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Abstract 
 

Convolutional Neural Networks (CNNs) are extensively utilized for image processing and recognition tasks; 
however, they often encounter challenges related to large model sizes and prolonged training times. These limitations 
present difficulties in resource-constrained environments that require rapid model deployment and efficient 
computation. This study introduces a systematic approach to designing lightweight CNN models specifically for 
character recognition, emphasizing the reduction of model complexity, training duration, and computational costs 
without sacrificing performance. Techniques such as hyperparameter tuning, model pruning, and post-training 
quantization (PTQ) are employed to decrease model size and enhance training speed. The proposed methods are 
particularly well-suited for deployment on edge computing platforms, such as Raspberry Pi, or embedded systems 
with limited resources. Our results demonstrate a reduction of over 80% in model size, decreasing from 43.73 KB to 
6.25 KB, and a reduction of more than 45% in training time, decreasing from over 150 seconds to less than 80 
seconds. This research highlights the potential for achieving a balance between efficiency and accuracy in CNN 
design for real-world deployment, addressing the increasing demand for streamlined deep learning models in 
resource-constrained environments. 
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1. Introduction 
 

The development and application of machine 
learning continue to grow, driven by the 
increasing demand for Artificial Intelligence (AI) 
solutions. Consequently, the use of deep learning 
is becoming more prevalent across various fields 
and applications. As deep learning models 
advance, there has been a significant rise in their 
parameter counts, latency, and the resources 
required for training, among other factors  [1]. 
Convolutional neural networks (CNNs) are a type 
of artificial neural network that is widely utilized 
in numerous case studies, including Optical 
Character Recognition (OCR) [2-5]. Additionally, 
other variations of CNNs, such as the CTC-CNN 
model for speech recognition [6] and CNN-ECOC 
for handwritten image recognition [7], have also 
been employed in various applications [8-10].  

Although convolutional neural networks 
(CNNs) are popular due to their excellent 
performance and versatility in addressing various 

problems, they face a significant challenge: 
achieving reliable model performance while 
keeping the model size manageable and 
optimizing training time.  

In many implementations, deep learning 
applications often focus solely on objectives 
without adequately testing the effectiveness and 
efficiency of the constructed models. For instance, 
in CNN applications, using overly complex 
architectures for simple tasks, such as character 
recognition with well-structured datasets like 
MNIST [11], can lead to an unnecessarily large 
model size without improving performance.  

This highlights the need for a comparison 
between complex models required for intricate 
tasks and simpler implementations that can avoid 
errors. Therefore, optimization techniques are 
crucial for eliminating unnecessary components in 
deep learning implementations, particularly in 
CNNs. This ensures that complex CNN 
architectures can be developed without concerns 
about model size and training duration, which can 
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be addressed prior to the model deployment 
process.  

Several previous studies have investigated and 
applied various techniques to tackle optimization 
challenges, including model compression, model 
pruning [12-16], quantization [17-19], [20-21] and 
other approaches [22-26].  

However, there has been limited research 
specifically focused on optimizing these 
indicators simultaneously for Convolutional 
Neural Networks (CNNs) without relying on 
stable existing (pre-trained) models. The goal is to 
reduce model size and training time while 
maintaining performance by integrating 
established techniques and methods. 

A widely used and popular technique today is 
model pruning. Pruning involves removing 
unimportant parameters from a deep learning 
neural network to reduce the model's size and 
enhance its efficiency. Another commonly 
employed method is quantization, which lowers 
the computational and memory costs of inference 
by utilizing lower-precision data types, such as 8-
bit integers (int8), instead of the standard 32-bit 
floating-point format (float32) for representing 
weights and activations. 

The advantage of previous studies lies in their 
successful application of lightweight models to 
case studies using the proposed methods. 
However, there are areas that warrant further 
exploration, such as addressing the lack of 
comparative analysis between existing methods 
across various datasets utilizing architectures built 
on convolutional neural networks (CNNs). 
Additionally, it is worth investigating whether 
combining these methods yields better 
optimization results. Table 1 presents a summary 
of previous research related to optimization 
models, highlighting their advantages, 
disadvantages, and limitations. 
 Several approaches in recent research focus on 
enhancing lightweight CNN models to address 
complex datasets. These methods have been 
particularly successful in specific contexts, such as 
classification tasks with high computational 
efficiency, but gaps remain in their practical 
applications and experimental validations. For 
instance, GGM-VGG16, as proposed for pepper leaf 
disease recognition [24], combines Ghost modules, 
global pooling, and multi-scale convolutions, leading 
to an efficient 12.84 MB model.  
 However, training time and overall development 
processes lack detailed comparison metrics, limiting 
its application scope for time-critical scenarios. The 
work on lightweight CNN image recognition 
techniques [25] provides a theoretical basis through 
comprehensive reviews but lacks experimental 
validations, especially in optimizing model size and 

training time. Similarly, the utilization of knowledge 
distillation in AlexNet modification for image 
classification [22] shows memory efficiency but 
does not explore dataset variation or benchmark 
improvements pre- and post-distillation. Joint 
distillation methods for deepfake video detection 
[23] introduce effective pre-training and knowledge 
transfer strategies but overlook hyperparameter 
tuning and comparative performance evaluations 
with other state-of-the-art techniques.  
 Finally, neural architecture search combined with 
knowledge distillation for ISAR imaging tasks [26] 
achieves ultra-lightweight designs but does not 
examine augmentation effects or provide tuning 
parameters that could optimize model performance 
further. 
 While these studies have explored advanced 
techniques for lightweight CNN design, they focus 
on specialized, complex datasets such as high-
resolution imagery or tasks requiring extreme 
computational demands. However, few address the 
practical challenges in simplifying models for 
balanced and moderately sized datasets while 
maintaining computational efficiency and rapid 
adaptability for diverse, resource-constrained 
environments.  
 To fill this gap, our research emphasizes efficient 
CNN designs specifically tailored to character 
recognition tasks with balanced datasets. Through 
hyperparameter tuning, model pruning, and post 
training quantization, we target real-world 
challenges by achieving substantial reductions in 
model size and training duration, advancing the field 
of lightweight CNNs for real-world applicability.  
This research aims to enhance techniques and 
methods applicable to Convolutional Neural 
Networks (CNNs) to reduce model size and 
accelerate training time while preserving the 
performance of the constructed CNN model.  
 The structure of this paper is as follows: Section 
2 introduces method of this research; Section 3 
provides results; Section 4 provides result 
visualizations. Section 5 compares and analyzes the 
experimental results among indicators and discusses 
the findings and limitations of the research; Section 
6 conclude the research.  
 
2. Method 
 

This study employs a systematic approach to 
optimize Convolutional Neural Network (CNN) 
architectures for efficient image classification 
tasks. The methodology is divided into three main 
phases: data preprocessing, CNN model 
construction, and model optimization, as 
illustrated in Figure 1. Two distinct datasets, 
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MNIST [11] and Braille Character, were selected 
for training and validation. Each dataset was 
processed through a series of CNN models and 

optimized using techniques designed to reduce 
model size and training duration.

 

 
 

Figure 1. Proposed Method. 
 

The datasets utilized in this study are (i) 
MNIST[11], a standard dataset for digit 
recognition, and (ii) a custom Braille character 
dataset, which presents a more complex 
classification challenge. Both datasets were 
preprocessed to ensure uniformity in image 
dimensions and pixel scaling, thereby enabling 
efficient input handling within the convolutional 
neural network (CNN) architecture. The images 
were normalized to reduce training variability and 
facilitate faster convergence. Three CNN model 
architectures were constructed for each dataset. 
Figure 2 and 3 are example images of datasets. 
 

 
 

Figure 2. MNIST dataset 

 
 

Figure 3. Braille character dataset 
 

The CNNs were designed with varying depths 
and configurations to balance accuracy and 
computational efficiency. Two custom 
architectures (Models 1 and 2; see Appendices A 
and B) and the GhostNet architecture [24] were 
evaluated on accuracy, inference time, and model 
complexity. Lightweight models with reduced 
training time were achieved using hyperparameter 
tuning, low magnitude pruning, and post training 
quantization. 

Pruning techniques were applied to iteratively 
remove redundant or less significant weights from 
the CNN models. This reduction in parameter 
count aimed to lower memory usage and 
computational load while retaining core model 
performance. Pruning levels were carefully tuned 
to balance model efficiency and accuracy 
retention. The process is formulated as equation 1. 

𝑊! = 𝑝𝑟𝑢𝑛𝑒(𝑊, 𝑠)  (1) 
 

As formulated in equation 1, W is the original 
set of weights in the model, s is the sparsity level 
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(0.1 for 10% in this case), sparsity is number of 
zero-valued elements in a tensor. W’ is the pruned 
set of weights after pruning process. In sequence 
this is the steps of pruning process in this 
research: 
1. First Step: Initialize Model - Define Pruning 

Parameters - Apply Pruning - Compile 
Pruned Model. 

2. Second Step: Strip Pruning Components - 
Convert to TFLite - Save Model - Measure 
Model Size. 
 
This study used low magnitude pruning in 

Keras with pruning schedule value set to constant 
sparsity=0.1, begin step=0, and frequency=100. 
After pruning process, the pruned model is 
converted and exported using TFLite and 

represented as Kilobyte (KB) as formulated in 
equation 2. 
 
𝑀𝑜𝑑𝑒𝑙	𝑆𝑖𝑧𝑒 = 	 "#$%	'(	)(*#)%_,'-%*

./01
	𝐾𝐵 (2) 

 
Post Training Quantization was performed to 

compress model weights, using 8-bit integers 
(int8) in place of 32-bit floating-point 
representations. This technique significantly 
reduces memory requirements and enables faster 
computation during inference. Quantization was 
implemented after model training, with 
evaluations conducted to ensure no substantial 
accuracy loss occurred due to lower precision. 
Pruning and Quantization process to the model is 
formulated as Figure 4. 

 
Figure 4. Pruning and Quantization Process Flow 

 
Figure 4 outlines the pruning and quantization 

process flow for optimizing a model, detailing 
each step from preparation to the result of 
quantization. This structured flow ensures a 
systematic approach to reducing the model size 
and optimizing performance. The main stages are 
described as follows: 
1. Original Model: Represents the initial model 
before any optimization steps are applied. 
2.  Apply Pruning: 
- Prune Low Magnitude Weights: Removes 
weights with low magnitude to reduce the model 
size. 
- Compile and Train Pruned Model: Compiles and 
trains the model after pruning to ensure it 
maintains performance. 
- Evaluate Pruned Model: Assesses the 
performance of the pruned model. 
- Model Size After Pruning: Measures the size of 
the model after pruning to evaluate the reduction 
achieved. 
3. Apply Quantization: 
- Strip Pruning Wrappers: Removes any pruning-
related artifacts from the model. 
- Apply Representative Data: Uses representative 
data to fine-tune the quantization process, 
ensuring accuracy is preserved. 
- Evaluate Quantized Model: Assesses the 
performance of the quantized model. 
4. Optimized Model: Represents the final 
optimized model ready for deployment, having 

undergone both pruning and quantization to 
reduce size and improve performance. 

In this study, a hyperparameter tuning strategy 
is introduced to enhance training efficiency by 
manually configuring key parameters such as 
early stopping, learning rate scheduling, and batch 
size adjustments as detailed in Table 1. These 
techniques collectively aim to reduce training 
time and optimize performance across epochs. 

 
Table 1. Hyperparameter and callbacks 

ReduceLROnPlateau This callback halves the learning 
rate (factor=0.5) if the monitored 
metric (val_loss) stagnates for 2 
epochs (patience), with a minimum 
limit of 1e-6, ensuring adaptive 
response to training plateaus. 

Batch Size 
Configuration 
 
 
 
 
 

A batch size of 128 was chosen to 
ensure efficient training updates, 
balancing computational efficiency 
and training speed based on dataset 
and resource constraints. 

Early Stopping  
 
 
 
 
 
 

Early stopping halts training if 
validation loss shows no 
improvement for 3 epochs 
(patience=3), preventing overfitting 
and restoring the best model state 
(restore_best_weights=True). 

 
These mechanisms enable the model to modify 

specific aspects of its training behavior according 
to predefined parameters. Although this setup 
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necessitates careful tuning based on the dataset, it 
fosters efficient and stable training, ultimately 
producing a robust final model suitable for 
resource-constrained deployments. While initial 
parameters must be customized for the specific 
problem, this approach strikes a balance between 
manual control and training efficiency. 

The models were evaluated based on their 
accuracy, size, and training time. Optimization 
techniques were applied both individually and in 
combination to identify the most effective 
strategies for reducing computational burden. A 
comparative analysis was conducted against 
unoptimized models to quantify improvements in 

terms of size reduction and training time 
acceleration. Performance metrics, including 
parameter count, inference latency, and accuracy, 
were recorded for each optimized model. 
 
3. Results 

 
The experimental results presented in Table 2 

provide a comparative result of model 
performance before and after the application of 
pruning and quantization. Additionally, the impact 
of the proposed hyperparameter tuning approach 
is evaluated in comparison to three baseline 
models: Model 1, Model 2, and GhostNet.

 

Table 2. Result of optimizing dataset 1 (MNIST) 

Models Process Params Size Time Training 
Accuracy 

Training 
Loss 

Testing 
Accuracy 

Testing 
Loss 

Model 1 
[Appendix A] 

No Optimization 834 43.73 KB 185s 94.14% 0.19 94.73% 0.16 
After Pruning 1644 7.01 KB 152s 95.53% 0.14 96.13% 0.12 

After Pruning + 
Quantization 

834     6.25 KB 153s 95.89% 0.12 96.29% 0.12 

Model 2  
[Appendix B] 

No Optimization 121,930 1473 KB 225s 99.82% 0.0055 99.15% 0.037 
After Pruning 243,701 479 KB 227s 99.89% 0.0027 99.02% 0.054 

After Pruning + 
Quantization 

121,930 242 KB 204s 99.89% 0.0034 99.13% 0.06 

GhostNet 
[Appendix C] 

No Optimization 14,954 380 KB 754s 99.13% 0.0287 98.51% 0.0451 
After Pruning 27,175 62 KB 571s 99.61% 0.0126 98.68% 0.0394 

After Pruning + 
Quantization 

14,954 41 KB 543s 99.61% 0.0112 98.76% 0.0487 

Proposed 
Method 

[Appendix A] 

No Optimization 834 43 KB 50s 95.67% 0.13 95.22% 0.14 
After Pruning 1,644 7.01 KB 49s 95.65% 0.13 93.97% 0.18 

After Pruning + 
Quantization 

834 6.25 KB 80s 96.15% 0.12 95.52% 0.13 

         
 The proposed method demonstrates 
significant model compression while maintaining 
accuracy. For instance, in Model 1, the parameter 
count remained consistent at 834 after applying 
pruning and quantization, while the model size 
was reduced from 43.73 KB to 6.25 KB. The 
compression achieved with the proposed method 
illustrates notable efficiency in model size. 
Additionally, this method results in reduced 
training and inference times. The optimized model 
required only 49.15 seconds, compared to the 
initial times of 185 seconds, 225 seconds, and 754 
seconds for Models 1, 2, and 3, respectively. This 
indicates faster training without a substantial 
compromise in accuracy. The accuracy of the 
models after pruning and quantization remained 
stable. For Model 2, the training accuracy reached 
99.89% post-optimization, with only a slight 
increase in loss. Testing accuracy exhibited a 
similar trend, maintaining high levels (e.g., 
96.29% in Model 1). This supports the conclusion 
that the optimization strategy effectively preserves 
model performance while minimizing resource 
usage. 

 Before optimization, Model 1 achieved a 
training accuracy of 94.14% and a testing 
accuracy of 94.73%. After applying pruning and 
quantization, both training and testing accuracies 
improved to 95.89% and 96.29%, respectively, 
while also reducing the model size and training 
time. For Model 2, the training accuracy increased 
to 99.89%, accompanied by a significant 
reduction in model size from 1,473 KB to 242 KB 
following optimization. Despite its larger initial 
parameter count, GhostNet also benefited from 
pruning and quantization, achieving a testing 
accuracy of 98.76% and reducing its model size 
from 380 KB to 41.38 KB. 
 The proposed approach demonstrated 
consistent improvements across all metrics, 
particularly in reducing training time and 
maintaining high accuracy. It outperformed the 
baseline models in both model compression and 
training efficiency, making it suitable for 
resource-constrained environments. The 
combination of pruning, quantization, and 
hyperparameter tuning proved effective for 
optimizing CNN models. The results indicate that 
it is possible to achieve compact, high-performing 
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models that maintain competitive accuracy while 
significantly reducing computational 
requirements. 
 The Braille dataset is processed using the 
same methodology to provide an alternative 

perspective on the proposed method and to 
validate that the solution is effective for different 
datasets within the same study case as detailed in 
Table 3. 

 
Table 3. Result of optimizing dataset 2 (Braille) 

 
Models Process Params Size Time Training 

Accuracy 
Training 

Loss 
Testing 

Accuracy 
Testing 

Loss 
Model 1 

[Appendix D] 
No Optimization 587,834 6973 KB 105s 98.97% 0.041 95.19% 0.22 

After Pruning 1,171,537 2291 KB 47s 98.97% 0.024 92.95% 0.3 
After Pruning + 

Quantization 
587,834 1151 KB 82s 97.94%  

 
0.06 

95.19% 0.35 

Model 2  
[Appendix E] 

No Optimization 587,834 4678 KB 55s 98.63% 0.04 93.91% 0.27 
After Pruning 1,171,537 2292 63s 99.54% 0.01 93.27% 0.44 

After Pruning + 
Quantization 

587,834 1152 KB 37.99s 99.31% 0.01 93.58% 0.5 

GhostNet 
[Appendix C] 

No Optimization 88,256 1185 KB 60s 99.88% 0.09 44% 36.46 
After Pruning 173,213 349 KB 59.21s 99.77% 0.06 42% 109.81 

After Pruning + 
Quantization 

88,256 184 KB 33.49s 100% 0.04 42.27% 158 

Proposed 
Method 

[Appendix D] 

No Optimization 587,834 6973 KB 105s 98.97% 0.041 95.19% 0.22 
After Pruning 1,171,537 2292 95.47s 99.54% 0.02 91.35% 0.52 

After Pruning + 
Quantization 

587,834 1151 KB 42.34s 98.97% 0.02 91.03% 0.96 

         
 The result from Braille dataset shows that the 
GhostNet architecture is not suitable for this 
dataset, as it resulted in overfitting, where the 

training performance is good but the testing 
performance is poor. 
 
 

4. Visualizations 
Results visualization for dataset 1 are shown in Figure 5- 8. 

 
Figure 5. Model Size Comparison MNIST dataset 

 

 
Figure 6. Training Time Comparison MNIST dataset 
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Figure 7. Training accuracy Comparison MNIST dataset 
 
 

 
Figure 8. Testing accuracy Comparison MNIST dataset 

 
5. Analysis and Discussions 
 

This section combines the analysis and 
discussion of the results to provide a holistic view 
of the findings and their implications. The 
proposed optimization strategies, including 
hyperparameter tuning, pruning, and quantization, 
significantly reduced model size and training time 
while maintaining robust accuracy. 

The architectural design of the models was 
tailored to achieve a balance between accuracy 
and computational efficiency. The lightweight 
CNNs, particularly Model 1 and Model 2, 
benefited from the proposed optimizations, with 
notable parameter reductions. For instance, Model 
1's parameters were reduced to 834, and its size 
compressed from 43.73 KB to 6.25 KB. Similarly, 
Model 2's size dropped from 1473 KB to 242 KB. 
Despite these reductions, the testing accuracy of 
Model 1 remained high at 95.52%, nearly 
matching the uncompressed version. 

Interestingly, the quantized version of Model 1 
exhibited slightly higher accuracy compared to 
the non-quantized model, which is atypical for 
post-training quantization. This improvement can 
be attributed to the pruning and hyperparameter 
tuning processes, which likely removed noisy 
parameters and enhanced generalization, thereby 
making the quantized model better suited for 

inference on the testing dataset. Such results 
emphasize the synergy between pruning and 
quantization in improving performance beyond 
mere compression. 

The proposed method significantly shortened 
training time compared to baseline models. Model 
1’s training duration decreased from 185 seconds 
to 80.67 seconds—a 56% reduction. These results 
stem from tuning parameters like batch size and 
implementing learning rate schedules, which 
stabilized the training process and improved 
convergence. Additionally, the integration of 
pruning-specific callbacks during training 
increased computational overhead temporarily, 
but this was offset by improved efficiency in 
subsequent epochs. 

GhostNet, while inherently efficient, suffered 
from overfitting on Dataset 2, performing well in 
training but failing to generalize during testing. In 
contrast, Models 1 and 2, with simpler 
architectures, demonstrated robust performance, 
particularly after hyperparameter tuning and 
pruning. Early stopping and learning rate 
scheduling were instrumental in controlling 
overfitting by dynamically adapting the training 
process. The consistency in training (95.89% 
accuracy) and testing performance (95.52% 
accuracy) of Model 1 highlights the effectiveness 
of these strategies. 



134 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,  
       issue 1, February 2025 
 

The substantial reduction in model size and 
complexity makes the proposed method ideal for 
deployment in resource-constrained 
environments. For example, Model 1's 
compressed size of 6.25 KB and Model 2's 242 
KB make them suitable for edge devices such as 
mobile sensors and embedded systems. This 
aligns with the study’s objectives of addressing 
memory and computational limitations while 
retaining high performance. 

While the proposed method showed promising 
results, manual hyperparameter tuning requires 
dataset-specific adjustments and limits scalability 
to more complex datasets. Future work should 
explore automated optimization techniques, such 
as reinforcement learning or meta-optimization, to 
generalize the approach. Additionally, validating 
the method on high-resolution, imbalanced, or 
noisy datasets could further test its robustness. 

By integrating pruning, quantization, and 
tailored hyperparameter tuning, this study 
achieved an effective balance between resource 
efficiency and model performance. These findings 
provide a pathway for deploying lightweight 
CNNs in real-world applications while addressing 
scalability challenges in future work. 

 
6. Conclusions 
 

This study presents an optimization method 
for convolutional neural networks (CNNs) aimed 
at creating efficient architectures by utilizing 
pruning, quantization, and hyperparameter 
adjustments. The results demonstrate that the 
proposed method effectively reduces model size 
and training time while maintaining high 
accuracy, addressing the demand for lightweight 
models in resource-constrained environments 
such as the Internet of Things (IoT) and edge 
devices. Although the method has proven 
effective, future research could focus on large 
models and datasets to try the workflow 
applicability for real word challenges. Overall, 
this study provides a practical and efficient 
approach to optimizing CNNs, striking a balance 
between computational efficiency and model 
performance. 
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Appendix A: Simple CNN Model 1 
 

 
 

Figure A. Simple CNN Model 1 for MNIST dataset  
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Appendix B: Simple CNN Model 2 
 

 
 

Figure B. Simple CNN Model 2 for MNIST dataset 
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Appendix C: GhostNet Model 
 

No Name Type Shape 
1 input_1 InputLayer [(None, 28, 28, 1)] 
2 conv2d Conv2D (None, 28, 28, 16) 
3 batch_normalization BatchNormalization (None, 28, 28, 16) 
4 re_lu ReLU (None, 28, 28, 16) 
5 conv2d_1 Conv2D (None, 28, 28, 16) 
6 batch_normalization_1 BatchNormalization (None, 28, 28, 16) 
7 re_lu_1 ReLU (None, 28, 28, 16) 
8 depthwise_conv2d DepthwiseConv2D (None, 28, 28, 16) 
9 batch_normalization_2 BatchNormalization (None, 28, 28, 16) 

10 re_lu_2 ReLU (None, 28, 28, 16) 
11 conv2d_2 Conv2D (None, 28, 28, 16) 
12 batch_normalization_3 BatchNormalization (None, 28, 28, 16) 
13 re_lu_3 ReLU (None, 28, 28, 16) 
14 concatenate Concatenate (None, 28, 28, 32) 
15 max_pooling2d MaxPooling2D (None, 14, 14, 32) 
16 conv2d_3 Conv2D (None, 14, 14, 32) 
17 batch_normalization_4 BatchNormalization (None, 14, 14, 32) 
18 re_lu_4 ReLU (None, 14, 14, 32) 
19 depthwise_conv2d_1 DepthwiseConv2D (None, 14, 14, 32) 
20 batch_normalization_5 BatchNormalization (None, 14, 14, 32) 
21 re_lu_5 ReLU (None, 14, 14, 32) 
22 conv2d_4 Conv2D (None, 14, 14, 32) 
23 batch_normalization_6 BatchNormalization (None, 14, 14, 32) 
24 re_lu_6 ReLU (None, 14, 14, 32) 
25 concatenate_1 Concatenate (None, 14, 14, 64) 
26 max_pooling2d_1 MaxPooling2D (None, 7, 7, 64) 
27 conv2d_5 Conv2D (None, 7, 7, 64) 
28 batch_normalization_7 BatchNormalization (None, 7, 7, 64) 
29 re_lu_7 ReLU (None, 7, 7, 64) 
30 depthwise_conv2d_2 DepthwiseConv2D (None, 7, 7, 64) 
31 batch_normalization_8 BatchNormalization (None, 7, 7, 64) 
32 re_lu_8 ReLU (None, 7, 7, 64) 
33 conv2d_6 Conv2D (None, 7, 7, 64) 
34 batch_normalization_9 BatchNormalization (None, 7, 7, 64) 
35 re_lu_9 ReLU (None, 7, 7, 64) 
36 concatenate_2 Concatenate (None, 7, 7, 128) 
37 global_average_pooling2d GlobalAveragePooling2D (None, 128) 
38 dense Dense (None, 10) 
39 input_1 InputLayer [(None, 28, 28, 1)] 
40 conv2d Conv2D (None, 28, 28, 16) 

 
Table A. GhostNet Model to be applied to both datasets 
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Appendix D: CNN Model 1 for Braille Dataset 
 

 
 

Figure C. CNN Model 1 using Adam optimizer for Braille dataset 
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Appendix E: CNN Model 2 for Braille Dataset 
 

 
 

Figure D. CNN Model 2 using RMSprop optimizer for Braille dataset 


