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Abstract

Predicting immediate future actions taken by an intelligent agent is considered an essential problem in
human-autonomy teaming (HAT) in many fields, such as industries and transportation, particularly to improve
human comprehension of the agent as their non-human counterpart. Moreover, the results of such predictions
can shorten the human response time to gain control back from their non-human counterpart when it is
required. An example case of HAT that can benefit from the action predictor is partially automated driving
with the autopilot agent as the intelligent agent. Hence, this research aims to develop an approach to predict
the immediate future actions of an intelligent agent with partially automated driving as the experimental
case. The proposed approach relies on a machine learning method called naive Bayes to develop an action
classifier, and the Dynamic Bayesian Network (DBN) as the action predictor. The autonomous driving
simulation software called Carla is used for the simulation. The results show that the proposed approach is
applicable to predict an intelligent agent’s three-second time-window for immediate future action.
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1. Introduction

In the last decade, the interaction between hu-
mans and an intelligent agent (IA) has become
more sophisticated as more authorities are assigned
to IA providing it with more autonomy based on
its decision-making process. In this regard, IA is
considered a human counterpart rather than merely
a tool to support operational tasks [1]. Such an
interaction is widely known as human-autonomy
teaming (HAT), and the autonomy agent refers to an
intelligent agent assigned a high level of autonomy
in a certain task [2].

Even though IA is highly autonomous, most
HATs still require human involvement in the driving
loop control [3]. Driving loop control is a mecha-
nism to control car maneuver which can be done by
either the human driver or an intelligent agent. This
occurs due to IA’s limited capabilities on its sensory
tools to form its perception, and on its learning
model to form its situational awareness (SA). IA’s

SA is used to determine any necessary actions in
response to given situations [4–6]. However, without
a proper tool for humans to know IA’s immediate
future actions, it will cost human response time to
go back to the driving loop control to take necessary
actions over the car when the predicted IA’s actions
go south [7–9]. Level four of driving automation,
namely partially automated driving (also called col-
laborative driving in this paper), according to the
Society of Automotive Engineers is considered an
example of HAT that can benefit from the immediate
future action predictor for its autopilot agent [10–
12]. Hence, developing such an action predictor is
challenging and highly required, particularly in the
HAT context.

To answer the challenge mentioned above, this
research aims to develop an approach to predict the
immediate future actions of IA. From literatures,
such approaches have been proposed to fulfill re-
quirements from the industrial field [13–16]. How-
ever, lack of studies that implement such action pre-
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dictors in a more dynamic and unpredictable envi-
ronment such as a collaborative driving context. For
instance, a maneuver classification model has been
proposed by [17, 18] to check whether or not the
correct maneuver is recognized before the vehicle
attends the intended lane. Such a classification model
is significant as the fundamental part of the action
predictor. Moreover, [19] proposed a turning maneu-
ver model to predict turn left, turn right, and going
straight behaviors. However, this proposal is devel-
oped for connected vehicles environment. Hence, to
fill the research gap, the collaborative driving context
is selected in this study for the experimental case.

This research uses an autonomous driving sim-
ulator software called Carla for the experiment. As
driving situations are very complex, this study se-
lects an overtaking situation case to simulate the ac-
tion predictor. Furthermore, the proposed approach
involves two main techniques, the Naive Bayes and
Dynamic Bayesian Network (DBN) for their capa-
bilities to save computational cost and to support
missing data, respectively. Hence, the combination
of two techniques to predict the immediate future
action of an intelligent agent is considered the main
contribution of this study. The experiment results
indicate that the proposed approach is applicable to
predict immediate future actions.

The rest of this paper is structured as follows.
Section 2 presents related works. Section 3 rep-
resents the proposed method. Section 4 provides
the experiment and results. Lastly, conclusions and
future works are drawn in Section 5.

2. Related Works

Most literature that discusses IA’s action pre-
diction is very close to studies about situation as-
sessment, particularly in the industrial area. In this
regard, hazardous and abnormal situations are iden-
tified [15], and IA calculates the consequences in
the immediate future to execute safety procedures
accordingly [16]. Similarly, [14] also viewed that
future consequences must be included as a part of
alarm design. However, such consequences must be
prioritized by considering human cognitive abilities
to absorb critical safety information generated by
IA [13]. The action prediction approaches in the
industrial field are quite mature as those approaches
have been deployed under strictly controlled circum-
stances.

Besides the previously mentioned studies above,
the IA’s action identification is embedded in the topic
of IA’s self-explaining abilities. For example, the
proposed approach from [6] is based on a prove-
nance graph to explain IA’s behaviors. The self-

explaining ability tested in a collaborative driving
context is also demonstrated in [20]. In this regard,
IA is the autopilot agent (AA). However, these
approaches are considered data-driven approaches,
so they present historical data on AA. The devel-
opment of an action predictor is inline with the
human-vehicle collaboration framework proposed by
[21, 22]. According to the frameworks, a mutual
understanding module such as an action predictor,
is required to ensure that the automation actions and
maneuvers are predictable to humans and vice versa.
Hence, developing a predictor for IA’s immediate
future action needs to be explored.

3. Proposed Method

This section provides a detailed process to de-
velop a machine-learning-based classifier to pre-
dict AA’s immediate future actions in the one-way
street overtaking scenario. This section is divided
into three parts. The first part explains how data is
generated and prepared for the training dataset. The
second part presents the way to develop an action
predictor. Finally the final part provides the way the
action predictor is evaluated.

3.1. Dataset Generation and Preparation

This research used an open-source autonomous
car simulation software called Carla (version 9.13)
to generate the dataset. The attributes of the dataset
follow the research from [20], that can be seen in
Table 1. Those attributes obtain their values from
code-generated flags during the autonomous car’s
overtaking task. For example, the attributes of ρ and
υ are flags from the lane change warning system.
The flag for driver approval (ψ) is assumed when
the AA starts its overtaking maneuver. Furthermore,
the flag for overtaking speed risk (ζ) is obtained
from the road speed limit provided by the navigation
system. The other attributes are collected with the
help of Carla’s virtual sensors including LIDAR. As
shown in Table 1, all flags are indexed based on the
attribute’s possible values.

Attributes in the dataset are considered the sit-
uation of concern’s attributes. Several instances of
Carla simulation are executed to obtain the values
of those situation attributes. The value’s combina-
tion of those attributes is then used to predict the
immediate future action of the autonomous car’s
autopilot agent. The overtaking scenario simulated
in Carla’s environment is on a one-way road. For
such a scenario, there are six typical actions of
AA in association with overtaking tasks (see Table
2): 1) keep going. 2) overtaking aborted but stay



Kridalukmana et.al., A Dynamic-BN-Based Approach to Predict the Next Intelligent Agent’s Actions 61

Table 1. Attributes of the dataset and their description.

Attribute Symbols Description Possible values and their indices
ρ Position of ego vehicle relative to overtaking car Behind [0], Next To [1], After [2]
υ Current lane position of the ego vehicle Overtaking lane [0], Ego lane [1], De-

parture Lane [2]
ψ Driver’s approval on the autopilot overtaking task Yes [0], No [1]
ζ Overtaking risk against road speed limit Safe [0], Unsafe [1]
η The existence of other cars in the overtaking lane Exist [0], Not Exist [1]
ϑ Distance or collision risk against η Safe [0], Unsafe [1]
ε Risk related to space to go back to the departure lane

after overtaking
Safe [0], Unsafe [1]

Table 2. Labels and Symbols used to label the autopilot
agent’s actions.

Label Symbol Description
0 KG Keep going with the current action
1 C1 Overtaking abort, stay in overtak-

ing lane
2 C2 Overtaking abort, back to ego lane
3 KP Keep processing the overtaking

task
4 LC Doing lane change
5 GT Go back to the departure lane

Table 3. The snippet example of the dataset to classify
the autopilot agent’s action.

ρ υ ψ ζ η ϑ ε label
2 0 0 0 0 0 0 5
1 1 0 1 0 0 0 4
1 0 0 0 1 0 0 3
1 2 1 0 1 0 0 0
0 0 0 1 1 0 0 1
2 0 0 1 1 0 0 2

in the overtaking lane, 3) overtaking aborted and
go back to departure lane, 4) keep processing the
overtaking task, 5) lane changing, and 6) go to
departure lane. Based on the typical actions, each
raw data generated by Carla instances are labeled.
The snippet of the generated dataset can be seen
in Table 3. The example overtaking scene in the
Carla simulator to generate a dataset can be seen
at https://youtu.be/gU4vwh6bSyg. Another example
when overtaking risk against the road speed limit as
the overtaken vehicle increases its speed can be seen
in video link: https://youtu.be/VbqYyaKZEpA.

3.2. Action Predictor

The action predictor is developed using two fun-
damental techniques, namely machine learning and
DBN. The working scheme of the proposed action
predictor is illustrated in Fig. 1. The previously
generated dataset will be trained using a machine
learning technique to generate a classifier model
for AA’s actions. Among many machine learning
approaches, this research selects naive Bayes to
train the model because of its feature in reducing
the computational cost. The results of the classifier
generated by the naive Bayes will be used to feed
the DBN. DBN is exploited to predict the immediate
future value of the AA’s actions. DBN is a well-
known technique for data relationships against time
sequences. Moreover, it also supports missing data.
Hence, DBN is suitable to address sensor missing
data problems which often occur while IA collects
the data from its sensory tools. The fundamental of
each technique used in this study is described below.

Figure 1. Working scheme of the proposed method.

3.2.1. Naive Bayes. Naive Bayes is one of the
supervised learning techniques that apply the Bayes
theorem. Naive Bayes uses a ’naive’ assumption in
which between every tuple of feature given random
variable’s values, there would be a conditional inde-
pendence so that:

P (ai∣b, ai, . . . , ai−1, ai+1, . . . , xn) = P (ai∣b) (1)
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where b is a random variable, and a1 through an
are feature vector that has dependencies on each
other. As P (a1, . . . , an) is constant, the following
classification rule can be applied:

h̵ = argmax
b

P (b)
n

∏

i=1

P (Pai∣b) (2)

where P (Pai∣b) is considered the recurrence rate of
class b in the training dataset. Then, the Gaussian
is implemented to calculate the likelihood of the
feature as denoted by:

P (ai∣b) =
1

√

2πσ2
y

exp(−
(ai − µb)

2

2σ2
b

) (3)

where σb and µb are based on maximum likelihood
estimation.

In this research, the dataset is trained using the
Naive Bayes. As illustrated in Fig. 1, the output of
the Naive Bayes is a classifier describing the AA’s
actions (see Table 2).

3.2.2. Dynamic Bayesian Network. The Bayesian
Network (BN) is considered a directed acyclic causal
network that consists of nodes corresponding to
random variables and arcs representing causal influ-
ences among variables. Joint probability distribution
P (V ) is calculated among the BN’s random vari-
ables V = {v1, v2, . . . , vn}, and it is formulated by:

P (V ) =
n

∏

i−1

P (vi∣Pa(vi)) (4)

where Pa(vi) denotes the parent of Vi for the finite
number of i = 1,2, . . . , n. If the parent is empty,
then:

P (vi∣Pa(vi)) = P (vi) (5)

which represents its prior probability. Based on
Bayes theorem, prior probability can be updated
when new evidence E comes during the system’s
activities and operations, thus the posterior proba-
bility is calculated by

P (V ∣E) =
P (V,E)

P (E)
(6)

DBN is an extension of the BN’s capabilities,
and it can capture dynamic changes within domain
variables of the static BN at different times. How-
ever, DBN can distinguish variables within both the
same period and the different periods. The former is
called contemporaneous dependency, and the latter
is referred to as non-contemporaneous dependency.
Hence, a DBN can be defined as a tuple (B1, BT )

where B1 denotes a BN having P (v1) as the prior
distribution and BT indicates a two-slice temporal
BN with so that:

P (Vt∣Vt − 1) =
n

∏

i−1

P (vit∣Pa(v
i
t)) (7)

where vit denotes the node state at time-window t
and Pa(vit) denote the parent nodes in time-window
t or t−1. Thus, the joint probability distribution can
be formulated as:

P (v1 ∶ T ) =
T

∏

t=1

n

∏

i=1

P (vit∣Pa(v
i
t)) (8)

where T represents the time slices in total.
In this research, DBN receives input from the

Naive Bayes. The output of DBN is the prediction
of AA’s action in the next three seconds.

3.3. Performance Evaluation

There are two main evaluations in this research.
The first evaluation is to measure the accuracy of the
classification performance of the AA’s action devel-
oped using the Naive Bayes. The second evaluation
is to check the performance of the DBN to predict
the immediate future action of AA. In this regard,
this research defines immediate future action as a
three-second time window in the future. The three-
second unit is selected because it is considered to be
the minimum time needed by a driver to comprehend
a driving situation.

4. Experiment and Results

4.1. Action Classifier Performance

As previously mentioned, the dataset generated
by Carla simulator will be trained to classify the
category of AA’s action as presented in Table 2.
Table 4 presents the classification report that in-
cludes precision, recall, f1-score and accuracy mea-
surements. For accuracy, the classifier achieves 98%
valid predictions, and its confusion matrix can be
seen in Fig. 2. It can be seen in Table 4 that mostly,
the dataset contains keep going (KG, labeled by
0) actions which is normal as in most overtaking
situations AA deals with normal situations. Also, the
sensor captures the data every 0.25 seconds, hence
KG gets a lot of support data. Other actions only
have few support data because they only occurred
in a very short time window during the simulation.
Furthermore, this research also verifies the perfor-
mance of the action classifier performance with k-
fold cross-validation technique with the k value is
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Table 4. Classification report on autopilot agent’s action
after the last k.

Class Precision Recall f1-score support
0 1.00 1.00 1.00 1494
1 1.00 0.79 0.89 131
2 0.93 0.91 0.92 210
3 0.67 1.00 0.80 39
4 1.00 1.00 1.00 401
5 0.71 1.00 0.83 29
accuracy 0.98 2304
macro avg 0.88 0.95 0.91 2304
weighted
avg

0.98 0.98 0.98 2304

Table 5. K-Fold Cross Validation Score.

Folds Mean Score Min Score Max Score
1 0.98 0.982 0.983
2 0.98 0.98 0.986
3 0.98 0.978 0.93
4 0.98 0.98 0.987
5 0.98 0.98 0.987

set to 5, and hence, the training and test dataset will
be 80% and 20%, respectively.

Figure 2. The confusion matrix of autopilot agent’s action
classification after the last k.

Among identified actions, C1 and C2 are identi-
fied, particularly when the AA deals with hazardous
situations during its overtaking task, which is indi-
cated by attributes ζ, η, and ε as presented in Table
1. In this research, those two types of actions are
highlighted as they can help the drivers enhance

their awareness and understanding of AA during
overtaking task cancellation caused by hazardous
situations.

Figure 3. The Relations among nodes in the Dynamic
Bayesian Network to predict AA’s action in the next three
seconds.

4.2. Action Predictor Performance

After AA’s actions are conceptually labeled, this
section presents the action predictor performance
which takes advantage of the DBN. The performance
is measured based on whether or not, in the next
three seconds, the predicted action will have the
same label as the real action. The action predictor
engine is then developed based on the DBN, and
the relations among nodes in the DBN used to
predict AA’s actions in the next three seconds are
illustrated in Fig. 3. The DBN has two node types,
namely temporal and static nodes. Furthermore, the
DBN involves three nodes, namely the Action node,
Predited Action node, and Risk node. The two former
nodes are temporal nodes, and the latter is a static
node.

The time step count (t) in the DBN model is
set to four (4), from t=0 to t=3, to represent the
next three seconds. The current action is considered
an action at t=0, and its label will become the
input for the Action node at t=0. The Predicted
Action node at t=3 is the node representing what
the AA’s action will do in the next three seconds.
For example, at t=0, the recognized action by the
Naive-Bayes-based classifier is KP . However, the
predicted action shown by the Predicted Action node
could be C1, C2, or KP depending on the situation
changes indicated by the Risk node. Furthermore,
the arc order between the two temporal nodes, the
Action node and the Predicted Action node, is set
to 1 to indicate that the time-slice unit of t is one
second. The prior probabilities of the Action node
at t=0 and t=1 can be seen in Table 6 and Table 7,
respectively.



64 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 17,
issue 1, February 2024

Table 6. Prior probabilities of Action node at t=0.

Node states Probabilities
KG 0.167
C1 0.167
C2 0.167
KP 0.167
LC 0.166
GT 0.166

Table 7. Prior probabilities of Action node at t >=1.

Node states Prior state (t=0) Probabilities
(t >=1)

KG KG 0.98
C1 C1 0.98
C2 C2 0.98
KP KP 0.98
LC LC 0.98
GT GT 0.98

The probability of other node state
combinations = 0.004

Furthermore, the Predicted Action node has the
same states as the Action node. Besides getting
input from the Action node, the Predicted Action
node reads the state of the Risk node. The Risk
node has four states, including No Risk, Overtaking
Speed Risks, Collision Risk, and Minimum Space
Risk. Their prior probabilities are set to 0.25. The
main function of the Risk node is to override the
prediction state given the condition of the Action
node and give it a new t=0 value. Fig. 4 visu-
alizes the temporal probability distribution of the
Prediction Action node, given the state of the Ac-
tion and Risk nodes at t=0 are KG and No Risk,
respectively. The temporal probability distribution of
the Predicted Action node is calculated based on a
conditional probability table set for this node. The
result indicates that P(Predicted Action=KG) = 0.96
during t=0-3, which means that in the next three
seconds, the predicted action of AA is 96% keep
going (KG). Similarly, Fig. 5 is the visualization of
the temporal probability distribution of the Predicted
Action node during t=0-3 given P(Action=KG) =
1 and P(Risk=OvertakingSpeedRisk) = 1 at t=0,
respectively. The result indicates that P(Predicted
Action=C1) = 0.96 during t=0-3.

The Carla instances are then replayed to see the
performance of the DBN-based action predictor. Ta-
ble 8 presents the performance comparison between
the proposed method and the baseline method from
[18]. The baseline method is selected because it also

Figure 4. The visualization of the temporal probability
distribution of the predicted action node during t=0-3
given P(Action=KG) = 1 and P(Risk=NoRisk) = 1 at t=0,
respectively.

Figure 5. The visualization of the temporal
probability distribution of the predicted action
node during t=0-3 given P(Action=KG) = 1 and
P(Risk=OvertakingSpeedRisk) = 1 at t=0, respectively.

presents action classification in the driving context,
even though it is only developed for lane change
detection (similar to LC in this study). The other
actions in this study (KG, C1, C2, KP , and GT )
are not covered in the baseline method. Moreover,
similar to the proposed method, the baseline method
also presents non-contemporaneous dependency dis-
tinguishing variables within different periods.

The performance comparison is divided into two
groups. In the first group, the comparison of ac-
tion classifier at t=0 representing current action is
presented. The second group presents the action
classifier at t+3 representing AA’s action in the next
three seconds. The performance of the action (or ma-
neuver) classifier at both t=0 and t+3 demonstrated
by the proposed method outperformed the baseline
method, reaching 98% and 67%, respectively. Ac-
cording to [18], the 67% of DBN accuracy is consid-
ered average and acceptable, particularly when the
predictor is used in a dynamic and unpredictable



Kridalukmana et.al., A Dynamic-BN-Based Approach to Predict the Next Intelligent Agent’s Actions 65

Table 8. Comparison to the baseline method from [18].

Maneuver Current (t=0) t+3
Classification A B A B

KG 1.0 N/A 0.96 N/A
C1 1.0 N/A 0.96 N/A
C2 0.9 N/A 0.6 N/A
KP 0.76 N/A 0.5 N/A
LC 1.0 0.72 0.65 0.63
GT 0.69 N/A 0.4 N/A

Average 0.98 0.72 0.67 0.63
Notes:
A = Our proposed approach
B = Baseline method

environment. Even though this study only reached
the average performance of accuracy in predicting
immediate future actions, some benefits can still be
obtained. For example, the human driver can use the
results to compare their situational awareness with
those from AA so a proper reaction can be made to
anticipate improper AA’s actions in the immediate
future given various driving situations.

Two main factors degrade the level of accuracy.
Firstly, before t=3, the state of the Risk node is
changed, so that the predicted action is different
from the state of the Action node at t=0. Secondly,
the performance of the action classifier.

5. Conclusions

This paper aims to develop an approach to pre-
dict IA’s immediate future actions. The proposed
approach is based on Naive Bayes to develop IA’s
action classifier and DBN to predict IA’s immediate
future action. This research implements the proposed
approach in a collaborative driving context with the
overtaking scenario for the experimental case. The
performance of DBN is highly tight to the accuracy
of the classifier generated by the Naive Bayes. Lower
accuracy of the Naive Bayes will supply wrong
inputs for DBN to predict the AA’s immediate future
actions. Furthermore, future research can be directed
to other scenarios from other contexts.
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