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Abstract

Indonesia, particularly the Sulawesi region, experiences significant seismic activity due to its position
at the convergence of three major tectonic plates. This study seeks to construct a model for predicting
earthquake return periods in the Sulawesi area by employing the Residual Long Short-Term Memory
(Residual LSTM) architecture integrated with an attention mechanism. The dataset utilized originates
from the United States Geological Survey (USGS), focusing on the Sulawesi Island region within the
coordinates of latitude -6.184° to 2.021° and longitude 118.433° to 125.552°, spanning the years 1975
to 2024. The research methodology is structured into three primary phases: (1) data collection and
preprocessing, including data cleaning, missing value handling, and normalization, (2) exploratory data
analysis to understand seismic data characteristics, and (3) development of the Residual LSTM model
with an attention mechanism. The evaluation results show excellent model performance with Train Loss
0.0090, Test Loss 0.0091, Training MAE 0.0698, Testing MAE 0.0717, Training RMSE 0.0947, Testing
RMSE 0.0951, and stable Huber Loss of 0.0045 for both training and testing data. The implementation
of residual connections successfully addressed the vanishing gradient problem, while the attention
mechanism enhanced prediction interpretability. The small discrepancy between the training and testing
metrics confirms the model's robust generalization ability, indicating its strong potential for applications

in predicting earthquake return periods.
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1. Introduction

Lying in one of the most seismically active
areas, the intersection of three major tectonic
plates: the Eurasian, Indo-Australian, and Pacific,
renders Indonesia highly vulnerable to frequent
earthquakes with diverse magnitudes and
recurrence intervals [1]. Based on the data from the
Indonesian ~ Agency for  Meteorological,
Climatological ~and  Geophysics (Badan
Meteorologi,  Klimatologi, dan  Geofisika
[BMKG]), a notable rise in both the frequency and
intensity of seismic events across Indonesia has
been detected over the past two decades. Updates
to earthquake hazard maps further highlight the
country's exposure to significant seismic activity,
driven by the complex interactions of these tectonic
plates [2].
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Ongoing seismic activity in highly active
regions such as Sulawesi underscores the need for
regular updates to seismic parameters to improve
the precision of predictions and risk assessments
[3]. The significance of earthquake prediction
research extends beyond disaster risk reduction to
include minimizing economic losses and
preserving human lives[4]. There is a pressing need
for accurate earthquake prediction models, with
one promising strategy involving the application of
machine learning and time series analysis to
estimate earthquake return periods[5]. The
integration of advanced analytical techniques with
seismic data provides valuable insights for seismic
risk mitigation. Delivering accurate predictive
information can enhance disaster management
strategies and substantially decrease the risks
associated with seismic events [6].
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Machine learning has demonstrated its
effectiveness across various domains for analyzing
and predicting complex, dynamic data.
Highlighted the adaptability of machine learning
techniques for analyzing large datasets and
generating accurate predictions[7]. In the context
of earthquake prediction, machine learning offers a
powerful means of uncovering latent patterns and
improving predictive accuracy[8]. Prior research
has demonstrated the success of machine learning
techniques in forecasting seismic events, showing
that such models can yield predictions closely
aligned with actual seismic data[9].

Numerous research efforts have utilized
machine learning approaches to address the
complexities of earthquake prediction, employing
techniques such as Random Forest, Support Vector
Machines (SVM), and Gradient Boosting
Machines (GBM). Notably, Random Forest has
demonstrated considerable effectiveness in
improving prediction accuracy within certain
seismic zones[10]. Moreover, hybrid architectures
such as CNN-BiLSTM models integrated with
attention mechanisms have yielded promising
outcomes in seismic forecasting applications.
Additionally, LightGBM has been implemented to
assess seismic stability, leading to enhanced
precision in predicting earthquake locations and
magnitudes[11].

The earthquake return period is a fundamental
concept in seismology, representing the average
time interval between major seismic events within
a specific geographic area. Previous research has
investigated seismic hazards and the recurrence
patterns of shallow earthquakes in the Cianjur
region, utilizing United States Geological Survey
(USGS) earthquake catalog data from a 50-year
period (1973-2023) and geographic coordinates
between 06°-08°S and 106°-108°E. The analysis
indicated return periods ranging from 3.17 to 29.1
years for earthquakes with magnitudes between 5.0
and 6.0, and from 29.1 to 267.38 years for those
with magnitudes between 6.0 and 7.0[12].

Recent studies have identified the Long Short-
Term Memory (LSTM) algorithm as a prominent
approach for stock market forecasting, owing to its
robust ability to model and capture temporal
dependencies. LSTM has been identified as one of
the most effective techniques for achieving high
accuracy and low error rates in time-dependent
data contexts[13]. Expanding upon these
advancements, the current research endeavors to
construct a machine learning-based model for
predicting earthquake return periods through time
series analysis. The model integrates fundamental
seismological concepts with data sourced from the
United States Geological Survey (USGS)
Earthquake Repository, which offers extensive

records on earthquake locations, depths,
magnitudes, and long-term seismic trends. This
methodological framework aims to address the

limitations of prior studies by employing
rigorously validated time series analytical
techniques.

The core strength of this research lies in the
implementation of a Residual Long Short-Term
Memory (Residual LSTM) architecture integrated
with attention mechanisms, tailored to forecast
earthquake return periods within the geologically
complex environment of Sulawesi Island. This
methodological integration not only enhances
predictive precision but also increases the model's
contextual relevance for disaster mitigation efforts
specific to Indonesia. By generating accurate and
reliable return period predictions, this study
contributes meaningfully to seismic risk reduction.
The proposed model provides a robust tool for
guiding resource allocation, supporting timely
preventive strategies, and ultimately reducing the
consequences of earthquakes, including casualties,
infrastructure damage, and economic disruption.

2. Related Work

Earthquakes occur as a result of stress release
within the Earth’s crust, producing seismic waves
that travel through its internal layers[14].
Indonesia, located at the intersection of four major
tectonic plates, is particularly susceptible to
frequent seismic activity due to the presence of
active fault zones[15]. Accurately estimating
earthquake recurrence intervals necessitates the
application of advanced time series analysis, which
enables the modeling of sequential data for
forecasting purposes[16]. The Long Short-Term
Memory (LSTM) network, a specialized deep
learning architecture tailored for time series
analysis, effectively models both short-term and
long-term temporal dependencies, rendering it
highly appropriate for earthquake prediction tasks.

The integration of Residual Long Short-Term
Memory (Residual LSTM) with attention
mechanisms further enhances pattern recognition
capabilities, particularly in seismically active areas
such as Sulawesi. This approach improves the
model’s ability to retain long-term dependencies
and has demonstrated efficacy in various domains.
For example, a Bi-LSTM model incorporating
attention mechanisms was effectively utilized for
sentiment analysis of Indonesia’s Digital Identity
Application (IKD), achieving an accuracy of
96.06%[17]. These successful implementations
underscore the capacity of deep learning models to
process complex datasets and extract meaningful
patterns across diverse applications.

Return period analysis estimates earthquake
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recurrence intervals based on magnitude and
frequency. A study on shallow earthquakes in
Cianjur, Indonesia, calculated recurrence intervals
of 3.17-29.1 years for M5.0-6.0 quakes and 29.1—
267.38 years for M6.0-7.0 quakes using USGS
data (1973-2023) [12]. Similarly, Efrina et al.
analyzed seismotectonic parameters in Nias,
revealing critical insights into recurrence patterns.

Machine learning models have demonstrated
high accuracy in earthquake prediction. Random
Forest has been effective in magnitude forecasting
[8], while XGBoost has shown promise in
earthquake detection. Somantri et al. [18]
optimized Support Vector Machines (SVM) for

predicting earthquake magnitudes, achieving
strong predictive performance through optimized
windowing. Convolutional Neural Networks

(CNNs) have also been employed to detect
earthquake sources using spatial data. Model
validation relies on metrics such as RMSE, MAE,
and MAPE to ensure reliability [7].

The Vanishing Gradient Problem (VGP)
hampers RNN-based models in capturing long-
term dependencies [19]. To address this, Residual
LSTM incorporates residual connections to
preserve gradient flow, improving accuracy in
return period prediction. A parallel can be drawn to
Turkish classical music analysis, where complex
sequential patterns in makam structures mirror
earthquake time-series data challenges [20].
Similarly, Residual LSTM has enhanced
transformer polarization current (PDC)
forecasting, significantly reducing measurement
errors [21]. This motivates its application in
earthquake prediction, enabling robust handling of
noisy, incomplete data and improving forecasting
accuracy for disaster risk mitigation.

3. Methodology
3.1 Research Design

This research centers on forecasting earthquake
recurrence intervals through a Residual Long
Short-Term Memory model, organized into three
principal stages. The first phase involves collecting
earthquake data from the USGS earthquake
repository, followed by  comprehensive
preprocessing steps, including data inspection,
handling missing values, feature normalization,
and feature engineering to create meaningful
predictors such as annual average magnitude and
depth trends over time.

The second stage entails performing
Exploratory Data Analysis (EDA) to extract
meaningful insights from the seismic dataset. This
encompasses time series analysis for uncovering
temporal  trends,  magnitude  distribution

assessment, and geospatial visualization to
examine the spatial distribution of earthquake
events. Clustering techniques reveal geographical
patterns linked to tectonic activity, while variable
correlation analysis explores interdependencies
among seismic attributes. Additionally, return
period estimation is performed using statistical
methods to analyze earthquake recurrence
intervals.

The third phase concentrates on the
development of the Residual LSTM model,
incorporating residual connections and an attention
mechanism to address the Vanishing Gradient
Problem (VGP) in recurrent neural networks. The
dataset is divided into training and testing subsets,
and the model undergoes thorough evaluation via
k-fold cross-validation, utilizing metrics including
RMSE, MAE, and Huber Loss. The model’s
predictions on earthquake recurrence periods are
visualized to assess its accuracy and reliability.

This research follows an iterative optimization
cycle, where evaluation results refine
preprocessing strategies and model parameters,
continuously enhancing prediction accuracy. The
workflow, depicted in Figure 2, ensures a
structured and comprehensive approach to
earthquake recurrence prediction, ultimately
contributing to improved disaster mitigation
strategies.

3.2 Data Description and Collection

The dataset employed in this study was
obtained from the USGS Earthquake Catalog,
encompassing seismic events in the Sulawesi
region spanning the years 1975 to 2024. This
dataset provides a comprehensive timeline to
analyze long-term seismic trends and recurrence
intervals. Key variables include the date and time
of occurrence, geographical coordinates (latitude: -
6.184°t02.021°, longitude: 118.433° to 125.552°),
and depth (in kilometers), which is crucial for
classifying seismic events and assessing their
potential impact. Additionally, the dataset records
magnitude values (>2.5 on the Richter scale),
ensuring the inclusion of significant seismic
activities relevant to earthquake prediction models.
These parameters collectively support a detailed
examination of seismic patterns in the region.

Sulawesi was chosen as the study area
because of its distinct tectonic features and
elevated seismic activity. The region lies at the
convergence of three major tectonic plates: Indo-
Australian, Pacific, and Eurasian. The interplay
between these tectonic plates governs the activity
of the Palu-Koro Fault, characterized by an
estimated slip rate of 45 mm per year, thereby
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rendering Sulawesi one of Indonesia’s most
seismically active regions[22].

Additionally, fault movements in Sulawesi
occur at a significantly higher rate compared to
other regions in Indonesia, making it one of the
most seismically active areas in the country. The
Palu-Koro Fault, a major left-lateral strike-slip
fault in central Sulawesi, exhibits a slip rate of
approximately 4045 mm per year, while the
Matano Fault, an extension of the Palu-Koro
system, moves at ~20 mm per year [23]. These
findings highlight the greater seismic hazard
potential in Sulawesi, necessitating advanced
predictive models for earthquake return period
estimation[24].

The data acquisition from the USGS adheres to
a systematic procedure designed to guarantee
accuracy and pertinence. Researchers initially
established specific search  parameters,
encompassing geographic boundaries and a time
frame. For this study, the parameters targeted
Sulawesi, with latitudes spanning from -6.184° to
2.021°, longitudes from 118.433° to 125.552°, and
a temporal coverage from 1975 to 2024. The spatial
extent of the latitude and longitude ranges,

illustrated in Figure 1, was obtained from the
United States Geological Survey (USGS) database.
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Figure 1. The spatial extent of the study area.

Data were collected through the USGS
Earthquake Catalog search tool, which offers
detailed information on earthquake events
including date, time, latitude, longitude, depth, and
magnitude. This tool allowed for the
implementation of customized filters aligned with
the study’s objectives, ensuring the dataset’s
appropriateness  for comprehensive  seismic
analysis and predictive modeling.
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Figure 2. Research workflow.
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4. Methodology Implementation
4.1 Data Preprocessing

Data preprocessing is a crucial step in ensuring
the integrity and quality of earthquake data before
model training. The dataset, obtained from the
USGS earthquake repository, consists of 5,702
rows and 21 columns, covering key attributes such
as time, latitude, longitude, depth, magnitude
(mag), and additional seismic parameters. Initial
exploration identified missing values in several
columns, necessitating appropriate handling
strategies. Missing data was addressed using two
approaches, forward and backward fill for
sequential continuity, and advanced imputation
methods, where numerical attributes were replaced
with their median values, and categorical attributes
were imputed using mode-based replacement. To
enhance computational efficiency, non-essential
attributes such as 'id', 'updated', 'place’, 'status', and
'color' were removed, reducing dataset
dimensionality and retaining only the most relevant
predictive features.

To maintain scale consistency, numerical
features such as depth, magnitude, and latitude
were normalized using the MinMaxScaler, which
scales values to a range between 0 and 1. This
normalization  technique  enhanced  model
convergence and stability, outperforming the
StandardScaler.  Furthermore, outliers were
identified and removed employing the Interquartile
Range (IQR) method, whereby data points falling
below Q1 — 1.5xIQR or above Q3 + 1.5XIQR were
classified as anomalies. This procedure excluded
150 extreme observations, thereby ensuring that
the dataset comprised only statistically significant
earthquake events.

4.2 Feature Engineering

To enhance the predictive capability of the
model, feature engineering was performed using
advanced statistical techniques, particularly
Generalized Extreme Value (GEV) distribution
analysis, to estimate earthquake recurrence
intervals. The first step involved filtering seismic
events, where only earthquakes with magnitude >
5.0 were retained, removing lower-magnitude
occurrences that do not significantly contribute to
recurrence analysis. The filtered data was then
fitted to a GEV distribution, estimating three key
parameters: shape (&), which defines the tail
behavior of extreme events, location (),
representing the central tendency of the magnitude
distribution, and scale (o), describing the
dispersion of magnitude values. These parameters

were estimated using the Maximum Likelihood
Estimation (MLE) method to ensure optimal
distribution fitting.

Using the estimated GEV parameters, the
earthquake return period was determined through
the GEV quantile function, specifically focusing on
the 99th percentile, which represents extreme
seismic events expected to occur once every 100
years. To enhance temporal resolution and provide
amore detailed analysis of recurrence intervals, the
return period was further converted into months
and years using the transformation Return Period
(months) = Return Period (years) x 12. This
conversion allows for finer-scale assessments of
earthquake recurrence trends, improving the
model’s ability to capture variations over different
timeframes and enhancing its applicability for
long-term seismic risk analysis.

This transformation allowed a more granular
analysis of seismic patterns. The newly engineered
features, including return period (years),
return_period months, and significant magnitude
(a binary indicator where 1 represents significant
earthquakes), were incorporated into the dataset to
enhance model interpretability. These additional
features played a critical role in improving model
accuracy by enabling a more detailed
representation of earthquake recurrence patterns,
ultimately contributing to more reliable earthquake
forecasting.

4.3 Return Period Analysis

The calculation of the earthquake return period
is conducted using the quantile function of the
Generalized Extreme Value (GEV) distribution,
utilizing  previously estimated  distribution
parameters. The return period represents the
expected recurrence interval of extreme earthquake
events exceeding a predefined magnitude
threshold. In this study, the 99th percentile quantile
function is employed, corresponding to
earthquakes projected to occur once every 100
years. By leveraging this statistical approach, the
model provides a probabilistic estimate of
recurrence intervals for significant seismic events,
offering a robust foundation for long-term seismic
hazard assessment.

To enhance temporal granularity, the return
period, initially expressed in years, is further
converted into months and years. This
transformation improves the model’s ability to
capture short-term variations in earthquake
recurrence, ensuring more detailed insights into
seismic trends. The conversion is performed using
the formula Return Period (months) = Return
Period (years) x 12, enabling flexible temporal
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analysis for disaster preparedness and risk
mitigation efforts.

Following the return period estimation and
conversion, newly derived features are
incorporated into the dataset to improve predictive
accuracy. These include return period (the
estimated recurrence interval in  years),
return_period months (the same interval expressed
in months), and significant magnitude (a binary
indicator, where 1 represents high-magnitude
earthquakes exceeding the threshold and 0 denotes
less significant tremors). The addition of these
features allows the model to focus on high-impact
seismic events, reinforcing its capability to analyze
spatiotemporal earthquake patterns and enhancing
the reliability of long-term earthquake recurrence
predictions.

4.4 LSTM Model for Earthquake Magnitude
Prediction

4.4.1 Attention Layer Creating Sequence

The AttentionLayer initializes its weight and
bias parameters, where weights are sampled from a
random normal distribution and biases are
initialized to zero. Within the call method, attention
scores are calculated by applying the tanh
activation function to the matrix product of the
input and the trained weights, followed by the
addition of the bias term. Subsequently, the
attention weights are obtained using the softmax
function, ensuring that they sum to one for each
input sequence.

Utilizing these attention weights, a context
vector is generated through the weighted sum of
the input, enabling the model to emphasize the
most relevant portions of the data when predicting
earthquake magnitudes. This attention mechanism
not only improves the model’s interpretability but
also enhances its ability to capture complex
patterns present in seismic data.

For preparing seismic data to train the LSTM
model, the create sequences function is applied to

generate input sequences from the dataset. This
function accepts the dataset and the desired
sequence length as inputs, producing two arrays:
one containing the input sequences and another
with the corresponding target outputs.

The sequence generation process involves
determining the total number of sequences based
on the dataset size and the specified sequence
length. Empty arrays are initialized to store both
sequences and targets. During iteration over the
dataset, each sequence is extracted as a contiguous
segment of the defined length, while the target
corresponds to the immediately subsequent data
point following the sequence.

The output of this function is a three-
dimensional array shaped as
(number_of sequences, sequence_length,
number_of features), which conforms to the input
requirements of the LSTM model. This structure
allows the LSTM to process the data sequentially
and effectively learn temporal dependencies within
the seismic dataset.

4.4.2 Model Architecture

The Residual Long Short-Term Memory
(LSTM) model enhanced with an attention
mechanism, as depicted in Figure 3, is designed to
predict the earthquake return period by capturing
temporal patterns in seismic data. The architecture
begins with an input layer (seq_length, n_features)
(seq_length,n features), followed by Layer
Normalization to stabilize training. The first LSTM
layer (64 units, ReLU, return_sequences=True)
processes sequential data, followed by a dropout
layer (0.2) to prevent overfitting. A dense layer (
n_features n_features) is added before a residual
connection, which helps maintain gradient flow
and improve learning efficiency.

A custom attention layer refines feature
importance, followed by a second LSTM layer (64
units, ReLU, return sequences=True). Another
dropout layer (0.2) and a Global Average Pooling
layer reduce dimensionality while preserving key

(
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£ > Layer > 64 units, ReLU N > Dense Layer
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Figure 3. Model Architecture
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Table 1. Model performance analysis.

Metrics Training Data Test Data
Train Loss 0.0090 0.0091
Train MAE 0.0698 0.0717
Train RMSE 0.0947 0.0951
Huber Loss 0.0045 0.0045

Table 2. Architecture and characteristics of the LSTM Residual model and the LSTM model.

Characteristics Model 1 (Residual LSTM + Attention) Model 2 (LSTM)
Main Architecture LSTM with residual connection 2 layers (64 units per layer)
LSTM Layers 2 layers (64 units per layer) 2 layers (64 units per layer)
Dropout Rate 0.2 in each layer 0.2 in each layer
Layer Normalization Yes Yes
Attention Mechanism Yes Yes
Dense Layers 32 units with ReLU 32 units with ReLU
Output Layer Dense(1) Dense(1)

Table 3. Performance metrics of the LSTM Residual model and the LSTM model.

Metrics Model 1 (Residual LSTM + Attention) Model 2 (LSTM)
Train RMSE 0.0947 0.0951
Test RMSE 0.0951 0.0952
Train MAE 0.0698 0.0707
Test MAE 0.0717 0.0722
Train Huber Loss 0.0045 0.0045
Test Huber Los 0.0045 0.0045

Table 4. Comparison of earthquake return period prediction models and seismic data processing frameworks.

Method Approach Primary Objective Input Data Output
Residual Deep Learning (RNN- Predicting earthquake  Time-series seismic data Estimated time of the
LSTM +  based) return periods based on next earthquake event
Attention historical seismic data
Mechanism
PhaseNet Deep Learning (CNN- Automatic detection and Raw seismic waveforms Arrival times of P and

based) picking of seismic phase S waves
arrival times
SeisBench Machine Learning  Evaluation and Seismic datasets and Varies depending on
Framework development of Al models  earthquake catalogs the selected model

for seismic analysis

information. A dense layer (32 units, ReLU) further
extracts relevant features before a final dropout
layer (0.2). The model concludes with an output
dense layer (1 unit) to estimate the earthquake
return period. The integration of residual
connections and attention mechanisms in Figure 3
enhances feature extraction and improves
predictive accuracy.

4.4.3 Building the LSTM Model

The proposed Residual Long Short-Term
Memory (LSTM) model integrated with an
attention mechanism is designed to effectively
capture temporal dependencies while addressing
the vanishing gradient issue commonly
encountered in recurrent neural networks (RNNs).
The architecture comprises two stacked LSTM
layers, each consisting of 64 units activated by
ReLU functions to introduce non-linearity and

enhance learning capabilities. The first LSTM
layer is configured with the parameter
return_sequences=True, ensuring that the
sequential output is passed on to the subsequent
layer. To mitigate overfitting, a dropout rate of 20%
is applied immediately following the first LSTM
layer.

To improve gradient propagation and facilitate
the learning of long-term dependencies, a residual
connection is incorporated between the input layer
and the output of the first LSTM layer. Since
residual connections require matching dimensions,
a Dense layer is employed to adjust the output
dimensions of the dropout layer to align with the
input dimensions. This residual mapping allows the
model to retain essential information from the
original input sequence while enabling deeper
feature extraction, ultimately improving training
stability and model convergence.

Subsequent to the residual connection, the
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output is directed through an Attention Layer that
calculates attention scores by performing matrix
multiplication between the input sequence and the
learned attention weights. These scores are then
normalized using the softmax activation function,
ensuring that the attention weights sum to one over
the sequence length. This attention mechanism
allows the model to emphasize crucial time steps,
thereby enhancing predictive accuracy by focusing
on important temporal features within earthquake
recurrence intervals.

The second LSTM layer, identical to the first
with 64 units and a 20% dropout rate, processes the
refined feature representation obtained from the
attention layer. After passing through the LSTM
layers, Global Average Pooling
(GlobalAveragePooling1D) is applied, reducing
the sequence dimension to a single feature vector
that encapsulates the extracted temporal patterns.

The model then incorporates fully connected
Dense layers to generate the final output. The first
Dense layer (32 units, ReLU activation) refines
feature representations, followed by an additional
dropout layer to mitigate overfitting. The final
output layer is a single-unit Dense layer, aligning
with the regression task of predicting earthquake
return periods. The model is compiled using the
Adam optimizer with a learning rate of 0.001, and
Mean Squared Error (MSE) is selected as the loss
function, ensuring penalization of large errors in
prediction.

To mitigate overfitting and improve
generalization, EarlyStopping is employed to
monitor the validation loss (val_loss), terminating
training if no improvement occurs within a
specified number of epochs. This approach ensures
optimal model training by avoiding excessive
iterations that may lead to performance
deterioration.

4.5 Reproducible Research

The data and code utilized in this study are
publicly available on GitHub at
https://github.com/muhdadbachmid/EQ-
ReturnPeriod-AttentionRLSTM.

5. Model Training and Evaluation

The Residual LSTM with Attention Mechanism
was trained using the Adam optimizer, selected for
its efficiency in handling large-scale datasets and
its adaptive learning rate properties, which
facilitate stable convergence. The learning rate was
set to 0.001, ensuring a balance between
convergence speed and stability. The model’s loss
function was Mean Squared Error (MSE), chosen

for its effectiveness in minimizing prediction
deviations by penalizing larger errors more
significantly. To prevent overfitting, the
EarlyStopping  callback was implemented,
monitoring the validation loss (val loss) and
terminating training if no improvement was
observed after 15 consecutive epochs. The
restore_best weights=True parameter was applied
to ensure that the model retained the optimal
weight configuration corresponding to the lowest
validation loss, thereby maintaining predictive
accuracy. Additionally, min delta=le-4 was
defined as the minimum required improvement in
validation loss to prevent premature stopping while
avoiding excessive training.

The training phase was conducted over 150
epochs with a batch size of 32, balancing
computational efficiency and gradient stability. To
evaluate model generalization, 20% of the training
dataset was set aside for validation, enabling real-
time monitoring of predictive performance. Upon
completion of training, model evaluation was
conducted using both the training and test datasets,
where the generated predictions were compared
against actual values. The assessment framework
incorporated Train Loss, Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and
Huber Loss as the primary evaluation metrics. The
performance results, summarized in Table 1,
demonstrated the model’s ability to minimize
errors across both datasets. The small discrepancy
between training MAE (0.0698) and test MAE
(0.0717) indicated that overfitting was effectively
mitigated, confirming strong generalization
capabilities. Furthermore, the Huber Loss
maintained a consistent value of 0.0045 across both
training and testing datasets, confirming the
model’s robustness in managing outliers, an
essential aspect given the presence of extreme
values in seismic data.

The Residual LSTM with Attention Mechanism
demonstrated strong capability in capturing
complex temporal dependencies within earthquake
recurrence data. The low RMSE values (0.0947 for
training and 0.0951 for testing) indicated that
prediction errors remained controlled, supporting
the effectiveness of the model architecture. The
integration of attention mechanisms enabled the
model to selectively focus on significant temporal
patterns, thereby enhancing interpretability and
optimizing predictive accuracy. Furthermore, the
inclusion of Huber Loss contributed to greater
stability by reducing the influence of anomalous
seismic events, ensuring that the model maintained
predictive consistency despite fluctuations in data
distributions.

The findings indicate that the Residual LSTM
with Attention Mechanism is capable of producing
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highly accurate and generalizable predictions for
earthquake recurrence intervals. The model
effectively minimizes errors while maintaining
resilience against extreme values, demonstrating
its applicability in forecasting seismic events with
a high degree of reliability. These results suggest
that deep learning approaches can provide robust,
data-driven insights into earthquake recurrence
trends, contributing to enhanced decision-making
in earthquake risk assessment and mitigation
strategies.

The proposed model, which integrates time-
series feature extraction, LSTM-based deep
learning, and attention-based optimization, is
designed to be adaptable beyond Sulawesi and can
be applied to other earthquake-prone regions such
as Sumatra, Java, Bali, and Papua. These regions,
like Sulawesi, are situated along the Ring of Fire,
where active subduction zones and transform faults
contribute to frequent and high-magnitude seismic
events. However, to ensure the model’s robustness
and accuracy across different regions, several
adaptations are necessary.

First, regional data adaptation is required, as
each  region  exhibits  distinct  seismic
characteristics, including variations in fault
movement rates, stress accumulation patterns, and
recurrence intervals. Incorporating region-specific
historical earthquake data can enhance the model’s
predictive performance. Second, hyperparameter
fine-tuning may be necessary to adjust LSTM
architecture, learning rates, and attention weights,
ensuring that the model effectively captures the
unique seismic behavior of different regions.
Finally, validation using diverse datasets is
essential to assess the model’s generalization
capability. These adaptations will enable the model
to be scalable and applicable to various seismically
active regions, supporting more accurate
earthquake forecasting and enhanced disaster risk
mitigation strategies.

6. Model Comparison of Earthquake Prediction
Models

6.1 Comparison with Standard LSTM Models

In this study, the model architecture design is a
crucial step in generating accurate and reliable
predictions, particularly in analyzing earthquake
data with complex spatiotemporal patterns. Table 2
presents a comparative overview of two
implemented model architectures, Model 1
(Residual LSTM + Attention) and Model 2
(LSTM). This comparison aims to identify the
contribution of each architectural element in
enhancing model performance, including their
ability to capture long-term data patterns, mitigate

the vanishing gradient problem, and produce more
robust predictions.

Model 1 (Residual LSTM + Attention) offers
significant advantages over Model 2 (LSTM) due
to the incorporation of residual connections and an
attention mechanism. This combination not only
improves prediction accuracy but also enhances the
model’s ability to capture both temporal and spatial
dependencies in complex earthquake data. In
contrast, Model 2, which adopts a standard LSTM
architecture, is simpler but less effective in
leveraging intricate data patterns.

Table 3 presents the performance evaluation
results of Model 1 (Residual LSTM + Attention)
and Model 2 (LSTM) based on Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and
Huber Loss for both training and testing datasets.
The results indicate that Model 1 outperforms
Model 2 in terms of RMSE and MAE. For the
training data, Model 1 achieves an RMSE of
0.0947, which is slightly lower than Model 2’s
RMSE of 0.0951. A similar trend is observed in the
testing data, where Model 1 records an RMSE of
0.0951, compared to 0.0952 for Model 2.

In terms of MAE, Model 1 also demonstrates
lower absolute errors, with 0.0698 on the training
data and 0.0717 on the test data, whereas Model 2
reports MAE values of 0.0707 and 0.0722 for
training and test data, respectively. However, for
Huber Loss, both models produce identical results,
0.0045 for both training and test data, indicating
similar capabilities in handling extreme errors or
outliers.

Overall, these findings suggest that Model 1,
with residual connections and an attention
mechanism, provides more accurate predictions
than Model 2, albeit with marginal differences.
This highlights the importance of adopting a more
complex architecture, such as attention
mechanisms, to enhance the model’s ability to
capture intricate spatiotemporal patterns in
earthquake data. As reflected in Table 3, the
superior performance of Model 1 demonstrates that
this approach is more effective for earthquake
prediction applications.

6.2 Comparison of Earthquake Return Period
Prediction Models and Seismic Data
Processing Frameworks

The comparison of earthquake return period
prediction models and seismic data processing
frameworks, as detailed in Table 4, highlights the
distinct objectives and methodologies of each
approach. The Residual LSTM with Attention
Mechanism employs a Recurrent Neural Network
(RNN) architecture, specifically Long Short-Term
Memory (LSTM) networks, enhanced with
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residual connections and an attention mechanism
to predict earthquake recurrence periods. By
analyzing time-series seismic data, this model
estimates the timing of future seismic events. The
integration of residual connections mitigates the
vanishing gradient problem, while the attention
mechanism improves model interpretability by
emphasizing significant features, leading to
enhanced prediction accuracy.

In contrast, PhaseNet is a Convolutional Neural
Network (CNN)-based model designed for the
automatic detection and picking of seismic phase
arrival times, specifically P and S waves. This
model processes raw seismic waveforms to
accurately determine arrival times, which are
crucial for earthquake location and
characterization. PhaseNet demonstrates high
accuracy and real-time processing capabilities,
making it valuable for rapid seismic event analysis
[25]. Meanwhile, SeisBench serves as a
comprehensive machine learning framework that
facilitates the evaluation and development of Al
models for seismic analysis. It provides access to
various seismic datasets and earthquake catalogs,
supporting tasks such as event detection and phase
picking. The framework’s versatility allows
researchers to implement and benchmark different
models, contributing to advancements in
seismological studies [26].

7. Conclusion

The Residual LSTM with an integrated
attention mechanism exhibited remarkable
performance in forecasting earthquake recurrence
intervals in the Sulawesi region. This is supported
by consistently strong evaluation metrics: a Train
Loss of 0.0090 and Test Loss of 0.0091, Training
MAE of 0.0698 and Testing MAE of 0.0717,
Training RMSE of 0.0947 and Testing RMSE of
0.0951, and a stable Huber Loss of 0.0045 for both
training and testing datasets. These results
highlight the model’s accuracy, generalization
ability, and resilience in handling the variability
and extremities characteristic of seismic data.

The model's strength lies in its residual
connections, which effectively address the
vanishing gradient problem by allowing gradients
to flow more smoothly through the network layers.
This facilitates efficient learning of long-term
dependencies, which are essential in modeling
seismic recurrence intervals. Furthermore, the
integration of an attention mechanism empowers
the model to dynamically focus on the most
relevant portions of the input sequence. By
assigning adaptive weights to different time steps,
the attention layer not only enhances predictive
performance  but also increases model

interpretability, enabling a clearer understanding of
which temporal patterns most influence the
earthquake recurrence predictions.

The model’s stability is further evidenced by
the negligible difference between training and
testing metrics, indicating robust generalization
performance. Moreover, its consistent results
across multiple evaluation metrics and resilience to
outliers, as demonstrated by the low Huber Loss,
highlight the dependability of this method.

This study contributes a  significant
methodological advancement by proposing a novel
framework for forecasting earthquake recurrence.
The successful integration of Residual LSTM with
an attention mechanism validates the effectiveness
of deep learning in analyzing seismic data, thereby
facilitating wider applications in earthquake
prediction research.

8. Future Works

This study acknowledges several limitations
that warrant consideration for future model
enhancement. A primary limitation lies in the
exclusion  of  comprehensive  geological
information, such as rock formations and fault line
characteristics, which are critical to accurately
modeling earthquake recurrence. Furthermore, the
omission of environmental variables, including
surface alterations and anthropogenic influences,
may hinder the model’s ability to generalize
effectively. Incorporating these elements in future
work is expected to strengthen the model’s
robustness and predictive precision.

Based on the research findings and
performance evaluations, several important
recommendations are proposed to improve the
earthquake return period prediction model. Firstly,
integrating the Residual LSTM model with other
machine learning approaches, such as Resilient
Propagation (RPROP), is essential for enhancing
predictive accuracy and speeding up convergence.
RPROP has proven effective in seismic activity
prediction, and its combination with Residual
LSTM can result in a more adaptive and robust
model. Additionally, the application of ensemble
learning techniques, like XGBoost, can further
boost predictive performance by capturing
complex, non-linear relationships within the data.
The integration of Residual LSTM for modeling
temporal dependencies and XGBoost for
recognizing non-linear patterns is expected to
strengthen the overall predictive capability of the
system.

Developing a multi-task learning architecture
that simultaneously predicts both earthquake
recurrence periods and magnitudes is strongly
advised. This can be realized by using a shared
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feature extraction network, coupled with distinct
output layers that are individually optimized for
each task. By learning from both tasks
simultaneously, the model can achieve more
comprehensive  seismic  predictions  while
improving  overall accuracy. Moreover,
incorporating multidimensional data sources such
as real-time tectonic plate movements, surface
deformations, and meteorological information is
vital for improving the robustness of predictions.
These diverse data streams offer a comprehensive
perspective on seismic events and their causative
factors. Consequently, it is imperative to develop a
high-performance data integration pipeline that can
efficiently  process and manage  these
heterogeneous sources, while implementing
rigorous quality control measures to maintain
prediction reliability.

The establishment of a real-time modular
processing system, incorporating an interactive
dashboard and early warning functionalities, is
essential for effective practical deployment. Such a
system should be capable of handling multiple data
streams, delivering insightful visualizations, and
generating automated reports to convey predictions
clearly to relevant stakeholders. An interactive
dashboard would enable users to monitor seismic
risk levels in real time, evaluate potential threats
proactively, and support data-driven decision-
making for disaster preparedness. Furthermore,
integrating a continuous performance monitoring
framework with real-time evaluation metrics and
anomaly detection would be critical for sustaining
long-term model reliability. This system should
also support automatic model updates based on
newly acquired seismic data, thereby preserving
predictive accuracy and adaptability over time.

To ensure the sustainability and adaptability of
the system, the implementation of a knowledge
management framework is recommended. This
should include  version-controlled  model
repositories, automated documentation, and
training materials for end users. By maintaining
comprehensive documentation and facilitating
knowledge transfer, stakeholders and system
operators can effectively manage, update, and
optimize the predictive model in the future.

In conclusion, the gradual implementation of
these recommendations, emphasizing model
integration, incorporation of multidimensional data
sources, and the establishment of continuous
monitoring mechanisms, is anticipated to markedly
enhance the accuracy and robustness of earthquake
prediction models. By integrating real-time data
sources, refining model architectures, and ensuring
consistent evaluation and adaptation, the predictive
capabilities of the model can be enhanced, leading
to Dbetter-informed disaster risk management

strategies. These improvements are particularly
crucial for Indonesia, a seismically active region,
where robust predictive models can contribute to
effective disaster preparedness and risk mitigation
strategies. Ultimately, continuous advancements in
these models will play a vital role in reducing
earthquake-related risks and minimizing the
potential  impact on  communities and
infrastructure.
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