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Abstract

The Greater Jakarta Commuter Rail, also known as the KRL Commuter Line, is one of the primary
transportation choices for many people due to its comfort and efficiency. However, the level of user
dissatisfaction is still relatively high, particularly regarding the frequent and unpredictable overcrowding of
trains. To address this issue, our research develops an Artificial Intelligence-based model to predict train
passenger density through crowd counting. By utilizing the proposed k-F1 metric By utilizing the proposed
k-F1 metric, which balances the impact of False Positives and False Negatives in crowd density predictions
by measuring the proximity of predicted points to the nearest ground truth within a scaled threshold and a
constructed dataset of train density, we compare three object detection approaches: bounding box prediction
(YOLOv5), density map (CSRNet), and proposal point (P2PNet). In our experiments, YOLOv5 surpassed
other models in performance, achieving a Mean Absolute Error (MAE) of 1.41 and a k-F1 score of 0.91,
while maintaining a fast inference speed of 300 milliseconds per frame. This model’s strength lies in
scenarios with fewer people and larger objects, such as passengers, within the frame. Conversely, P2PNet
and CSRNet were less successful under these conditions, achieving MAEs of 3.49 and 4.98, and k-F1
scores of 0.77 and 0.35 respectively. However, it is important to note that P2PNet and CSRNet are better
suited for denser and more congested environments, such as peak hours or at major transit hubs, where
trains typically experience high crowd densities. The proposed density estimation method can be applied to
real-time image-based CCTV systems to predict train congestion and facilitate transportation management
decisions.
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1. Introduction

Commuter train transportation (Kereta Rel
Listrik/KRL) has become one of the most popular
modes of transportation for many residents of the
Jakarta Metropolitan Area. According to Statistics
Indonesia, the non-departmental Indonesian govern-
ment institute responsible for conducting statistical
surveys, in February 2023 alone, there were over
20.8 million KRL passengers, with an average of
743 thousand passengers per day1. PT. Kereta Api
Indonesia, the state-owned company that manages
the KRL, predicts that within the next 5 years, the
number of KRL passengers can reach 1.1 million per

1Source: Central Statistics Agency

day2. Despite the increasing number of train users,
the overall level of satisfaction between user expec-
tations and reality in 2019 reached only 65.47% [1].
Based on our study (as seen in Section 4.1), from
2019 to June 2023, the level of user dissatisfaction,
as observed through sentiment analysis of social
media posts, reached 26.7%.

Based on our analysis of user satisfaction, we
identified several main issues related to KRL. One
of the critical issues is the frequent overcrowd-
ing of KRL trains. Despite the wide passenger-
to-capacity ratio, reaching 63% as of 2023, KRL
trains still experience overcrowding, especially dur-
ing peak hours2. Real-time passenger density detec-
tion devices can be an alternative solution to avoid

2Source: PT. Kereta Api Indonesia
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overcrowding. This allows for immediate response
and management decisions to effectively control pas-
senger flow and enhance safety 3. Our conceptual
framework hinges on establishing a nuanced rela-
tionship between passenger counting and density
prediction, particularly in correlation with varying
times of the day. This strategic linkage not only aids
in optimizing train schedules but also facilitates the
efficient management of passenger flow throughout
the day. We have also conducted interviews with
10 KRL officers from various commuter lines, and
they confirmed that no tool is currently available for
predicting train density. This lack of prediction tools
makes it difficult for passengers to prepare for and
avoid overcrowded trains. It also poses a challenge
for train operators to manage train schedules and
balance the availability of trains with passenger de-
mand.

In addressing the complexities of crowd counting
and density estimation, there are three existing state-
of-the-art approaches that are particularly relevant:
density-based prediction, bounding box prediction,
and proposal point detection [2]. CSRNet, which
employs density map prediction, is renowned for
its precise density estimation in dense crowds but
struggles with the exact localization of individu-
als [3]. YOLOv5 uses bounding box prediction to
achieve high-speed and accurate detection in less
crowded environments, yet its performance dimin-
ishes in high-density settings due to overlap is-
sues [4]. Lastly, P2PNet focuses on proposal point
detection, providing fine-grained localization even
in dense areas. However, it requires complex post-
processing to resolve closely situated detections [2].
These models were selected to be the basis for our
evaluation of crowd density and individual localiza-
tion within the KRL commuter environment.

We propose developing a framework for es-
timating KRL passenger density to address these
issues. Firstly, we conduct sentiment analysis and
topic modeling on a collection of microblog Twit-
ter posts to ascertain the importance of address-
ing density-related issues. Secondly, we develop a
crowd-counting model and individual location detec-
tion model. In its development, we also constructed
a dataset consisting of images directly captured from
KRL, which is helpful for model evaluation. We
propose a new metric to evaluate the model’s ability
to determine individual point localization. Lastly,
we suggest a method to calculate the quantity of
passenger density based on the results of the crowd-
counting modeling.

3https://redresscompliance.com/instant-decision-making-ai-in-
real-time-video-processing/

The success of this development is expected to
enhance passenger density management and support
the development of a more advanced and sustainable
Indonesia. With the implementation of this density
detection system, PT. KCI can directly observe the
impact of changes in the KRL system on public
interest. These effects can be observed through the
trends in KRL usage density over time.

Contribution. This work contributes academically
by developing a density estimation model for KRL,
creating a new dataset for evaluating crowd-counting
models in KRL, and introducing a novel metric
for assessing the quality of the model in predicting
individual point localization.

This research also holds several practical bene-
fits, such as: (1) assisting PT. KCI in assessing the
impact of changes in the KRL system through trends
in KRL usage density over time, (2) improving ef-
ficient and sustainable transportation infrastructure,
supporting the growth of the commuter train industry
(in line with SDG 114), (3) enhancing the perfor-
mance of KRL transportation in line with the devel-
opment of an advanced and sustainable Indonesia,
and (4) supporting the development of a smart city
with an automated KRL density monitoring center.

The methodology in this research paper has sev-
eral limitations: (1) all crowd image datasets are
captured from an overhead perspective of CCTV
cameras, (2) the dataset used as training data orig-
inates from various locations in China, and (3) the
tweet data collected is limited to those containing
tags related to KRL in the past four years.

2. Background

This section reviews recent literature methods
for density estimation (Section 2.1). These meth-
ods utilize crowd counting to estimate the density
percentage. Several approaches, such as bounding
box (Section 2.2), density map (Section 2.3), and
proposal point (Section 2.4), are also discussed.

2.1. Density Estimation

Density estimation is a branch of computer vi-
sion used to estimate the density within an im-
age. This method can utilize object detection-based
crowd counting [5], where the results are masked
to produce object segmentation and help estimate
density [6]. Three approaches are used in the crowd
counting methods in this research: bounding box,
density map, and proposal point. Bounding box gen-
erates bounding boxes around detected objects [7].

4https://sdgs.un.org/goals/goal11

https://redresscompliance.com/instant-decision-making-ai-in-real-time-video-processing/
https://redresscompliance.com/instant-decision-making-ai-in-real-time-video-processing/
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Proposal point predicts the location points at the
center of objects [8]. The density map estimates
the crowd counts by assigning density values to
each grid cell in the image [3]. In the case of
crowd density in public transportation, there are
object characteristics such as a limited number of
people up to 50 in a single image and variations in
object sizes due to camera perspective. To determine
the best method, the bounding box, density map,
and proposal point methods are compared using the
YOLOv5, CSRNet, and P2PNet models.

2.2. Bounding Box Method

One of the well-known state-of-the-art models
for efficient and accurate bounding box computa-
tions is YOLOv5 [9].
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Figure 1. YOLOv5 Architecture

In Figure 1, YOLOv5 combines CSPNet with
Darknet as the backbone to reduce the model size
and to ensure better inference speed and accu-
racy [4]. YOLOv5 also applies PANet as the neck to
enhance information flow. The head layer generates
three feature maps, allowing the model to handle
small, medium, and large objects [10]. However,
the bounding box method can involve expensive
annotation computations and can be challenging to
precisely locate objects in distant, ambiguous, and
complex images [11].

2.3. Density Map Method

One of the models for density map computation
is CSRNet [3]. CSRNet utilizes dilated convolutional
neural networks to extract deeper and retain output

resolution while capturing critical information. Di-
lated convolution layers use sparse kernels to replace
pooling layers to prevent resolution reduction and
information loss.
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Figure 2. CSRNet Workflow

In Figure 2, the Front-end network extracts fea-
tures from the image using dilated convolution,
while the Back-end network maps these features to
density values to predict the crowd density map [3].
Although density maps are suitable for estimating
dense objects, their accuracy in determining exact
object locations is limited [2].

2.4. Proposal Point Method

Density estimation can also be performed by
predicting proposal points in crowd counting, as in
the P2PNet method that utilizes localization tech-
niques by directly predicting the coordinates of ob-
ject points [2]. This method combines regression to
detect locations and classification to determine the
confidence score of key points. If the predicted point
is close to the ground truth (GT) point, the model
updates the confidence to be higher and the location
closer to the GT.
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Figure 3. P2PNet Architecture

P2PNet uses the VGG-16 bn backbone to extract
feature maps (Figure 3). These feature maps are
divided into two branches for regression and classi-
fication. The points and confidence scores obtained
from the predictions of these branches are connected
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with the ground truth points. The resulting loss
updates the weights in the next iteration, making the
obtained point locations more accurate. Although the
proposal point method can predict precise locations,
it is susceptible to False Negatives in significant
object size variations [2].

3. Methodology

This research consists of three main components,
as shown in the scheme depicted in Figure 4. Section
3.2 aims to identify the most frequently discussed
topics by the public regarding the KRL issue. Sec-
tion 3.3 aims to compare the performance of three
crowd-counting approaches and estimate individual
locations. Lastly, Section 2.1 aims to estimate pas-
senger density inside the KRL using the proposed
estimation method by the research team. We also
explain the dataset used (Section 3.1) and introduce
the k-F1 evaluation method proposed in this research
(Section 3.4).

3.1. Dataset

As shown in Table 1, the dataset consists of
two image datasets and one text dataset. We scraped
Twitter for 20K tweets related to KRL from 2019
to 2023. The crowd-counting training data images
were obtained from ShanghaiTech educational insti-
tution [12] and train stations in China [13]. Addition-
ally, we collected 150 captured images of passenger
density in KRL trains under various conditions.

Table 1. Datasets used in the study
Dataset Purpose Size

Population density Model training 3,323

KRL passenger
density

Model evaluation 150

Twitter messages Satisfaction analysis 20,000

3.2. Satisfaction Analysis

As a preliminary step, we conducted topic anal-
ysis on the sentiment-oriented messages in the rele-
vant Twitter dataset of size 20K of the KRL con-
text, as mentioned earlier. Manually labeling all
the tweets would be time-consuming. Therefore,
we applied a Semi-Supervised Learning approach
with Pseudo-labeling [14]. Initially, we manually
labeled the sentiment orientation (positive, negative,
and irrelevant) of 400 tweets. Then, a BERT-based
model [15, 16] was trained on these labeled 400
tweets and used to predict labels for the remaining
19,600 tweets.

Tweets with prediction confidence levels above
0.9 were merged with the initial annotated data for
retraining purposes. After retraining the model and
using it to relabel the 19.600 tweets, we selected
tweets with negative sentiment labels (either from
manual labeling or pseudo-labeling) for topic mod-
eling to identify negative issues related to the use
of KRL. Based on the generated topics, the main
issue that emerged is the frequent and unpredictable
overcrowding in KRL. We employ crowd count-
ing and individual localization methods to estimate
this overcrowding. As an additional note, we used
BERTopic [17, 18] for topic extraction and pro-
cessed KRL-related tweets using the API of GPT-
3.5 [19, 20] and the tweet-preprocessor library5.

3.3. Crowd Counting & Localization

As mentioned in Section 4.1, the analysis of
the Twitter dataset suggests the need for a system
that can predict passenger density in KRL. Two
approaches can be utilized in the case of density
estimation, which uses crowd counting in KRL. The
first approach involves cameras above the doors,
where the number of people is incremented when
someone enters and decremented when someone
exits. However, this approach has some drawbacks,
such as the possibility of people moving between
train carriages, resulting in variations in the number
of passengers in each car. Additionally, this approach
can accumulate errors if there are detection failures,
leading to less accurate estimates of passenger count.

The second approach involves crowd counting
using cameras inside the KRL to capture images of
the entire train. With this approach, estimating train
density can be done more effectively as the crowd
images are visible. This approach also employs only
head-based detection, as passengers’ bodies may be
occluded by other objects [21]. In this research, we
focus on the second approach mentioned above.

We compare several methods that can be used to
count crowds and localize the detected objects. It is
important to note that counting the detected people
alone is insufficient; accurately localizing the ob-
jects is also crucial. The image data undergoes pre-
processing steps, including cropping, resizing, and
image augmentation. Subsequently, these images are
fine-tuned using three crowd detection approaches:
(1) Proposal Points with P2PNet, (2) Density Map
with CSRNet, and (3) Bounding Box with YOLOv5,
as illustrated in Figure 5.

In order to ascertain the optimal object detection
approach, we evaluate their performance using the

5https://pypi.org/project/tweet-preprocessor/

https://pypi.org/project/tweet-preprocessor/
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Figure 4. Experimental Flow Diagram Scheme

(b) Proposal Points Prediction(a) Real Image
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Figure 5. Comparison of prediction methods for crowd
counting using the bounding box with YOLOv5, density
map with CSRNet, and proposal point with P2PNet

Mean Absolute Percentage Error (MAPE) metric to
estimate the error in the predicted number of people
and the k-Nearest F1 Score (k-F1) metric, which
we propose to measure the performance of point
localization estimation. The use of MAPE as a repre-
sentation of the average error percentage of objects is
preferred over MAE because the number of people in
a single image can vary. Therefore, measuring only
the absolute error is insufficient, and it is better to
represent the error as a percentage.

We use the midpoint to determine the precise
location within the bounding box so that when den-
sity estimation is performed, the resulting mask has a
circular shape that conforms to the shape of the head
rather than a rectangular shape. As for the density
map, we apply thresholding to determine the discrete
predicted locations.

3.4. k-Nearest F1 Score

The evaluation of individual point localization
often relies on the Normalized Average Precision
(nAP) metric [2]. However, nAP can be overly sen-

sitive to False Positives (FPs), potentially misrepre-
senting performance, particularly in scenarios with
a high number of False Negatives (FNs). In such
cases, nAP might yield seemingly acceptable results
despite overlooking the significant presence of FNs.

Recognizing the need for a metric that balances
both FP and FN in density estimation, we propose a
new effective metric for evaluating point localization
estimation to reduce the number of detections (FP
and FN) in a balanced manner, called the k-Nearest
F1 Score (k-F1). This metric considers the distance
differences between the predicted points and the
ground truth (GT) and utilizes the confidence score
from the prediction results.
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Figure 6. Calculation process of k-F1 Score (left) and
illustration of region calculation based on 3-nearest GT
(right) with restriction factor 0.5

Figure 6 on the left illustrates the working pro-
cess of the k-F1 metric. First, the predicted set points
X are sorted based on the confidence score. Second,
for each predicted point x ∈ X in sequence, the k-
nearest GT points, along with the average Euclidean
distance to the predicted point x, denoted as dk(x),
are found. This is illustrated in Figure 6 on the right.
Finally, dk(x) is used as a threshold to determine
whether x ∈ X is a True Positive (TP) or False
Positive (FP), formally defined as:

I(x) =

{
1 if dp(x) < λ.dk(x)

0 otherwise ,
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where I(x) is an indicator function that takes a value
of 1 if the predicted point x is considered TP and 0 if
it is considered FP; dp(x) is the Euclidean distance
between the predicted point x and the nearest GT
point; and λ is a restriction factor. This factor adjusts
the threshold for classifying a prediction as a True
Positive by scaling the average distance to the k-
nearest ground truth points, thereby allowing for
flexibility in how strict the detection criteria are
based on the scenario’s requirements.

If the Euclidean distance between the prediction
and the nearest GT point dp(x) is smaller than the
λ times dk(x), the prediction is considered similar
to the GT point and classified as TP; otherwise, it
is considered FP. If multiple GT points are within
the restricted region, the GT point closest to the
prediction is selected.

Once a prediction has been considered similar to
a GT point, it is not considered again for subsequent
k-nearest calculations. After evaluating predictions
with the highest confidence, the process continues
with the following prediction with the highest confi-
dence, and so on. After all predictions have been
evaluated, GT points that are not connected are
considered False Negatives (FN). From the values
of TP, FP, and FN, the F1 Score can be calculated,
which is then referred to as the k-F1 Score.

3.5. Modeling Density Estimation

Several approaches can be used for density es-
timation. The first approach is to count the number
of people inside the train and divide it by the max-
imum capacity of the train. However, this approach
has limitations because the position of the CCTV
cameras is limited to the ends of the train cars, so
the images cannot accurately represent all the people
inside the cars, especially those in the middle. This
is also due to the limited height of the train carriages
and the presence of plate structures that can obstruct
the view of people far away.

Given the varying perspectives, areas closer to
the camera tend to appear less crowded, while those
farther away appear more crowded. We hypothesize,
based on current observations, that density trends
might differ significantly towards the back of the
crowd regions; however, this remains a preliminary
assumption pending further research. To mitigate
this bias, we focus on the specific middle area
when estimating the density and assume the density
estimation value applies to a single train car. The
density estimation is done by considering only the
area covered by the head since using the entire body
can introduce bias, as other objects may potentially
occupy the space covered by the body from the
camera’s perspective.

We use few-shot transfer learning [22] by uti-
lizing the three pre-trained crowd-counting models
mentioned earlier due to small data examples and the
density data of Indonesian trains collected by the
research team. We begin by utilizing a pre-trained
model that has already learned general features from
a large dataset. Then, we fine-tune this model using
a smaller dataset specific to our task. A total of 150
images are used and undergo a human-in-the-loop
labeling process [23], where 1/3 of the data is for
transfer learning and the remainder for validation.

(b) Perspective Transformation(a) Determine Region of Interest

(d) Density Area Masking(c) Density Clustering

Figure 7. Process for density estimation

Figure 7 illustrates the general steps involved in
estimating the density. First, we determine the region
of interest (ROI) that is transformed to a top-down
perspective using the Homography matrix [24] so
that the camera perspective appears as if it were
taken from above. This transformation ensures that
the head sizes become uniform [25]. After the trans-
formation, the predicted point size is adjusted to
match the head size.

Next, we take the average radius of points that
can cover the head area to obtain the constant used as
the point scaling factor to cover the head from 50 ob-
servation images. Since the sizes of male and female
heads generally have minor standard deviations, it
can be assumed that the head sizes are relatively
similar [26]. Therefore, scaling with a constant is
still relevant. Subsequently, clustering is performed
using the DBSCAN algorithm [27] to generate areas
with no space between closely located heads, as
objects can no longer occupy these spaces. To ensure
that the points can adapt to the head size, 12 points
with a radius of r pixels and 9 points with a radius
of r/2 pixels are added, as shown in Figure 7 (c).

After obtaining the existing clusters, we use the
concave hull algorithm to form the segmentation
areas for each cluster [28]. Then, the density estima-
tion is calculated by dividing the number of pixels
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in the segmentation areas by the number of pixels in
the region of interest. The number of pixels is ob-
tained using the Shoelace Formula, which calculates
the area of a polygon in the formed concave hull.
Suppose this method is used for real-time density
estimation through CCTV with video detection. In
that case, the average percentage of density can be
taken from 10 consecutive frames to avoid possible
estimation errors.

4. Experimental Results and Analysis

Based on the results of the grouped topics from
tweet texts, it is found that the main issue that
frequently arises is the unpredicted overcrowding
of KRL capacity (4.1). Therefore, we developed a
method to estimate density based on crowd counting.
Based on the results of the MAPE, nAP metrics, and
the proposed k-F1 metric, it is found that P2PNet
achieves the best performance on images with a
large number of people (4.2). After crowd counting,
we estimate the density using the percentage of the
segmented area masked by the head. For the case of
KRL, the YOLOv5 method achieves the best results
due to the relatively large size of the objects.

4.1. Passenger Satisfaction

In the initial stage, we constructed the IndoBERT
model to predict the relevance of KRL issues with
a F1 validation score of 0.86. The predicted results
were filtered to include only tweets relevant to KRL
issues, resulting in 10,128 relevant tweets. Next, we
utilized two BERT-based sentiment models, namely
ayameRushia and w11wo. The results indicated that
the ayameRushia model achieved an F1 score of
0.803, while the w11wo model achieved a score of
0.95. After fine-tuning, the w11wo model’s F1 score
improved to 0.965, as shown in Table 2.

Table 2. The performance results of sentiment prediction

Model F1
score

Accuracy

ayameRushia/bert-base-
indonesian-1.5G-sentiment-
analysis-smsa

0.803 0.819

w11wo/indonesian-roberta-base-
sentiment-classifier

0.950 0.960

Fine tuned w11wo/indonesian-
roberta-base-sentiment-classifier

0.965 0.969

Out of the 10,128 tweets analyzed using the
fine-tuned w11wo model, 26.7% of them were found
to have negative sentiment. We conducted further

analysis to identify the topics contributing to these
negative sentiments. We successfully identified rel-
evant topics by employing the BERTopic model, as
displayed in Table 3.

Table 3. Top five most discussed KRL issues
Topic Keyword Percentage

Overcrowding of
KRL

krl padet 19.2%

Delayed arrivals krl datang lambat 13.9%

Cases of sexual
harassment

seksual pelecehan 9.1%

Prone to virus spread virus covid 7.9%

Misuse of priorities duduk prioritas 6.5%

Based on the obtained results, the most fre-
quently mentioned topic in the tweets is the over-
crowding of KRL capacity. This forms the basis for
developing a model for estimating KRL overcrowd-
ing density.

4.2. Crowd Counting Effectiveness

In order to calculate the density of passengers,
we applied the methods of crowd counting and
individual localization by evaluating three distinct
approaches on two types of ShanghaiTech datasets:
(1) Dataset A, with a maximum of 2, 000 individuals
per frame, and (2) Dataset B, with a maximum of
500 individuals per frame.

Table 4. Comparison of results for Dataset A and B
Method Dataset MAPE nAP k-F1 Time (s)

Yolov5
A 0.58 0.65 0.64 0.307

B 0.21 0.87 0.85 0.204

CSRNet
A 0.30 0.36 0.34 0.332

B 0.17 0.40 0.37 0.221

P2PNet
A 0.15 0.92 0.90 0.408

B 0.16 0.94 0.91 0.276

Table 4 presents the evaluation results for
Dataset A and Dataset B, utilizing the GPU T4 for
running the experiment. From these results, it can be
observed that the P2PNet method achieves the best
MAPE, (nAP), and k-F1 (k = 3, λ = 0.75). Here,
k represents the number of nearest Ground Truth
(GT) points considered for calculating the average
as a limit for a point to be counted as True Positive
(TP). λ denotes the restriction factor multiplied by
the radius of a region to narrow down the threshold
for a prediction to be categorized as TP. We set k as
the three nearest GT points and λ as 0.75 to reduce
False Positives (FP). Note that the higher the value
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(2) MAPE: 0.15 ; k-F1: 0.903

(c)

(2) YOLOv5 Prediction Result

(1) P2PNet Prediction Result

Figure 8. (a) Crowd Counting and (b) Density Estimation Results, and (c) Example Comparison Results of YOLOv5
and P2PNet Predictions on Dense Objects

of k, the more precise the evaluation results as more
nearest points are considered. However, the higher
the value of k, the greater the computational time.
Therefore, we choose k = 3 to balance the trade-off
between these two factors.

The CSRNet model exhibits a slightly worse
MAPE than P2PNet due to its regression-based pre-
diction results, which estimate the count of detected
objects. However, it outperforms YOLOv5 because
the regression method employed by CSRNet is more
suitable for densely populated objects. Furthermore,
CSRNet demonstrates lower performance in nAP
and k-F1 scores compared to P2PNet and YOLOv5.
We suspect that the localization capability of CSR-
Net is compromised due to high noise levels during
thresholding. On the other hand, the YOLOv5 model
exhibits the worst MAPE performance. However, it
has the fastest inference time among the models.

The comparison of discrete object detection be-
tween YOLOv5 and P2PNet can be seen in Fig-
ure 8 (c), where it is evident that YOLOv5 still
has a significant number of False Negatives (FNs),
particularly undetected heads. Table 4 presents the
differences in results between the k-F1 score and
nAP. The nAP metric focuses more on penalizing
False Positives (FPs), while the k-F1 score empha-
sizes penalties on both FPs and FNs. This penalty
is because detection errors can lead to inaccurate
density estimation.

Table 5. Comparison of results for the KRL datasetL
Method MAE MAPE k-F1

Yolov5 1.41 0.129 0.91

CSRNet 4.98 0.927 0.35

P2PNet 3.49 0.309 0.77

Furthermore, we evaluated all three models using
the KRL density dataset. We employed the few-shot
transfer learning method, involving 50 KRL images
for training and 100 for validation. The prediction
results and evaluation metrics can be observed in
Figure 8 (a) and Table 5. The evaluation results
show that YOLOv5 performs the best in terms of
MAE, MAPE, and k-F1 scores. YOLOv5 excels in
accurately detecting relatively large objects, such as
those found in KRL, but not excessively numerous.

As the camera angle in the train car remains
static, it ensures consistency in data capture. How-
ever, variations in camera resolution and technical
aspects could potentially affect these outcomes. On
the other hand, P2PNet exhibits inferior performance
in detecting larger objects but performs well in
densely populated areas, as demonstrated by the
crowded end of the KRL. CSRNet, while better at
estimating densely packed objects, struggles with
accurate localization, resulting in a lower k-F1 score.

4.3. Density Estimation

The three models are then evaluated to determine
the best model for density estimation. Based on the
results presented in Table 5, it is evident that the
YOLOv5 model provides the best performance. We
also showcase the density estimation results in Fig-
ure 8 (b) to support this finding. It can be observed
that P2PNet still has uncovered head areas, CSRNet
exhibits some noise, resulting in inaccurate density
estimation, while YOLOv5 adequately covers the
areas. Based on these findings, it can be concluded
that the bounding box method (YOLOv5) is the best
approach for density estimation in the context of
KRL compared to other methods.
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We classify the density percentage into low,
moderate, and crowded categories. We conducted
interviews with 30 respondents using 50 reference
images. The interview results were then calculated to
obtain a 90% confidence interval, and the outcomes
were adjusted accordingly, as shown in Table 6.

We classified the crowd density into three cat-
egories—low, moderate, and crowded—to simplify
the model’s application in future app integration.
We interviewed 30 respondents with 50 reference
images, asking them to categorize each image ac-
cording to these density levels. Their assessments
were then statistically analyzed to establish a 90%
confidence interval for each category, the results of
which are adjusted and displayed in Table 6.

Table 6. The range of crowd density categories in KRL
Result Low Moderate Crowded

Interview 21.2% −
39.7%

45.3% −
66.4%

71.2% −
86.8%

Adjusted 0% −
42.0%

42.0% −
68.8%

68.8% −
100%

After obtaining the interview results, we calcu-
lated the average interval limits for each category.
The adjusted outcomes can also be found in Table 6.
Examples of density estimation results for moderate
and crowded-density KRL conditions are shown in
Figure 9.

(a) Moderate Scene (61.6%) (b) Crowded Scene (81.3%)

Figure 9. Categories and percentages of crowd density in
KRL

Based on the results obtained, this method can be
further implemented with CCTV surveillance cam-
eras to monitor the density levels inside KRL.

5. Conclusion

This work investigated the analysis of senti-
ment orientation and topics related to transporta-
tion issues. We achieved an F1 validation score
of 0.965 using a fine-tuned w11wo. Analyzing a
dataset of 10,128 relevant tweets, we found that
26.7% expressed negative sentiment. Among these
negative tweets, our topic modeling revealed that
the most discussed issue is KRL overcrowding, ac-
counting for 19.2%. We then explored the applica-
tion of density estimation approaches using different

crowd-counting methods. The implemented meth-
ods achieved promising results, demonstrating their
effectiveness in crowd density estimation through
various crowd-counting techniques.

Our experiments revealed trade-offs between the
three compared methods: YOLOv5, CSRNet, and
P2PNet. CSRNet excelled in crowd counting for
dense images due to its density map approach. How-
ever, its inability to precisely localize individuals
introduced significant noise into the estimations. On
the other hand, P2PNet, utilizing the proposal point
method, effectively handled both crowd counting
and individual localization in dense scenarios with
small objects. However, it struggled with detecting
larger-sized objects. CSRNet and P2PNet achieved
MAEs of 4.98 and 3.49 and k-F1 scores of 0.35
and 0.77 respectively. YOLOv5, on the other hand,
emerged as a balanced choice, achieving good per-
formance in crowd counting and individual localiza-
tion for our specific scenario involving fewer people
and larger objects. It achieved the best performance
of the three models, with an MAE of 1.41 and a
k-F1 score of 0.91.

In the context of train passenger density, charac-
terized by a relatively small number of individuals
but with larger sizes, the YOLOv5 method per-
forms well in crowd counting and individual local-
ization for medium to large-sized objects. However,
YOLOv5 may produce false negatives for small-
sized objects. By utilizing the density estimation
method based on YOLOv5 in CCTV systems, pas-
sengers can gain valuable insights into real-time
crowd density, facilitating informed decisions about
boarding and waiting times. Furthermore, we high-
light the k-F1 metric’s effectiveness in evaluating
individual point localization accuracy. Overall, the
findings presented here hold promise for improving
passenger experience and informing future trans-
portation management strategies.
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