Introduction
	Related Works
	Methodology
	Source Code
	Source Code Parsing Using ANTLR4
	AST Translation
	Initiating Parent
	Genetic Algorithm Process
	Fitness Function
	Selection Parent
	Cross-over
	Mutation
	Elitism


	Result and Discussion
	Conclusion and Future Works

