
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
18/1 (2025), 127-140. DOI: http://dx.doi.org/10.21609/jiki.v18i1.1443

127

Efficient Design and Compression of CNN Models for
Rapid Character Recognition

Onesinus Saut Parulian

Department of Computer Science, Universitas Nusa Mandiri, Jakarta, Indonesia

E-mail: 14230003@nusamandiri.ac.id

Abstract

Convolutional Neural Networks (CNNs) are extensively utilized for image processing and recognition tasks;
however, they often encounter challenges related to large model sizes and prolonged training times. These limitations
present difficulties in resource-constrained environments that require rapid model deployment and efficient
computation. This study introduces a systematic approach to designing lightweight CNN models specifically for
character recognition, emphasizing the reduction of model complexity, training duration, and computational costs
without sacrificing performance. Techniques such as hyperparameter tuning, model pruning, and post-training
quantization (PTQ) are employed to decrease model size and enhance training speed. The proposed methods are
particularly well-suited for deployment on edge computing platforms, such as Raspberry Pi, or embedded systems
with limited resources. Our results demonstrate a reduction of over 80% in model size, decreasing from 43.73 KB to
6.25 KB, and a reduction of more than 45% in training time, decreasing from over 150 seconds to less than 80
seconds. This research highlights the potential for achieving a balance between efficiency and accuracy in CNN
design for real-world deployment, addressing the increasing demand for streamlined deep learning models in
resource-constrained environments.

Keywords: Lightweight CNN; model optimization; efficient deep learning; character recognition;

1. Introduction

The development and application of machine
learning continue to grow, driven by the
increasing demand for Artificial Intelligence (AI)
solutions. Consequently, the use of deep learning
is becoming more prevalent across various fields
and applications. As deep learning models
advance, there has been a significant rise in their
parameter counts, latency, and the resources
required for training, among other factors [1].
Convolutional neural networks (CNNs) are a type
of artificial neural network that is widely utilized
in numerous case studies, including Optical
Character Recognition (OCR) [2-5]. Additionally,
other variations of CNNs, such as the CTC-CNN
model for speech recognition [6] and CNN-ECOC
for handwritten image recognition [7], have also
been employed in various applications [8-10].

Although convolutional neural networks
(CNNs) are popular due to their excellent
performance and versatility in addressing various

problems, they face a significant challenge:
achieving reliable model performance while
keeping the model size manageable and
optimizing training time.

In many implementations, deep learning
applications often focus solely on objectives
without adequately testing the effectiveness and
efficiency of the constructed models. For instance,
in CNN applications, using overly complex
architectures for simple tasks, such as character
recognition with well-structured datasets like
MNIST [11], can lead to an unnecessarily large
model size without improving performance.

This highlights the need for a comparison
between complex models required for intricate
tasks and simpler implementations that can avoid
errors. Therefore, optimization techniques are
crucial for eliminating unnecessary components in
deep learning implementations, particularly in
CNNs. This ensures that complex CNN
architectures can be developed without concerns
about model size and training duration, which can

http://dx.doi.org/10.21609/jiki.v18i1.1443
mailto:14230003@nusamandiri.ac.id

128 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 1, February 2025

be addressed prior to the model deployment
process.

Several previous studies have investigated and
applied various techniques to tackle optimization
challenges, including model compression, model
pruning [12-16], quantization [17-19], [20-21] and
other approaches [22-26].

However, there has been limited research
specifically focused on optimizing these
indicators simultaneously for Convolutional
Neural Networks (CNNs) without relying on
stable existing (pre-trained) models. The goal is to
reduce model size and training time while
maintaining performance by integrating
established techniques and methods.

A widely used and popular technique today is
model pruning. Pruning involves removing
unimportant parameters from a deep learning
neural network to reduce the model's size and
enhance its efficiency. Another commonly
employed method is quantization, which lowers
the computational and memory costs of inference
by utilizing lower-precision data types, such as 8-
bit integers (int8), instead of the standard 32-bit
floating-point format (float32) for representing
weights and activations.

The advantage of previous studies lies in their
successful application of lightweight models to
case studies using the proposed methods.
However, there are areas that warrant further
exploration, such as addressing the lack of
comparative analysis between existing methods
across various datasets utilizing architectures built
on convolutional neural networks (CNNs).
Additionally, it is worth investigating whether
combining these methods yields better
optimization results. Table 1 presents a summary
of previous research related to optimization
models, highlighting their advantages,
disadvantages, and limitations.
 Several approaches in recent research focus on
enhancing lightweight CNN models to address
complex datasets. These methods have been
particularly successful in specific contexts, such as
classification tasks with high computational
efficiency, but gaps remain in their practical
applications and experimental validations. For
instance, GGM-VGG16, as proposed for pepper leaf
disease recognition [24], combines Ghost modules,
global pooling, and multi-scale convolutions, leading
to an efficient 12.84 MB model.
 However, training time and overall development
processes lack detailed comparison metrics, limiting
its application scope for time-critical scenarios. The
work on lightweight CNN image recognition
techniques [25] provides a theoretical basis through
comprehensive reviews but lacks experimental
validations, especially in optimizing model size and

training time. Similarly, the utilization of knowledge
distillation in AlexNet modification for image
classification [22] shows memory efficiency but
does not explore dataset variation or benchmark
improvements pre- and post-distillation. Joint
distillation methods for deepfake video detection
[23] introduce effective pre-training and knowledge
transfer strategies but overlook hyperparameter
tuning and comparative performance evaluations
with other state-of-the-art techniques.
 Finally, neural architecture search combined with
knowledge distillation for ISAR imaging tasks [26]
achieves ultra-lightweight designs but does not
examine augmentation effects or provide tuning
parameters that could optimize model performance
further.
 While these studies have explored advanced
techniques for lightweight CNN design, they focus
on specialized, complex datasets such as high-
resolution imagery or tasks requiring extreme
computational demands. However, few address the
practical challenges in simplifying models for
balanced and moderately sized datasets while
maintaining computational efficiency and rapid
adaptability for diverse, resource-constrained
environments.
 To fill this gap, our research emphasizes efficient
CNN designs specifically tailored to character
recognition tasks with balanced datasets. Through
hyperparameter tuning, model pruning, and post
training quantization, we target real-world
challenges by achieving substantial reductions in
model size and training duration, advancing the field
of lightweight CNNs for real-world applicability.
This research aims to enhance techniques and
methods applicable to Convolutional Neural
Networks (CNNs) to reduce model size and
accelerate training time while preserving the
performance of the constructed CNN model.
 The structure of this paper is as follows: Section
2 introduces method of this research; Section 3
provides results; Section 4 provides result
visualizations. Section 5 compares and analyzes the
experimental results among indicators and discusses
the findings and limitations of the research; Section
6 conclude the research.

2. Method

This study employs a systematic approach to
optimize Convolutional Neural Network (CNN)
architectures for efficient image classification
tasks. The methodology is divided into three main
phases: data preprocessing, CNN model
construction, and model optimization, as
illustrated in Figure 1. Two distinct datasets,

Parulian, Efficient Design and Compression of CNN Models for Rapid Character Recognition 129

MNIST [11] and Braille Character, were selected
for training and validation. Each dataset was
processed through a series of CNN models and

optimized using techniques designed to reduce
model size and training duration.

Figure 1. Proposed Method.

The datasets utilized in this study are (i)
MNIST[11], a standard dataset for digit
recognition, and (ii) a custom Braille character
dataset, which presents a more complex
classification challenge. Both datasets were
preprocessed to ensure uniformity in image
dimensions and pixel scaling, thereby enabling
efficient input handling within the convolutional
neural network (CNN) architecture. The images
were normalized to reduce training variability and
facilitate faster convergence. Three CNN model
architectures were constructed for each dataset.
Figure 2 and 3 are example images of datasets.

Figure 2. MNIST dataset

Figure 3. Braille character dataset

The CNNs were designed with varying depths
and configurations to balance accuracy and
computational efficiency. Two custom
architectures (Models 1 and 2; see Appendices A
and B) and the GhostNet architecture [24] were
evaluated on accuracy, inference time, and model
complexity. Lightweight models with reduced
training time were achieved using hyperparameter
tuning, low magnitude pruning, and post training
quantization.

Pruning techniques were applied to iteratively
remove redundant or less significant weights from
the CNN models. This reduction in parameter
count aimed to lower memory usage and
computational load while retaining core model
performance. Pruning levels were carefully tuned
to balance model efficiency and accuracy
retention. The process is formulated as equation 1.

𝑊! = 𝑝𝑟𝑢𝑛𝑒(𝑊, 𝑠) (1)

As formulated in equation 1, W is the original
set of weights in the model, s is the sparsity level

130 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 1, February 2025

(0.1 for 10% in this case), sparsity is number of
zero-valued elements in a tensor. W’ is the pruned
set of weights after pruning process. In sequence
this is the steps of pruning process in this
research:
1. First Step: Initialize Model - Define Pruning

Parameters - Apply Pruning - Compile
Pruned Model.

2. Second Step: Strip Pruning Components -
Convert to TFLite - Save Model - Measure
Model Size.

This study used low magnitude pruning in

Keras with pruning schedule value set to constant
sparsity=0.1, begin step=0, and frequency=100.
After pruning process, the pruned model is
converted and exported using TFLite and

represented as Kilobyte (KB) as formulated in
equation 2.

𝑀𝑜𝑑𝑒𝑙	𝑆𝑖𝑧𝑒 = 	 "#$%	'()(*#)%_,'-%*

./01
	𝐾𝐵 (2)

Post Training Quantization was performed to

compress model weights, using 8-bit integers
(int8) in place of 32-bit floating-point
representations. This technique significantly
reduces memory requirements and enables faster
computation during inference. Quantization was
implemented after model training, with
evaluations conducted to ensure no substantial
accuracy loss occurred due to lower precision.
Pruning and Quantization process to the model is
formulated as Figure 4.

Figure 4. Pruning and Quantization Process Flow

Figure 4 outlines the pruning and quantization

process flow for optimizing a model, detailing
each step from preparation to the result of
quantization. This structured flow ensures a
systematic approach to reducing the model size
and optimizing performance. The main stages are
described as follows:
1. Original Model: Represents the initial model
before any optimization steps are applied.
2. Apply Pruning:
- Prune Low Magnitude Weights: Removes
weights with low magnitude to reduce the model
size.
- Compile and Train Pruned Model: Compiles and
trains the model after pruning to ensure it
maintains performance.
- Evaluate Pruned Model: Assesses the
performance of the pruned model.
- Model Size After Pruning: Measures the size of
the model after pruning to evaluate the reduction
achieved.
3. Apply Quantization:
- Strip Pruning Wrappers: Removes any pruning-
related artifacts from the model.
- Apply Representative Data: Uses representative
data to fine-tune the quantization process,
ensuring accuracy is preserved.
- Evaluate Quantized Model: Assesses the
performance of the quantized model.
4. Optimized Model: Represents the final
optimized model ready for deployment, having

undergone both pruning and quantization to
reduce size and improve performance.

In this study, a hyperparameter tuning strategy
is introduced to enhance training efficiency by
manually configuring key parameters such as
early stopping, learning rate scheduling, and batch
size adjustments as detailed in Table 1. These
techniques collectively aim to reduce training
time and optimize performance across epochs.

Table 1. Hyperparameter and callbacks

ReduceLROnPlateau This callback halves the learning
rate (factor=0.5) if the monitored
metric (val_loss) stagnates for 2
epochs (patience), with a minimum
limit of 1e-6, ensuring adaptive
response to training plateaus.

Batch Size
Configuration

A batch size of 128 was chosen to
ensure efficient training updates,
balancing computational efficiency
and training speed based on dataset
and resource constraints.

Early Stopping

Early stopping halts training if
validation loss shows no
improvement for 3 epochs
(patience=3), preventing overfitting
and restoring the best model state
(restore_best_weights=True).

These mechanisms enable the model to modify

specific aspects of its training behavior according
to predefined parameters. Although this setup

Parulian, Efficient Design and Compression of CNN Models for Rapid Character Recognition 131

necessitates careful tuning based on the dataset, it
fosters efficient and stable training, ultimately
producing a robust final model suitable for
resource-constrained deployments. While initial
parameters must be customized for the specific
problem, this approach strikes a balance between
manual control and training efficiency.

The models were evaluated based on their
accuracy, size, and training time. Optimization
techniques were applied both individually and in
combination to identify the most effective
strategies for reducing computational burden. A
comparative analysis was conducted against
unoptimized models to quantify improvements in

terms of size reduction and training time
acceleration. Performance metrics, including
parameter count, inference latency, and accuracy,
were recorded for each optimized model.

3. Results

The experimental results presented in Table 2

provide a comparative result of model
performance before and after the application of
pruning and quantization. Additionally, the impact
of the proposed hyperparameter tuning approach
is evaluated in comparison to three baseline
models: Model 1, Model 2, and GhostNet.

Table 2. Result of optimizing dataset 1 (MNIST)

Models Process Params Size Time Training
Accuracy

Training
Loss

Testing
Accuracy

Testing
Loss

Model 1
[Appendix A]

No Optimization 834 43.73 KB 185s 94.14% 0.19 94.73% 0.16
After Pruning 1644 7.01 KB 152s 95.53% 0.14 96.13% 0.12

After Pruning +
Quantization

834 6.25 KB 153s 95.89% 0.12 96.29% 0.12

Model 2
[Appendix B]

No Optimization 121,930 1473 KB 225s 99.82% 0.0055 99.15% 0.037
After Pruning 243,701 479 KB 227s 99.89% 0.0027 99.02% 0.054

After Pruning +
Quantization

121,930 242 KB 204s 99.89% 0.0034 99.13% 0.06

GhostNet
[Appendix C]

No Optimization 14,954 380 KB 754s 99.13% 0.0287 98.51% 0.0451
After Pruning 27,175 62 KB 571s 99.61% 0.0126 98.68% 0.0394

After Pruning +
Quantization

14,954 41 KB 543s 99.61% 0.0112 98.76% 0.0487

Proposed
Method

[Appendix A]

No Optimization 834 43 KB 50s 95.67% 0.13 95.22% 0.14
After Pruning 1,644 7.01 KB 49s 95.65% 0.13 93.97% 0.18

After Pruning +
Quantization

834 6.25 KB 80s 96.15% 0.12 95.52% 0.13

 The proposed method demonstrates
significant model compression while maintaining
accuracy. For instance, in Model 1, the parameter
count remained consistent at 834 after applying
pruning and quantization, while the model size
was reduced from 43.73 KB to 6.25 KB. The
compression achieved with the proposed method
illustrates notable efficiency in model size.
Additionally, this method results in reduced
training and inference times. The optimized model
required only 49.15 seconds, compared to the
initial times of 185 seconds, 225 seconds, and 754
seconds for Models 1, 2, and 3, respectively. This
indicates faster training without a substantial
compromise in accuracy. The accuracy of the
models after pruning and quantization remained
stable. For Model 2, the training accuracy reached
99.89% post-optimization, with only a slight
increase in loss. Testing accuracy exhibited a
similar trend, maintaining high levels (e.g.,
96.29% in Model 1). This supports the conclusion
that the optimization strategy effectively preserves
model performance while minimizing resource
usage.

 Before optimization, Model 1 achieved a
training accuracy of 94.14% and a testing
accuracy of 94.73%. After applying pruning and
quantization, both training and testing accuracies
improved to 95.89% and 96.29%, respectively,
while also reducing the model size and training
time. For Model 2, the training accuracy increased
to 99.89%, accompanied by a significant
reduction in model size from 1,473 KB to 242 KB
following optimization. Despite its larger initial
parameter count, GhostNet also benefited from
pruning and quantization, achieving a testing
accuracy of 98.76% and reducing its model size
from 380 KB to 41.38 KB.
 The proposed approach demonstrated
consistent improvements across all metrics,
particularly in reducing training time and
maintaining high accuracy. It outperformed the
baseline models in both model compression and
training efficiency, making it suitable for
resource-constrained environments. The
combination of pruning, quantization, and
hyperparameter tuning proved effective for
optimizing CNN models. The results indicate that
it is possible to achieve compact, high-performing

132 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 1, February 2025

models that maintain competitive accuracy while
significantly reducing computational
requirements.
 The Braille dataset is processed using the
same methodology to provide an alternative

perspective on the proposed method and to
validate that the solution is effective for different
datasets within the same study case as detailed in
Table 3.

Table 3. Result of optimizing dataset 2 (Braille)

Models Process Params Size Time Training

Accuracy
Training

Loss
Testing

Accuracy
Testing

Loss
Model 1

[Appendix D]
No Optimization 587,834 6973 KB 105s 98.97% 0.041 95.19% 0.22

After Pruning 1,171,537 2291 KB 47s 98.97% 0.024 92.95% 0.3
After Pruning +

Quantization
587,834 1151 KB 82s 97.94%

0.06

95.19% 0.35

Model 2
[Appendix E]

No Optimization 587,834 4678 KB 55s 98.63% 0.04 93.91% 0.27
After Pruning 1,171,537 2292 63s 99.54% 0.01 93.27% 0.44

After Pruning +
Quantization

587,834 1152 KB 37.99s 99.31% 0.01 93.58% 0.5

GhostNet
[Appendix C]

No Optimization 88,256 1185 KB 60s 99.88% 0.09 44% 36.46
After Pruning 173,213 349 KB 59.21s 99.77% 0.06 42% 109.81

After Pruning +
Quantization

88,256 184 KB 33.49s 100% 0.04 42.27% 158

Proposed
Method

[Appendix D]

No Optimization 587,834 6973 KB 105s 98.97% 0.041 95.19% 0.22
After Pruning 1,171,537 2292 95.47s 99.54% 0.02 91.35% 0.52

After Pruning +
Quantization

587,834 1151 KB 42.34s 98.97% 0.02 91.03% 0.96

 The result from Braille dataset shows that the
GhostNet architecture is not suitable for this
dataset, as it resulted in overfitting, where the

training performance is good but the testing
performance is poor.

4. Visualizations
Results visualization for dataset 1 are shown in Figure 5- 8.

Figure 5. Model Size Comparison MNIST dataset

Figure 6. Training Time Comparison MNIST dataset

Parulian, Efficient Design and Compression of CNN Models for Rapid Character Recognition 133

Figure 7. Training accuracy Comparison MNIST dataset

Figure 8. Testing accuracy Comparison MNIST dataset

5. Analysis and Discussions

This section combines the analysis and
discussion of the results to provide a holistic view
of the findings and their implications. The
proposed optimization strategies, including
hyperparameter tuning, pruning, and quantization,
significantly reduced model size and training time
while maintaining robust accuracy.

The architectural design of the models was
tailored to achieve a balance between accuracy
and computational efficiency. The lightweight
CNNs, particularly Model 1 and Model 2,
benefited from the proposed optimizations, with
notable parameter reductions. For instance, Model
1's parameters were reduced to 834, and its size
compressed from 43.73 KB to 6.25 KB. Similarly,
Model 2's size dropped from 1473 KB to 242 KB.
Despite these reductions, the testing accuracy of
Model 1 remained high at 95.52%, nearly
matching the uncompressed version.

Interestingly, the quantized version of Model 1
exhibited slightly higher accuracy compared to
the non-quantized model, which is atypical for
post-training quantization. This improvement can
be attributed to the pruning and hyperparameter
tuning processes, which likely removed noisy
parameters and enhanced generalization, thereby
making the quantized model better suited for

inference on the testing dataset. Such results
emphasize the synergy between pruning and
quantization in improving performance beyond
mere compression.

The proposed method significantly shortened
training time compared to baseline models. Model
1’s training duration decreased from 185 seconds
to 80.67 seconds—a 56% reduction. These results
stem from tuning parameters like batch size and
implementing learning rate schedules, which
stabilized the training process and improved
convergence. Additionally, the integration of
pruning-specific callbacks during training
increased computational overhead temporarily,
but this was offset by improved efficiency in
subsequent epochs.

GhostNet, while inherently efficient, suffered
from overfitting on Dataset 2, performing well in
training but failing to generalize during testing. In
contrast, Models 1 and 2, with simpler
architectures, demonstrated robust performance,
particularly after hyperparameter tuning and
pruning. Early stopping and learning rate
scheduling were instrumental in controlling
overfitting by dynamically adapting the training
process. The consistency in training (95.89%
accuracy) and testing performance (95.52%
accuracy) of Model 1 highlights the effectiveness
of these strategies.

134 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 1, February 2025

The substantial reduction in model size and
complexity makes the proposed method ideal for
deployment in resource-constrained
environments. For example, Model 1's
compressed size of 6.25 KB and Model 2's 242
KB make them suitable for edge devices such as
mobile sensors and embedded systems. This
aligns with the study’s objectives of addressing
memory and computational limitations while
retaining high performance.

While the proposed method showed promising
results, manual hyperparameter tuning requires
dataset-specific adjustments and limits scalability
to more complex datasets. Future work should
explore automated optimization techniques, such
as reinforcement learning or meta-optimization, to
generalize the approach. Additionally, validating
the method on high-resolution, imbalanced, or
noisy datasets could further test its robustness.

By integrating pruning, quantization, and
tailored hyperparameter tuning, this study
achieved an effective balance between resource
efficiency and model performance. These findings
provide a pathway for deploying lightweight
CNNs in real-world applications while addressing
scalability challenges in future work.

6. Conclusions

This study presents an optimization method
for convolutional neural networks (CNNs) aimed
at creating efficient architectures by utilizing
pruning, quantization, and hyperparameter
adjustments. The results demonstrate that the
proposed method effectively reduces model size
and training time while maintaining high
accuracy, addressing the demand for lightweight
models in resource-constrained environments
such as the Internet of Things (IoT) and edge
devices. Although the method has proven
effective, future research could focus on large
models and datasets to try the workflow
applicability for real word challenges. Overall,
this study provides a practical and efficient
approach to optimizing CNNs, striking a balance
between computational efficiency and model
performance.

References

[1] G. Menghani, “Efficient Deep Learning: A Survey

on Making Deep Learning Models Smaller, Faster,
and Better,” 2023. doi: 10.1145/3578938.

[2] S. Alghyaline, “Optimised CNN Architectures for
Handwritten Arabic Character Recognition,”
Computers, Materials and Continua, vol. 79, no. 3,
pp. 4905–4924, 2024, doi:
10.32604/cmc.2024.052016.

[3] M. Sinthuja, C. G. Padubidri, G. S. Jayachandra, M.

C. Teja, and G. S. P. Kumar, “Extraction of Text
from Images Using Deep Learning,” Procedia
Comput Sci, vol. 235, no. 2023, pp. 789–798, 2024,
doi: 10.1016/j.procs.2024.04.075.

[4] G. Ahmed et al., “Recognition of Urdu Handwritten
Alphabet Using Convolutional Neural Network
(CNN),” Computers, Materials and Continua, vol.
73, no. 2, pp. 2967–2984, 2022, doi:
10.32604/cmc.2022.029314.

[5] S. H. Ali and M. B. Abdulrazzaq, “KurdSet: A
Kurdish Handwritten Characters Recognition
Dataset Using Convolutional Neural Network,”
Computers, Materials and Continua, vol. 79, no. 1,
pp. 429–448, 2024, doi: 10.32604/cmc.2024.048356.

[6] W. T. Sung, H. W. Kang, and S. J. Hsiao, “Speech
Recognition via CTC-CNN Model,” Computers,
Materials and Continua, vol. 76, no. 3, pp. 3833–
3858, 2023, doi: 10.32604/cmc.2023.040024.

[7] M. B. Bora, D. Daimary, K. Amitab, and D. Kandar,
“Handwritten Character Recognition from Images
using CNN-ECOC,” Procedia Comput Sci, vol. 167,
no. 2019, pp. 2403–2409, 2020, doi:
10.1016/j.procs.2020.03.293.

[8] C. S. Wei, S. L. Wang, N. T. Foo, and D. A. Ramli,
“A CNN based handwritten numeral recognition
model for four arithmetic operations,” Procedia
Comput Sci, vol. 192, pp. 4416–4424, 2021, doi:
10.1016/j.procs.2021.09.218.

[9] S. Arooj, S. Altaf, S. Ahmad, H. Mahmoud, and A.
S. N. Mohamed, “Enhancing sign language
recognition using CNN and SIFT: A case study on
Pakistan sign language,” Journal of King Saud
University - Computer and Information Sciences,
vol. 36, no. 2, p. 101934, 2024, doi:
10.1016/j.jksuci.2024.101934.

[10] S. D. Pande et al., “Digitization of handwritten
Devanagari text using CNN transfer learning – A
better customer service support,” Neuroscience
Informatics, vol. 2, no. 3, p. 100016, 2022, doi:
10.1016/j.neuri.2021.100016.

[11] Li Deng, “The MNIST Database of Handwritten
Digit Images for Machine Learning Research [Best
of the Web],” IEEE Signal Process Mag, vol. 29, no.
6, pp. 141–142, Nov. 2012, doi:
10.1109/MSP.2012.2211477.

[12] H. Louati, A. Louati, E. Kariri, and S. Bechikh,
“Optimizing Deep Learning for Computer-Aided
Diagnosis of Lung Diseases: An Automated Method
Combining Evolutionary Algorithm, Transfer
Learning, and Model Compression,” Computer
Modeling in Engineering & Sciences, vol. 138, no. 3,
pp. 2519–2547, 2024, doi:
10.32604/cmes.2023.030806.

[13] A. Li, M. Markovic, P. Edwards, and G. Leontidis,
“Model pruning enables localized and efficient
federated learning for yield forecasting and data
sharing,” Expert Syst Appl, vol. 242, no. November
2023, p. 122847, 2024, doi:
10.1016/j.eswa.2023.122847.

[14] K. Vidya, P. Ramesh, H. Viknesh, and S. Devanand,
“Compressed Deepfake Detection using Spatio-
Temporal Approach with Model Pruning,” Procedia
Comput Sci, vol. 230, pp. 436–444, 2023, doi:
10.1016/j.procs.2023.12.099.

[15] C. G. Pachon, J. O. Pinzon-Arenas, and D.
Ballesteros, “FlexiPrune: A Pytorch tool for flexible
CNN pruning policy selection,” SoftwareX, vol. 27,
no. June, p. 101858, 2024, doi:
10.1016/j.softx.2024.101858.

[16] L. E. Pommé, R. Bourqui, R. Giot, J. Vallet, and D.
Auber, “NetPrune: A sparklines visualization for
network pruning,” Visual Informatics, vol. 7, no. 2,

Parulian, Efficient Design and Compression of CNN Models for Rapid Character Recognition 135

pp. 85–99, 2023, doi: 10.1016/j.visinf.2023.04.001.
[17] J. N. Kolf, J. Elliesen, N. Damer, and F. Boutros,

“MixQuantBio: Towards extreme face and periocular
recognition model compression with mixed-
precision quantization,” Eng Appl Artif Intell, vol.
137, no. PB, p. 109114, 2024, doi:
10.1016/j.engappai.2024.109114.

[18] X. Yang, E. del Rey Castillo, Y. Zou, and L.
Wotherspoon, “UAV-deployed deep learning
network for real-time multi-class damage detection
using model quantization techniques,” Autom
Constr, vol. 159, no. December 2023, p. 105254,
2024, doi: 10.1016/j.autcon.2023.105254.

[19] L. Wei, Z. Ma, and C. Yang, “Activation
Redistribution Based Hybrid Asymmetric
Quantization Method of Neural Networks,”
Computer Modeling in Engineering & Sciences, vol.
138, no. 1, pp. 981–1000, 2024, doi:
10.32604/cmes.2023.027085.

[20] F. He, K. Ding, D. Yan, J. Li, J. Wang, and M. Chen,
“A Novel Quantization and Model Compression
Approach for Hardware Accelerators in Edge
Computing,” Computers, Materials and Continua,
vol. 80, no. 2, pp. 3021–3045, 2024, doi:
10.32604/cmc.2024.053632.

[21] M. Goswami, S. Mohanty, and P. K. Pattnaik,
“Optimization of machine learning models through
quantization and data bit reduction in healthcare
datasets,” Franklin Open, vol. 8, no. April, p.
100136, 2024, doi: 10.1016/j.fraope.2024.100136.

[22] A. Kuldashboy, S. Umirzakova, S. Allaberdiev, R.
Nasimov, A. Abdusalomov, and Y. I. Cho, “Efficient
image classification through collaborative
knowledge distillation: A novel AlexNet
modification approach,” Heliyon, vol. 10, no. 14, p.
e34376, 2024, doi: 10.1016/j.heliyon.2024.e34376.

[23] X. Xu, S. Tang, M. Zhu, P. He, S. Li, and Y. Cao, “A
novel model compression method based on joint
distillation for deepfake video detection,” Journal of
King Saud University - Computer and Information
Sciences, vol. 35, no. 9, p. 101792, 2023, doi:
10.1016/j.jksuci.2023.101792.

[24] Y. Fu, L. Guo, and F. Huang, “A lightweight CNN
model for pepper leaf disease recognition in a human
palm background,” Heliyon, vol. 10, no. 12, p.
e33447, 2024, doi: 10.1016/j.heliyon.2024.e33447.

[25] Y. Liu, J. Xue, D. Li, W. Zhang, T. K. Chiew, and Z.
Xu, “Image recognition based on lightweight
convolutional neural network: Recent advances,”
Image Vis Comput, vol. 146, no. April, p. 105037,
2024, doi: 10.1016/j.imavis.2024.105037.

[26] H. Yang, Y. sheng Zhang, C. bin Yin, and W. zhe
Ding, “Ultra-lightweight CNN design based on
neural architecture search and knowledge
distillation: A novel method to build the automatic
recognition model of space target ISAR images,”
Defence Technology, vol. 18, no. 6, pp. 1073–1095,
2022, doi: 10.1016/j.dt.2021.04.014.

136 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 1, February 2025

Appendix A: Simple CNN Model 1

Figure A. Simple CNN Model 1 for MNIST dataset

Parulian, Efficient Design and Compression of CNN Models for Rapid Character Recognition 137

Appendix B: Simple CNN Model 2

Figure B. Simple CNN Model 2 for MNIST dataset

138 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 1, February 2025

Appendix C: GhostNet Model

No Name Type Shape
1 input_1 InputLayer [(None, 28, 28, 1)]
2 conv2d Conv2D (None, 28, 28, 16)
3 batch_normalization BatchNormalization (None, 28, 28, 16)
4 re_lu ReLU (None, 28, 28, 16)
5 conv2d_1 Conv2D (None, 28, 28, 16)
6 batch_normalization_1 BatchNormalization (None, 28, 28, 16)
7 re_lu_1 ReLU (None, 28, 28, 16)
8 depthwise_conv2d DepthwiseConv2D (None, 28, 28, 16)
9 batch_normalization_2 BatchNormalization (None, 28, 28, 16)

10 re_lu_2 ReLU (None, 28, 28, 16)
11 conv2d_2 Conv2D (None, 28, 28, 16)
12 batch_normalization_3 BatchNormalization (None, 28, 28, 16)
13 re_lu_3 ReLU (None, 28, 28, 16)
14 concatenate Concatenate (None, 28, 28, 32)
15 max_pooling2d MaxPooling2D (None, 14, 14, 32)
16 conv2d_3 Conv2D (None, 14, 14, 32)
17 batch_normalization_4 BatchNormalization (None, 14, 14, 32)
18 re_lu_4 ReLU (None, 14, 14, 32)
19 depthwise_conv2d_1 DepthwiseConv2D (None, 14, 14, 32)
20 batch_normalization_5 BatchNormalization (None, 14, 14, 32)
21 re_lu_5 ReLU (None, 14, 14, 32)
22 conv2d_4 Conv2D (None, 14, 14, 32)
23 batch_normalization_6 BatchNormalization (None, 14, 14, 32)
24 re_lu_6 ReLU (None, 14, 14, 32)
25 concatenate_1 Concatenate (None, 14, 14, 64)
26 max_pooling2d_1 MaxPooling2D (None, 7, 7, 64)
27 conv2d_5 Conv2D (None, 7, 7, 64)
28 batch_normalization_7 BatchNormalization (None, 7, 7, 64)
29 re_lu_7 ReLU (None, 7, 7, 64)
30 depthwise_conv2d_2 DepthwiseConv2D (None, 7, 7, 64)
31 batch_normalization_8 BatchNormalization (None, 7, 7, 64)
32 re_lu_8 ReLU (None, 7, 7, 64)
33 conv2d_6 Conv2D (None, 7, 7, 64)
34 batch_normalization_9 BatchNormalization (None, 7, 7, 64)
35 re_lu_9 ReLU (None, 7, 7, 64)
36 concatenate_2 Concatenate (None, 7, 7, 128)
37 global_average_pooling2d GlobalAveragePooling2D (None, 128)
38 dense Dense (None, 10)
39 input_1 InputLayer [(None, 28, 28, 1)]
40 conv2d Conv2D (None, 28, 28, 16)

Table A. GhostNet Model to be applied to both datasets

Parulian, Efficient Design and Compression of CNN Models for Rapid Character Recognition 139

Appendix D: CNN Model 1 for Braille Dataset

Figure C. CNN Model 1 using Adam optimizer for Braille dataset

140 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 1, February 2025

Appendix E: CNN Model 2 for Braille Dataset

Figure D. CNN Model 2 using RMSprop optimizer for Braille dataset

