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Abstract 

 
Indonesia, particularly the Sulawesi region, experiences significant seismic activity due to its position 
at the convergence of three major tectonic plates. This study seeks to construct a model for predicting 
earthquake return periods in the Sulawesi area by employing the Residual Long Short-Term Memory 
(Residual LSTM) architecture integrated with an attention mechanism. The dataset utilized originates 
from the United States Geological Survey (USGS), focusing on the Sulawesi Island region within the 
coordinates of latitude -6.184° to 2.021° and longitude 118.433° to 125.552°, spanning the years 1975 
to 2024. The research methodology is structured into three primary phases: (1) data collection and 
preprocessing, including data cleaning, missing value handling, and normalization, (2) exploratory data 
analysis to understand seismic data characteristics, and (3) development of the Residual LSTM model 
with an attention mechanism. The evaluation results show excellent model performance with Train Loss 
0.0090, Test Loss 0.0091, Training MAE 0.0698, Testing MAE 0.0717, Training RMSE 0.0947, Testing 
RMSE 0.0951, and stable Huber Loss of 0.0045 for both training and testing data. The implementation 
of residual connections successfully addressed the vanishing gradient problem, while the attention 
mechanism enhanced prediction interpretability. The small discrepancy between the training and testing 
metrics confirms the model's robust generalization ability, indicating its strong potential for applications 
in predicting earthquake return periods. 
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1. Introduction 

 
Lying in one of the most seismically active 

areas, the intersection of three major tectonic 
plates: the Eurasian, Indo-Australian, and Pacific, 
renders Indonesia highly vulnerable to frequent 
earthquakes with diverse magnitudes and 
recurrence intervals [1]. Based on the data from the 
Indonesian Agency for Meteorological, 
Climatological and Geophysics (Badan 
Meteorologi, Klimatologi, dan Geofisika 
[BMKG]), a notable rise in both the frequency and 
intensity of seismic events across Indonesia has 
been detected over the past two decades. Updates 
to earthquake hazard maps further highlight the 
country's exposure to significant seismic activity, 
driven by the complex interactions of these tectonic 
plates [2]. 

Ongoing seismic activity in highly active 
regions such as Sulawesi underscores the need for 
regular updates to seismic parameters to improve 
the precision of predictions and risk assessments 
[3]. The significance of earthquake prediction 
research extends beyond disaster risk reduction to 
include minimizing economic losses and 
preserving human lives[4]. There is a pressing need 
for accurate earthquake prediction models, with 
one promising strategy involving the application of 
machine learning and time series analysis to 
estimate earthquake return periods[5]. The 
integration of advanced analytical techniques with 
seismic data provides valuable insights for seismic 
risk mitigation. Delivering accurate predictive 
information can enhance disaster management 
strategies and substantially decrease the risks 
associated with seismic events [6]. 

http://dx.doi.org/10.21609/jiki.v18i2.1506
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Machine learning has demonstrated its 
effectiveness across various domains for analyzing 
and predicting complex, dynamic data. 
Highlighted the adaptability of machine learning 
techniques for analyzing large datasets and 
generating accurate predictions[7]. In the context 
of earthquake prediction, machine learning offers a 
powerful means of uncovering latent patterns and 
improving predictive accuracy[8]. Prior research 
has demonstrated the success of machine learning 
techniques in forecasting seismic events, showing 
that such models can yield predictions closely 
aligned with actual seismic data[9]. 

Numerous research efforts have utilized 
machine learning approaches to address the 
complexities of earthquake prediction, employing 
techniques such as Random Forest, Support Vector 
Machines (SVM), and Gradient Boosting 
Machines (GBM). Notably, Random Forest has 
demonstrated considerable effectiveness in 
improving prediction accuracy within certain 
seismic zones[10]. Moreover, hybrid architectures 
such as CNN-BiLSTM models integrated with 
attention mechanisms have yielded promising 
outcomes in seismic forecasting applications. 
Additionally, LightGBM has been implemented to 
assess seismic stability, leading to enhanced 
precision in predicting earthquake locations and 
magnitudes[11]. 

The earthquake return period is a fundamental 
concept in seismology, representing the average 
time interval between major seismic events within 
a specific geographic area. Previous research has 
investigated seismic hazards and the recurrence 
patterns of shallow earthquakes in the Cianjur 
region, utilizing United States Geological Survey 
(USGS) earthquake catalog data from a 50-year 
period (1973–2023) and geographic coordinates 
between 06°–08°S and 106°–108°E. The analysis 
indicated return periods ranging from 3.17 to 29.1 
years for earthquakes with magnitudes between 5.0 
and 6.0, and from 29.1 to 267.38 years for those 
with magnitudes between 6.0 and 7.0[12]. 

Recent studies have identified the Long Short-
Term Memory (LSTM) algorithm as a prominent 
approach for stock market forecasting, owing to its 
robust ability to model and capture temporal 
dependencies. LSTM has been identified as one of 
the most effective techniques for achieving high 
accuracy and low error rates in time-dependent 
data contexts[13]. Expanding upon these 
advancements, the current research endeavors to 
construct a machine learning-based model for 
predicting earthquake return periods through time 
series analysis. The model integrates fundamental 
seismological concepts with data sourced from the 
United States Geological Survey (USGS) 
Earthquake Repository, which offers extensive 

records on earthquake locations, depths, 
magnitudes, and long-term seismic trends. This 
methodological framework aims to address the 
limitations of prior studies by employing 
rigorously validated time series analytical 
techniques. 

The core strength of this research lies in the 
implementation of a Residual Long Short-Term 
Memory (Residual LSTM) architecture integrated 
with attention mechanisms, tailored to forecast 
earthquake return periods within the geologically 
complex environment of Sulawesi Island. This 
methodological integration not only enhances 
predictive precision but also increases the model's 
contextual relevance for disaster mitigation efforts 
specific to Indonesia. By generating accurate and 
reliable return period predictions, this study 
contributes meaningfully to seismic risk reduction. 
The proposed model provides a robust tool for 
guiding resource allocation, supporting timely 
preventive strategies, and ultimately reducing the 
consequences of earthquakes, including casualties, 
infrastructure damage, and economic disruption. 
 
2. Related Work 

 
Earthquakes occur as a result of stress release 

within the Earth’s crust, producing seismic waves 
that travel through its internal layers[14]. 
Indonesia, located at the intersection of four major 
tectonic plates, is particularly susceptible to 
frequent seismic activity due to the presence of 
active fault zones[15]. Accurately estimating 
earthquake recurrence intervals necessitates the 
application of advanced time series analysis, which 
enables the modeling of sequential data for 
forecasting purposes[16]. The Long Short-Term 
Memory (LSTM) network, a specialized deep 
learning architecture tailored for time series 
analysis, effectively models both short-term and 
long-term temporal dependencies, rendering it 
highly appropriate for earthquake prediction tasks. 

The integration of Residual Long Short-Term 
Memory (Residual LSTM) with attention 
mechanisms further enhances pattern recognition 
capabilities, particularly in seismically active areas 
such as Sulawesi. This approach improves the 
model’s ability to retain long-term dependencies 
and has demonstrated efficacy in various domains. 
For example, a Bi-LSTM model incorporating 
attention mechanisms was effectively utilized for 
sentiment analysis of Indonesia’s Digital Identity 
Application (IKD), achieving an accuracy of 
96.06%[17]. These successful implementations 
underscore the capacity of deep learning models to 
process complex datasets and extract meaningful 
patterns across diverse applications. 

Return period analysis estimates earthquake 
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recurrence intervals based on magnitude and 
frequency. A study on shallow earthquakes in 
Cianjur, Indonesia, calculated recurrence intervals 
of 3.17–29.1 years for M5.0–6.0 quakes and 29.1–
267.38 years for M6.0–7.0 quakes using USGS 
data (1973–2023) [12]. Similarly, Efrina et al. 
analyzed seismotectonic parameters in Nias, 
revealing critical insights into recurrence patterns. 

Machine learning models have demonstrated 
high accuracy in earthquake prediction. Random 
Forest has been effective in magnitude forecasting 
[8], while XGBoost has shown promise in 
earthquake detection. Somantri et al. [18] 
optimized Support Vector Machines (SVM) for 
predicting earthquake magnitudes, achieving 
strong predictive performance through optimized 
windowing. Convolutional Neural Networks 
(CNNs) have also been employed to detect 
earthquake sources using spatial data. Model 
validation relies on metrics such as RMSE, MAE, 
and MAPE to ensure reliability [7]. 

The Vanishing Gradient Problem (VGP) 
hampers RNN-based models in capturing long-
term dependencies [19]. To address this, Residual 
LSTM incorporates residual connections to 
preserve gradient flow, improving accuracy in 
return period prediction. A parallel can be drawn to 
Turkish classical music analysis, where complex 
sequential patterns in makam structures mirror 
earthquake time-series data challenges [20]. 
Similarly, Residual LSTM has enhanced 
transformer polarization current (PDC) 
forecasting, significantly reducing measurement 
errors [21]. This motivates its application in 
earthquake prediction, enabling robust handling of 
noisy, incomplete data and improving forecasting 
accuracy for disaster risk mitigation. 
 
3. Methodology  

 
3.1 Research Design 
 

This research centers on forecasting earthquake 
recurrence intervals through a Residual Long 
Short-Term Memory model, organized into three 
principal stages. The first phase involves collecting 
earthquake data from the USGS earthquake 
repository, followed by comprehensive 
preprocessing steps, including data inspection, 
handling missing values, feature normalization, 
and feature engineering to create meaningful 
predictors such as annual average magnitude and 
depth trends over time.  

The second stage entails performing 
Exploratory Data Analysis (EDA) to extract 
meaningful insights from the seismic dataset. This 
encompasses time series analysis for uncovering 
temporal trends, magnitude distribution 

assessment, and geospatial visualization to 
examine the spatial distribution of earthquake 
events. Clustering techniques reveal geographical 
patterns linked to tectonic activity, while variable 
correlation analysis explores interdependencies 
among seismic attributes. Additionally, return 
period estimation is performed using statistical 
methods to analyze earthquake recurrence 
intervals.  

The third phase concentrates on the 
development of the Residual LSTM model, 
incorporating residual connections and an attention 
mechanism to address the Vanishing Gradient 
Problem (VGP) in recurrent neural networks. The 
dataset is divided into training and testing subsets, 
and the model undergoes thorough evaluation via 
k-fold cross-validation, utilizing metrics including 
RMSE, MAE, and Huber Loss. The model’s 
predictions on earthquake recurrence periods are 
visualized to assess its accuracy and reliability.  

This research follows an iterative optimization 
cycle, where evaluation results refine 
preprocessing strategies and model parameters, 
continuously enhancing prediction accuracy. The 
workflow, depicted in Figure 2, ensures a 
structured and comprehensive approach to 
earthquake recurrence prediction, ultimately 
contributing to improved disaster mitigation 
strategies. 
 
3.2 Data Description and Collection 
 

The dataset employed in this study was 
obtained from the USGS Earthquake Catalog, 
encompassing seismic events in the Sulawesi 
region spanning the years 1975 to 2024. This 
dataset provides a comprehensive timeline to 
analyze long-term seismic trends and recurrence 
intervals. Key variables include the date and time 
of occurrence, geographical coordinates (latitude: -
6.184° to 2.021°, longitude: 118.433° to 125.552°), 
and depth (in kilometers), which is crucial for 
classifying seismic events and assessing their 
potential impact. Additionally, the dataset records 
magnitude values (≥2.5 on the Richter scale), 
ensuring the inclusion of significant seismic 
activities relevant to earthquake prediction models. 
These parameters collectively support a detailed 
examination of seismic patterns in the region. 

Sulawesi was chosen as the study area 
because of its distinct tectonic features and 
elevated seismic activity. The region lies at the 
convergence of three major tectonic plates: Indo-
Australian, Pacific, and Eurasian. The interplay 
between these tectonic plates governs the activity 
of the Palu-Koro Fault, characterized by an 
estimated slip rate of 45 mm per year, thereby 
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rendering Sulawesi one of Indonesia’s most 
seismically active regions[22]. 

Additionally, fault movements in Sulawesi 
occur at a significantly higher rate compared to 
other regions in Indonesia, making it one of the 
most seismically active areas in the country. The 
Palu-Koro Fault, a major left-lateral strike-slip 
fault in central Sulawesi, exhibits a slip rate of 
approximately 40–45 mm per year, while the 
Matano Fault, an extension of the Palu-Koro 
system, moves at ~20 mm per year [23]. These 
findings highlight the greater seismic hazard 
potential in Sulawesi, necessitating advanced 
predictive models for earthquake return period 
estimation[24]. 

The data acquisition from the USGS adheres to 
a systematic procedure designed to guarantee 
accuracy and pertinence. Researchers initially 
established specific search parameters, 
encompassing geographic boundaries and a time 
frame. For this study, the parameters targeted 
Sulawesi, with latitudes spanning from -6.184° to 
2.021°, longitudes from 118.433° to 125.552°, and 
a temporal coverage from 1975 to 2024. The spatial 
extent of the latitude and longitude ranges, 

illustrated in Figure 1, was obtained from the 
United States Geological Survey (USGS) database. 

 

 
Figure 1. The spatial extent of the study area. 

 
 Data were collected through the USGS 
Earthquake Catalog search tool, which offers 
detailed information on earthquake events 
including date, time, latitude, longitude, depth, and 
magnitude. This tool allowed for the 
implementation of customized filters aligned with 
the study’s objectives, ensuring the dataset’s 
appropriateness for comprehensive seismic 
analysis and predictive modeling. 

 
 

 

Figure 2. Research workflow. 
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4. Methodology Implementation  
 
4.1 Data Preprocessing 
 

Data preprocessing is a crucial step in ensuring 
the integrity and quality of earthquake data before 
model training. The dataset, obtained from the 
USGS earthquake repository, consists of 5,702 
rows and 21 columns, covering key attributes such 
as time, latitude, longitude, depth, magnitude 
(mag), and additional seismic parameters. Initial 
exploration identified missing values in several 
columns, necessitating appropriate handling 
strategies. Missing data was addressed using two 
approaches, forward and backward fill for 
sequential continuity, and advanced imputation 
methods, where numerical attributes were replaced 
with their median values, and categorical attributes 
were imputed using mode-based replacement. To 
enhance computational efficiency, non-essential 
attributes such as 'id', 'updated', 'place', 'status', and 
'color' were removed, reducing dataset 
dimensionality and retaining only the most relevant 
predictive features. 

To maintain scale consistency, numerical 
features such as depth, magnitude, and latitude 
were normalized using the MinMaxScaler, which 
scales values to a range between 0 and 1. This 
normalization technique enhanced model 
convergence and stability, outperforming the 
StandardScaler. Furthermore, outliers were 
identified and removed employing the Interquartile 
Range (IQR) method, whereby data points falling 
below Q1 − 1.5×IQR or above Q3 + 1.5×IQR were 
classified as anomalies. This procedure excluded 
150 extreme observations, thereby ensuring that 
the dataset comprised only statistically significant 
earthquake events. 
 
4.2 Feature Engineering 
 

To enhance the predictive capability of the 
model, feature engineering was performed using 
advanced statistical techniques, particularly 
Generalized Extreme Value (GEV) distribution 
analysis, to estimate earthquake recurrence 
intervals. The first step involved filtering seismic 
events, where only earthquakes with magnitude ≥ 
5.0 were retained, removing lower-magnitude 
occurrences that do not significantly contribute to 
recurrence analysis. The filtered data was then 
fitted to a GEV distribution, estimating three key 
parameters: shape (ξ), which defines the tail 
behavior of extreme events, location (μ), 
representing the central tendency of the magnitude 
distribution, and scale (σ), describing the 
dispersion of magnitude values. These parameters 

were estimated using the Maximum Likelihood 
Estimation (MLE) method to ensure optimal 
distribution fitting. 

Using the estimated GEV parameters, the 
earthquake return period was determined through 
the GEV quantile function, specifically focusing on 
the 99th percentile, which represents extreme 
seismic events expected to occur once every 100 
years. To enhance temporal resolution and provide 
a more detailed analysis of recurrence intervals, the 
return period was further converted into months 
and years using the transformation Return Period 
(months) = Return Period (years) × 12. This 
conversion allows for finer-scale assessments of 
earthquake recurrence trends, improving the 
model’s ability to capture variations over different 
timeframes and enhancing its applicability for 
long-term seismic risk analysis. 

This transformation allowed a more granular 
analysis of seismic patterns. The newly engineered 
features, including return_period (years), 
return_period_months, and significant_magnitude 
(a binary indicator where 1 represents significant 
earthquakes), were incorporated into the dataset to 
enhance model interpretability. These additional 
features played a critical role in improving model 
accuracy by enabling a more detailed 
representation of earthquake recurrence patterns, 
ultimately contributing to more reliable earthquake 
forecasting. 
 
4.3 Return Period Analysis 
 

The calculation of the earthquake return period 
is conducted using the quantile function of the 
Generalized Extreme Value (GEV) distribution, 
utilizing previously estimated distribution 
parameters. The return period represents the 
expected recurrence interval of extreme earthquake 
events exceeding a predefined magnitude 
threshold. In this study, the 99th percentile quantile 
function is employed, corresponding to 
earthquakes projected to occur once every 100 
years. By leveraging this statistical approach, the 
model provides a probabilistic estimate of 
recurrence intervals for significant seismic events, 
offering a robust foundation for long-term seismic 
hazard assessment. 

To enhance temporal granularity, the return 
period, initially expressed in years, is further 
converted into months and years. This 
transformation improves the model’s ability to 
capture short-term variations in earthquake 
recurrence, ensuring more detailed insights into 
seismic trends. The conversion is performed using 
the formula Return Period (months) = Return 
Period (years) × 12, enabling flexible temporal 
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analysis for disaster preparedness and risk 
mitigation efforts. 

Following the return period estimation and 
conversion, newly derived features are 
incorporated into the dataset to improve predictive 
accuracy. These include return_period (the 
estimated recurrence interval in years), 
return_period_months (the same interval expressed 
in months), and significant_magnitude (a binary 
indicator, where 1 represents high-magnitude 
earthquakes exceeding the threshold and 0 denotes 
less significant tremors). The addition of these 
features allows the model to focus on high-impact 
seismic events, reinforcing its capability to analyze 
spatiotemporal earthquake patterns and enhancing 
the reliability of long-term earthquake recurrence 
predictions. 

 
4.4 LSTM Model for Earthquake Magnitude  
      Prediction 
 
4.4.1 Attention Layer Creating Sequence 
 

The AttentionLayer initializes its weight and 
bias parameters, where weights are sampled from a 
random normal distribution and biases are 
initialized to zero. Within the call method, attention 
scores are calculated by applying the tanh 
activation function to the matrix product of the 
input and the trained weights, followed by the 
addition of the bias term. Subsequently, the 
attention weights are obtained using the softmax 
function, ensuring that they sum to one for each 
input sequence. 

Utilizing these attention weights, a context 
vector is generated through the weighted sum of 
the input, enabling the model to emphasize the 
most relevant portions of the data when predicting 
earthquake magnitudes. This attention mechanism 
not only improves the model’s interpretability but 
also enhances its ability to capture complex 
patterns present in seismic data. 

For preparing seismic data to train the LSTM 
model, the create_sequences function is applied to 

generate input sequences from the dataset. This 
function accepts the dataset and the desired 
sequence length as inputs, producing two arrays: 
one containing the input sequences and another 
with the corresponding target outputs. 

The sequence generation process involves 
determining the total number of sequences based 
on the dataset size and the specified sequence 
length. Empty arrays are initialized to store both 
sequences and targets. During iteration over the 
dataset, each sequence is extracted as a contiguous 
segment of the defined length, while the target 
corresponds to the immediately subsequent data 
point following the sequence. 

The output of this function is a three-
dimensional array shaped as 
(number_of_sequences, sequence_length, 
number_of_features), which conforms to the input 
requirements of the LSTM model. This structure 
allows the LSTM to process the data sequentially 
and effectively learn temporal dependencies within 
the seismic dataset. 
 
4.4.2 Model Architecture 
 

The Residual Long Short-Term Memory 
(LSTM) model enhanced with an attention 
mechanism, as depicted in Figure 3, is designed to 
predict the earthquake return period by capturing 
temporal patterns in seismic data. The architecture 
begins with an input layer (seq_length , n_features) 
(seq_length,n_features), followed by Layer 
Normalization to stabilize training. The first LSTM 
layer (64 units, ReLU, return_sequences=True) 
processes sequential data, followed by a dropout 
layer (0.2) to prevent overfitting. A dense layer ( 
n_features n_features) is added before a residual 
connection, which helps maintain gradient flow 
and improve learning efficiency. 

A custom attention layer refines feature 
importance, followed by a second LSTM layer (64 
units, ReLU, return_sequences=True). Another 
dropout layer (0.2) and a Global Average Pooling 
layer reduce  dimensionality while  preserving  key 

Figure 3. Model Architecture
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Table 1. Model performance analysis. 

Metrics Training Data Test Data 
Train Loss 0.0090 0.0091 
Train MAE 0.0698 0.0717 
Train RMSE 0.0947 0.0951 
Huber Loss 0.0045 0.0045 

Table 2. Architecture and characteristics of the LSTM Residual model and the LSTM model. 
Characteristics Model 1 (Residual LSTM + Attention) Model 2 (LSTM) 

Main Architecture LSTM with residual connection 2 layers (64 units per layer) 
LSTM Layers 2 layers (64 units per layer) 2 layers (64 units per layer) 
Dropout Rate 0.2 in each layer 0.2 in each layer 
Layer Normalization Yes Yes 
Attention Mechanism Yes Yes 
Dense Layers 32 units with ReLU 32 units with ReLU 
Output Layer Dense(1) Dense(1) 

 
Table 3. Performance metrics of the LSTM Residual model and the LSTM model. 

Metrics Model 1 (Residual LSTM + Attention) Model 2 (LSTM) 
Train RMSE 0.0947 0.0951 
Test RMSE 0.0951 0.0952 
Train MAE 0.0698 0.0707 
Test MAE 0.0717 0.0722 
Train Huber Loss 0.0045 0.0045 
Test Huber Los 0.0045 0.0045 

 
Table 4. Comparison of earthquake return period prediction models and seismic data processing frameworks. 

Method Approach Primary Objective Input Data Output 
Residual 
LSTM + 
Attention 
Mechanism 
 

Deep Learning (RNN-
based) 

Predicting earthquake 
return periods based on 
historical seismic data 

Time-series seismic data Estimated time of the 
next earthquake event 

PhaseNet Deep Learning (CNN-
based) 

Automatic detection and 
picking of seismic phase 
arrival times 

Raw seismic waveforms Arrival times of P and 
S waves 

 
SeisBench 

 
Machine Learning 
Framework 

 
Evaluation and 
development of AI models 
for seismic analysis 

 
Seismic datasets and 
earthquake catalogs 

 
Varies depending on 
the selected model 

     
 
 
information. A dense layer (32 units, ReLU) further 
extracts relevant features before a final dropout 
layer (0.2). The model concludes with an output 
dense layer (1 unit) to estimate the earthquake 
return period. The integration of residual 
connections and attention mechanisms in Figure 3 
enhances feature extraction and improves 
predictive accuracy. 
 
4.4.3 Building the LSTM Model 
 

The proposed Residual Long Short-Term 
Memory (LSTM) model integrated with an 
attention mechanism is designed to effectively 
capture temporal dependencies while addressing 
the vanishing gradient issue commonly 
encountered in recurrent neural networks (RNNs). 
The architecture comprises two stacked LSTM 
layers, each consisting of 64 units activated by 
ReLU functions to introduce non-linearity and 

enhance learning capabilities. The first LSTM 
layer is configured with the parameter 
return_sequences=True, ensuring that the 
sequential output is passed on to the subsequent 
layer. To mitigate overfitting, a dropout rate of 20% 
is applied immediately following the first LSTM 
layer. 

To improve gradient propagation and facilitate 
the learning of long-term dependencies, a residual 
connection is incorporated between the input layer 
and the output of the first LSTM layer. Since 
residual connections require matching dimensions, 
a Dense layer is employed to adjust the output 
dimensions of the dropout layer to align with the 
input dimensions. This residual mapping allows the 
model to retain essential information from the 
original input sequence while enabling deeper 
feature extraction, ultimately improving training 
stability and model convergence. 

Subsequent to the residual connection, the 
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output is directed through an Attention Layer that 
calculates attention scores by performing matrix 
multiplication between the input sequence and the 
learned attention weights. These scores are then 
normalized using the softmax activation function, 
ensuring that the attention weights sum to one over 
the sequence length. This attention mechanism 
allows the model to emphasize crucial time steps, 
thereby enhancing predictive accuracy by focusing 
on important temporal features within earthquake 
recurrence intervals. 

The second LSTM layer, identical to the first 
with 64 units and a 20% dropout rate, processes the 
refined feature representation obtained from the 
attention layer. After passing through the LSTM 
layers, Global Average Pooling 
(GlobalAveragePooling1D) is applied, reducing 
the sequence dimension to a single feature vector 
that encapsulates the extracted temporal patterns. 

The model then incorporates fully connected 
Dense layers to generate the final output. The first 
Dense layer (32 units, ReLU activation) refines 
feature representations, followed by an additional 
dropout layer to mitigate overfitting. The final 
output layer is a single-unit Dense layer, aligning 
with the regression task of predicting earthquake 
return periods. The model is compiled using the 
Adam optimizer with a learning rate of 0.001, and 
Mean Squared Error (MSE) is selected as the loss 
function, ensuring penalization of large errors in 
prediction. 

To mitigate overfitting and improve 
generalization, EarlyStopping is employed to 
monitor the validation loss (val_loss), terminating 
training if no improvement occurs within a 
specified number of epochs. This approach ensures 
optimal model training by avoiding excessive 
iterations that may lead to performance 
deterioration. 
 
 
4.5 Reproducible Research 
   

The data and code utilized in this study are 
publicly available on GitHub at 
https://github.com/muhdadbachmid/EQ-
ReturnPeriod-AttentionRLSTM. 
 
5. Model Training and Evaluation 
 

The Residual LSTM with Attention Mechanism 
was trained using the Adam optimizer, selected for 
its efficiency in handling large-scale datasets and 
its adaptive learning rate properties, which 
facilitate stable convergence. The learning rate was 
set to 0.001, ensuring a balance between 
convergence speed and stability. The model’s loss 
function was Mean Squared Error (MSE), chosen 

for its effectiveness in minimizing prediction 
deviations by penalizing larger errors more 
significantly. To prevent overfitting, the 
EarlyStopping callback was implemented, 
monitoring the validation loss (val_loss) and 
terminating training if no improvement was 
observed after 15 consecutive epochs. The 
restore_best_weights=True parameter was applied 
to ensure that the model retained the optimal 
weight configuration corresponding to the lowest 
validation loss, thereby maintaining predictive 
accuracy. Additionally, min_delta=1e-4 was 
defined as the minimum required improvement in 
validation loss to prevent premature stopping while 
avoiding excessive training. 

The training phase was conducted over 150 
epochs with a batch size of 32, balancing 
computational efficiency and gradient stability. To 
evaluate model generalization, 20% of the training 
dataset was set aside for validation, enabling real-
time monitoring of predictive performance. Upon 
completion of training, model evaluation was 
conducted using both the training and test datasets, 
where the generated predictions were compared 
against actual values. The assessment framework 
incorporated Train Loss, Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and 
Huber Loss as the primary evaluation metrics. The 
performance results, summarized in Table 1, 
demonstrated the model’s ability to minimize 
errors across both datasets. The small discrepancy 
between training MAE (0.0698) and test MAE 
(0.0717) indicated that overfitting was effectively 
mitigated, confirming strong generalization 
capabilities. Furthermore, the Huber Loss 
maintained a consistent value of 0.0045 across both 
training and testing datasets, confirming the 
model’s robustness in managing outliers, an 
essential aspect given the presence of extreme 
values in seismic data. 

The Residual LSTM with Attention Mechanism 
demonstrated strong capability in capturing 
complex temporal dependencies within earthquake 
recurrence data. The low RMSE values (0.0947 for 
training and 0.0951 for testing) indicated that 
prediction errors remained controlled, supporting 
the effectiveness of the model architecture. The 
integration of attention mechanisms enabled the 
model to selectively focus on significant temporal 
patterns, thereby enhancing interpretability and 
optimizing predictive accuracy. Furthermore, the 
inclusion of Huber Loss contributed to greater 
stability by reducing the influence of anomalous 
seismic events, ensuring that the model maintained 
predictive consistency despite fluctuations in data 
distributions. 

The findings indicate that the Residual LSTM 
with Attention Mechanism is capable of producing 

https://github.com/muhdadbachmid/EQ-ReturnPeriod-AttentionRLSTM
https://github.com/muhdadbachmid/EQ-ReturnPeriod-AttentionRLSTM
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highly accurate and generalizable predictions for 
earthquake recurrence intervals. The model 
effectively minimizes errors while maintaining 
resilience against extreme values, demonstrating 
its applicability in forecasting seismic events with 
a high degree of reliability. These results suggest 
that deep learning approaches can provide robust, 
data-driven insights into earthquake recurrence 
trends, contributing to enhanced decision-making 
in earthquake risk assessment and mitigation 
strategies. 

The proposed model, which integrates time-
series feature extraction, LSTM-based deep 
learning, and attention-based optimization, is 
designed to be adaptable beyond Sulawesi and can 
be applied to other earthquake-prone regions such 
as Sumatra, Java, Bali, and Papua. These regions, 
like Sulawesi, are situated along the Ring of Fire, 
where active subduction zones and transform faults 
contribute to frequent and high-magnitude seismic 
events. However, to ensure the model’s robustness 
and accuracy across different regions, several 
adaptations are necessary. 

First, regional data adaptation is required, as 
each region exhibits distinct seismic 
characteristics, including variations in fault 
movement rates, stress accumulation patterns, and 
recurrence intervals. Incorporating region-specific 
historical earthquake data can enhance the model’s 
predictive performance. Second, hyperparameter 
fine-tuning may be necessary to adjust LSTM 
architecture, learning rates, and attention weights, 
ensuring that the model effectively captures the 
unique seismic behavior of different regions. 
Finally, validation using diverse datasets is 
essential to assess the model’s generalization 
capability. These adaptations will enable the model 
to be scalable and applicable to various seismically 
active regions, supporting more accurate 
earthquake forecasting and enhanced disaster risk 
mitigation strategies. 

 
6. Model Comparison of Earthquake Prediction  
    Models 
 
6.1 Comparison with Standard LSTM Models 
 

In this study, the model architecture design is a 
crucial step in generating accurate and reliable 
predictions, particularly in analyzing earthquake 
data with complex spatiotemporal patterns. Table 2 
presents a comparative overview of two 
implemented model architectures, Model 1 
(Residual LSTM + Attention) and Model 2 
(LSTM). This comparison aims to identify the 
contribution of each architectural element in 
enhancing model performance, including their 
ability to capture long-term data patterns, mitigate 

the vanishing gradient problem, and produce more 
robust predictions. 

Model 1 (Residual LSTM + Attention) offers 
significant advantages over Model 2 (LSTM) due 
to the incorporation of residual connections and an 
attention mechanism. This combination not only 
improves prediction accuracy but also enhances the 
model’s ability to capture both temporal and spatial 
dependencies in complex earthquake data. In 
contrast, Model 2, which adopts a standard LSTM 
architecture, is simpler but less effective in 
leveraging intricate data patterns. 

Table 3 presents the performance evaluation 
results of Model 1 (Residual LSTM + Attention) 
and Model 2 (LSTM) based on Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), and 
Huber Loss for both training and testing datasets. 
The results indicate that Model 1 outperforms 
Model 2 in terms of RMSE and MAE. For the 
training data, Model 1 achieves an RMSE of 
0.0947, which is slightly lower than Model 2’s 
RMSE of 0.0951. A similar trend is observed in the 
testing data, where Model 1 records an RMSE of 
0.0951, compared to 0.0952 for Model 2. 

In terms of MAE, Model 1 also demonstrates 
lower absolute errors, with 0.0698 on the training 
data and 0.0717 on the test data, whereas Model 2 
reports MAE values of 0.0707 and 0.0722 for 
training and test data, respectively. However, for 
Huber Loss, both models produce identical results, 
0.0045 for both training and test data, indicating 
similar capabilities in handling extreme errors or 
outliers. 

Overall, these findings suggest that Model 1, 
with residual connections and an attention 
mechanism, provides more accurate predictions 
than Model 2, albeit with marginal differences. 
This highlights the importance of adopting a more 
complex architecture, such as attention 
mechanisms, to enhance the model’s ability to 
capture intricate spatiotemporal patterns in 
earthquake data. As reflected in Table 3, the 
superior performance of Model 1 demonstrates that 
this approach is more effective for earthquake 
prediction applications. 
 
6.2 Comparison of Earthquake Return Period  
      Prediction Models and Seismic Data  
      Processing Frameworks 
 

The comparison of earthquake return period 
prediction models and seismic data processing 
frameworks, as detailed in Table 4, highlights the 
distinct objectives and methodologies of each 
approach. The Residual LSTM with Attention 
Mechanism employs a Recurrent Neural Network 
(RNN) architecture, specifically Long Short-Term 
Memory (LSTM) networks, enhanced with 
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residual connections and an attention mechanism 
to predict earthquake recurrence periods. By 
analyzing time-series seismic data, this model 
estimates the timing of future seismic events. The 
integration of residual connections mitigates the 
vanishing gradient problem, while the attention 
mechanism improves model interpretability by 
emphasizing significant features, leading to 
enhanced prediction accuracy. 

In contrast, PhaseNet is a Convolutional Neural 
Network (CNN)-based model designed for the 
automatic detection and picking of seismic phase 
arrival times, specifically P and S waves. This 
model processes raw seismic waveforms to 
accurately determine arrival times, which are 
crucial for earthquake location and 
characterization. PhaseNet demonstrates high 
accuracy and real-time processing capabilities, 
making it valuable for rapid seismic event analysis 
[25]. Meanwhile, SeisBench serves as a 
comprehensive machine learning framework that 
facilitates the evaluation and development of AI 
models for seismic analysis. It provides access to 
various seismic datasets and earthquake catalogs, 
supporting tasks such as event detection and phase 
picking. The framework’s versatility allows 
researchers to implement and benchmark different 
models, contributing to advancements in 
seismological studies [26]. 
 
7. Conclusion 
 

The Residual LSTM with an integrated 
attention mechanism exhibited remarkable 
performance in forecasting earthquake recurrence 
intervals in the Sulawesi region. This is supported 
by consistently strong evaluation metrics: a Train 
Loss of 0.0090 and Test Loss of 0.0091, Training 
MAE of 0.0698 and Testing MAE of 0.0717, 
Training RMSE of 0.0947 and Testing RMSE of 
0.0951, and a stable Huber Loss of 0.0045 for both 
training and testing datasets. These results 
highlight the model’s accuracy, generalization 
ability, and resilience in handling the variability 
and extremities characteristic of seismic data. 

The model's strength lies in its residual 
connections, which effectively address the 
vanishing gradient problem by allowing gradients 
to flow more smoothly through the network layers. 
This facilitates efficient learning of long-term 
dependencies, which are essential in modeling 
seismic recurrence intervals. Furthermore, the 
integration of an attention mechanism empowers 
the model to dynamically focus on the most 
relevant portions of the input sequence. By 
assigning adaptive weights to different time steps, 
the attention layer not only enhances predictive 
performance but also increases model 

interpretability, enabling a clearer understanding of 
which temporal patterns most influence the 
earthquake recurrence predictions. 

The model’s stability is further evidenced by 
the negligible difference between training and 
testing metrics, indicating robust generalization 
performance. Moreover, its consistent results 
across multiple evaluation metrics and resilience to 
outliers, as demonstrated by the low Huber Loss, 
highlight the dependability of this method. 

This study contributes a significant 
methodological advancement by proposing a novel 
framework for forecasting earthquake recurrence. 
The successful integration of Residual LSTM with 
an attention mechanism validates the effectiveness 
of deep learning in analyzing seismic data, thereby 
facilitating wider applications in earthquake 
prediction research.  
 
8. Future Works 
 

This study acknowledges several limitations 
that warrant consideration for future model 
enhancement. A primary limitation lies in the 
exclusion of comprehensive geological 
information, such as rock formations and fault line 
characteristics, which are critical to accurately 
modeling earthquake recurrence. Furthermore, the 
omission of environmental variables, including 
surface alterations and anthropogenic influences, 
may hinder the model’s ability to generalize 
effectively. Incorporating these elements in future 
work is expected to strengthen the model’s 
robustness and predictive precision. 

Based on the research findings and 
performance evaluations, several important 
recommendations are proposed to improve the 
earthquake return period prediction model. Firstly, 
integrating the Residual LSTM model with other 
machine learning approaches, such as Resilient 
Propagation (RPROP), is essential for enhancing 
predictive accuracy and speeding up convergence. 
RPROP has proven effective in seismic activity 
prediction, and its combination with Residual 
LSTM can result in a more adaptive and robust 
model. Additionally, the application of ensemble 
learning techniques, like XGBoost, can further 
boost predictive performance by capturing 
complex, non-linear relationships within the data. 
The integration of Residual LSTM for modeling 
temporal dependencies and XGBoost for 
recognizing non-linear patterns is expected to 
strengthen the overall predictive capability of the 
system. 

Developing a multi-task learning architecture 
that simultaneously predicts both earthquake 
recurrence periods and magnitudes is strongly 
advised. This can be realized by using a shared 
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feature extraction network, coupled with distinct 
output layers that are individually optimized for 
each task. By learning from both tasks 
simultaneously, the model can achieve more 
comprehensive seismic predictions while 
improving overall accuracy. Moreover, 
incorporating multidimensional data sources such 
as real-time tectonic plate movements, surface 
deformations, and meteorological information is 
vital for improving the robustness of predictions. 
These diverse data streams offer a comprehensive 
perspective on seismic events and their causative 
factors. Consequently, it is imperative to develop a 
high-performance data integration pipeline that can 
efficiently process and manage these 
heterogeneous sources, while implementing 
rigorous quality control measures to maintain 
prediction reliability. 

The establishment of a real-time modular 
processing system, incorporating an interactive 
dashboard and early warning functionalities, is 
essential for effective practical deployment. Such a 
system should be capable of handling multiple data 
streams, delivering insightful visualizations, and 
generating automated reports to convey predictions 
clearly to relevant stakeholders. An interactive 
dashboard would enable users to monitor seismic 
risk levels in real time, evaluate potential threats 
proactively, and support data-driven decision-
making for disaster preparedness. Furthermore, 
integrating a continuous performance monitoring 
framework with real-time evaluation metrics and 
anomaly detection would be critical for sustaining 
long-term model reliability. This system should 
also support automatic model updates based on 
newly acquired seismic data, thereby preserving 
predictive accuracy and adaptability over time. 

To ensure the sustainability and adaptability of 
the system, the implementation of a knowledge 
management framework is recommended. This 
should include version-controlled model 
repositories, automated documentation, and 
training materials for end users. By maintaining 
comprehensive documentation and facilitating 
knowledge transfer, stakeholders and system 
operators can effectively manage, update, and 
optimize the predictive model in the future. 

In conclusion, the gradual implementation of 
these recommendations, emphasizing model 
integration, incorporation of multidimensional data 
sources, and the establishment of continuous 
monitoring mechanisms, is anticipated to markedly 
enhance the accuracy and robustness of earthquake 
prediction models. By integrating real-time data 
sources, refining model architectures, and ensuring 
consistent evaluation and adaptation, the predictive 
capabilities of the model can be enhanced, leading 
to better-informed disaster risk management 

strategies. These improvements are particularly 
crucial for Indonesia, a seismically active region, 
where robust predictive models can contribute to 
effective disaster preparedness and risk mitigation 
strategies. Ultimately, continuous advancements in 
these models will play a vital role in reducing 
earthquake-related risks and minimizing the 
potential impact on communities and 
infrastructure. 
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