
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
18/2 (2025), 239-249. DOI: http://dx.doi.org/10.21609/jiki.v18i2.1530

239

Context-Aware Detection of Deceptive Design Patterns in E-Commerce Websites

Using Word Embedding Based Deep Learning Paradigms

Rukshika Premathilaka

Department of Information and Communication Technology, Faculty of Technological Studies,

Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka

E-mail: itt1617059@tec.rjt.ac.lk

Abstract

Deceptive designs (DDs) are a hidden technological tactic that manipulates the user's
consumer behavior in a way that benefits website vendors without them knowing. Proper
identification of deceptive designs is essential to prevent users from being misled by hidden
tactics. To fulfill this requirement, this study assesses Word2Vec word embedding based deep
learning models for text based deceptive design detection. Models trained consist of
Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory (BiLSTM),
and a hybrid model (CNN + BiLSTM) that combines the two aforementioned models. These
four key score indices of accuracy, precision, sensitivity, and F1-score are computed to
compare the performance of each proclaimed model. When compared to the existing DD
detection techniques, all three of these approaches attain state-of-the-art performance. The
results of this evaluation illustrate that the hybrid model achieves the highest accuracy of
95% in capturing the nuanced text context of deceptive designs. Furthermore, even when
other metrics are considered, the hybrid model performs more effectively. To guarantee the
independence and security of user activities, intelligent deep learning paradigms are
integrated to identify hidden deceptive activities automatically. This allows for the accurate
detection and classification of deceptive designs in intricate e-commerce environments.

Keywords: deceptive design detection, word embeddings, CNN, BiLSTM

1. Introduction

"Deceptive design" is a subset of User Interface
(UI) design techniques used to influence user
behavior on various digital platforms subtly. These
misleading designs inadvertently undermine users'
autonomy and capacity to make wise decisions.
According to earlier research, deceptive designs
can be found anywhere on digital platforms, such
as social networking sites [1], e-commerce sites,
and apps and cookies [2]. These design tactics have
garnered more attention lately because many of
them are illegal and have ethical effects on the user.
Financial loss [3], deceiving users into disclosing a
great deal of personal information [4], or causing
compulsive and addictive behavior in both adults
[5] and children [6] are the most catastrophic
results that may arise from these deceitful designs.

Therefore, it is crucial to accurately recognize
and comprehend these designs to mitigate the
effects. The majority of earlier research
concentrated on manually detection [7] or labelling
[8] of deceptive design patterns. Currently, several
recent studies have taken steps to automatically
detect these designs using a few types of traditional
machine learning models for feature engineering
and classification [9]. The main goal of this
research is to address the limitations raised by
those earlier studies by offering deep learning
model-based solutions.

This study aims to address two key questions to
bridge this gap:

Q1. How effectively can different deep learning
paradigms detect dark patterns in e-commerce
websites using word embeddings?

Q2. Which deep learning algorithms provide
the highest performance for key indicators?

http://dx.doi.org/10.21609/jiki.v18i2.1530

 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 2, June 2025

240

To fill this research gap and enhance design
detection performance, we implemented three deep
learning paradigms on an improved dataset. Word
embeddings have been employed by all models to
capture contextual and semantic nuances in the
data. The performance of the models was measured
using four key indicators. They are accuracy,
precision, sensitivity, and F1 score, respectively.

In summary, the contributions of this work are
as follows:

1. Convolutional Neural Network +
Word2Vec: First, we use a convolutional neural
network in conjunction with the Word2Vec model
to extract semantic features from textual context.
The convolutional layers in this model finds n-
grams of word patterns to collect the essential
features required for deceptive designs detection.

2. Bidirectional Long Short-Term Memory +
Word2Vec: Long-range dependencies and
contextual linkages are extracted from textual
context using this method, which combines
BiLSTM layers with a Word2Vec pre-trained
model. Because the model is bidirectional, it
performs well on tasks that call for in-depth
contextual understanding.

3. Convolutional Neural Network +
Bidirectional Long Short-Term Memory with
Word2Vec: The development of this method
involved combining the strong elements of the two
aforementioned approaches. By integrating the two
architectures, it seeks to offer an all-encompassing
strategy for identifying deceptive designs while
striking a balance between effectiveness and
contextual awareness.

Section 2 covers related work. The
methodology, including the development of the
DDs dataset and the strategy employed in this
investigation, is explained in Section 3. Section 4
presents the implementation setup, detailing the
performance metrics, confusion matrix and
comparative analysis. Section 5 provides in-depth
analysis of key findings and model performance.
Finally, section 6 concludes the complete study
with final remarks.

2. Literature

User experience designer Harry Brignull first
coined these deceptive designs termed 'dark
patterns (DPs)' in 2010. The detection and
classification of dark patterns in user interfaces
have garnered significant attention from
researchers and practitioners in the fields of
human-computer interaction (HCI), computer
science, and digital ethics [9]. This section
provides a comprehensive exploration of existing
research efforts in the context of detecting hidden
tactics of deceptive designs and identifies gaps that

motivate my focus on scalable, generalizable
solutions for real – world deployment.

2.1. Automated DPs Detection Techniques

Umar et al. [9] have provided a solution to
detect DPs in user interfaces using Logistic
Regression (LR) and Bag-of-Words
Representation (BoWR). In another study, Mathur
et al. [8] propose an automated systematic
approach to identify dark patterns on large scale e-
commerce websites. They utilized Bag of Words
(BoW) representation, Principal Component
Analysis (PCA), and the Hierarchical Density-
Based Spatial Clustering of Applications with
Noise (HDBSCAN) algorithm for feature
engineering with clustering. Soe et al. [2] suggest a
machine learning workflow comprising feature
engineering, parameter search, gradient boosted
tree classifier training, and evaluation to forecast
dark patterns on cookie banners. In a similar study
carried out by Ramteke [10], the development of an
automated approach that combines web scraping
techniques with contextual understanding through
fine-tuned BERT language models for identifying
outlier dark patterns was highlighted. Inspired by
the emerging machine learning techniques, Yada et
al. [11] examined four machine learning models,
including BERT, RoBERTa, ALBERT, and XLNet.
At the end of the 5-fold cross-validation, it
achieved superior accuracy with RoBERTa. Most
subsequent studies focused on exposing
taxonomies of dark patterns without large-scale
evidence demonstrating their prevalence across a
wide range of websites.

In 2023, Constâncio et al. [12] conducted a
systematic review of deception detection with
machine learning, which highlights the
performance of several machine learning
techniques, including neural networks, support
vector machines, random forests, decision trees,
and K-nearest neighbors. Also, they employed
monomodal, bimodal, and multimodal approaches
for their study.

This study builds on these efforts by combining
Word2Vec vector representations with deep
learning architectures, focusing on capturing
nuanced semantic features to detect deceptive
design patterns [13].

2.2. Multimodal Approaches

Using computer vision and natural language
processing techniques, another study [14]
presented a new automated system dubbed
"AidUI" that can identify the presence of a set of
distinct DPs. They combined text analysis, color

Premathilaka, Context-Aware Detection of Deceptive Design Patterns in E-Commerce Websites

241

analysis, and semantic analysis to achieve the final
solution. Recently, a domain-independent holistic
approach to deception detection was developed
using deep learning architecture [15]. With an
overall accuracy of 93%, their approach beat the
State-of-the-Art (SOTA) performance of the
majority of benchmark datasets.

This work differs in the use of a hybrid deep
learning model to concatenate local and sequential
semantic features. Furthermore, unlike the
aforementioned multimodal approaches, this work
is a text-centric approach.

2.3. Taxonomies and Real-World Prevalence

Gray et al. [16] and Di Geronimo et al. [17]

proposed a taxonomy that classified DPs into
distinct categories based on their characteristics
and user impacts. Hidaka et al. [18] investigated
DDs in Japanese apps using that taxonomy as a
basis. Additionally, Zagal et al. [19] established the
notion of dark patterns in games and discussed
some of the nuances involved in detecting them
that can be used to help guide the development and
identification of future dark patterns. Another
study [20] examined the frequency of dark patterns
in mobile games that exploit players on a temporal,
monetary, social, and psychological basis.

Two distinct scenario-based experiments were
carried out by Kim [1] to examine the moderating
effects of deceptive design techniques and social
proof. The study also finds that dark patterns have
a negative impact on consumer attitudes and
perceptions of justice. By addressing a taxonomy
that transitions from a problem-oriented
perspective to a problem-solving framework,
Saville [21] suggested a novel method for DP
detection.

Same as these studies, our models aim for
superior and scalable performance in dark pattern
detection. Beyond that, in this study we concentrate
on generalizable detection rather than taxonomy
expansion.

This study explores methods and developments
in identifying dark patterns (DPs) and deceptive
designs using machine learning and deep learning
approaches. However, understanding the presence
and effects of DPs in the real world remains
challenging due to limited empirical evidence and
reliance on fictitious statistics. There is an urgent
need to create sophisticated deep learning
algorithms capable of detecting and
neutralizing misleading designs in user interfaces,
hence preserving user autonomy and decision-
making authority.

3. Methodology

 This research is conducted in two main parts:
model training, which is the primary focus, and
performance evaluation as the secondary aspect. A
Jupyter notebook was utilized for all machine
learning tasks. Figure 1 illustrates the structure of
the method that is being used.

3.1. Dataset

The dataset in this study was sourced from
previous research by Mathur et al. [9], which also
utilized datasets from earlier studies [8], [11]. The
initial dataset included 1818 deceitful texts from
1254 online retail websites, which were chosen
based on their popularity in the online shopping
market. The websites were chosen to represent a
massive diversity of online websites. The dataset
was built in 2019. By using the non-dark pattern
texts scraped from the same e-commerce websites,

Feature Engineering and Model Training

Word
embeddings

Deep Learning Models

Word2Vec

2D - CNN

BiLSTM

CNN + BiLSTM

Figure 1. Framework for proposed methodology.

Kaggle

Train
80%

Test
20%

Performance Evaluation and Comparative
Analysis

Data preparation

Data
preprocessing Tokenization

 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 2, June 2025

242

they balanced their dataset. They scraped text from
websites using the puppeteer library. The absence
of manipulative or deceptive features allowed the
identification of non-deceptive content. They
employed a manual validation step to ensure that
selected texts did not have features equivalent to
deceptive designs. In this dataset there are two
labels in the class column as Dark Patterns (DP)
and Non-Dark Patterns (non-DP).

3.2. Data Preprocessing

Data preprocessing is a step in which we
transform and prepare raw data into a form relevant
to the data mining procedure. This stage aims to
reduce the data size, find the relationship between
data, remove outliers, and extract features for data
[18]. Below, I describe the critical steps involved
in this data preprocessing with the help of Figure 2.

1. Tokenization: Tokenization is the most
substantial and initial stage in natural language
processing (NLP). It entails dividing entire textual
input into discrete units called tokens. The needs of
the analysis will determine whether the tokens are
words, phrases, or even characters. Tokenization
was done in this study using ToktokTokenizer [22].
Transforming unstructured text into a structured
format that deep learning models can handle is the
main goal of tokenization.

2. Data Cleaning: The initial step in the data
cleaning process is text normalization. In this stage,
we transformed all the numbers within the row text
into their textual representation using two libraries
called re and inflect. This stage ensures it
amalgamates numerical information into the
textual data in a semantic manner. The subsequent
step in the data cleaning phase considered adding
required spaces before corresponding capitals.
Here, regex recognized uppercase transitions and
added spaces as applicable. The next phase of the
data-cleaning process entailed the removal of
symbols, specialized characters, and punctuation to
convert text into a standardized form. This was
kept only alphanumeric characters and a few
essential punctuations (., /-) using regex text clean
patterns [23]. Strip HTML tag removal was the
next step in the data cleaning process, and the bs4

library was utilized to complete this task. This
helped to filter the dataset, removing HTML tags
and including only the scraped data that was most
pertinent for analysis and interpretation. The next
step addressed the removal of noise from the text.
Using the re and bs4 libraries, this step executed a
high-level function that integrates HTML tag
stripping and square bracket removal. Stemming is
a process of removing the associated affixes from
a word to reduce it to its standard form, or root [19].
The NLTK’s PorterStemmer was employed to filter
out these root words, ensuring that only the most
essential word forms remained [24]. The attention
turned to eliminating common words (stopwords:
is, the, and) from the textual data content after the
remove stop words stage. This was achieved
through the NLTK’s stop words library, which
identified and omitted common words that do not
come up with much semantic value.
Then, any remaining inconsistencies in text
formatting were addressed by converting all
characters to lowercase and eliminating redundant
spaces. At the completion of data preprocessing,
the class column's categorical data were renamed
as DP (Dark Patterns) and non-DP (Non-Dark
Patterns) by using the replace function. The binary
classification distinguishes between interfaces with
deceptive patterns and non-deceptive patterns. An
example of the preprocessed text obtained after
completing all the preprocessing steps is described
in Table 1.

Table 1. Example of preprocessed text.

Input Text Final Preprocessed Text

"""This is an example of
text data, including#
numbers like 123 and
abbreviations such= as
e.g. or i.e. We need to
preprocess this text for

GAN-based text-to-
speech conversion."""

exampl text data, includ
number like one hundr

twenty-thre abbrevi
exampl need preprocess

text gan-bas text-to-speech
convers.

3. Data Refinement: As the concluding step,
eliminate any words that are unable to contribute
significant information to the context in the stage
that deals with removing irrelevant terms by using
specific techniques, including lemmatization and
non-alphabetic token removal [24]. Additionally,
the refinement step that handled both too-short and
too-long textual inputs removed outliers that can
skew analysis or hinder model performance.
Handle these too-long and too-short words by
using the min and max of word count. Figure 3
helps in understanding how the word count
frequency is distributed after removing outliers.

Figure 2. Preprocessing pipeline.

Premathilaka, Context-Aware Detection of Deceptive Design Patterns in E-Commerce Websites

243

3.3. Exploratory Data Analysis (EDA)

This study's EDA step uses descriptive analysis
to characterize the dataset's essential properties.
Table 2 showcases the descriptive statistic
parameters of a numerical variable in dataset. The
following table briefly demonstrates statistical
parameters including mean, standard deviation
(std), minimum (min), percentage, and maximum
(max). This section figures out some visual
representations of data, including bar charts,
heatmaps, bar plots, and histograms, highlighting
trends, outliers, and relationships [25].

Table 2. Descriptive statistics for numeric variable.

 page_id
Count 2,356.00
Mean 904.33
Std 539.82
min 1.00
25% 380.75
50% 965.50
75% 1,385.25
max 1,818.00

Figure 3 shows a bar chart showing the 30 most

naturally occurring words in the deceptive texts in
dark patterns. The analysis highlights the
importance of threat-related and numerical words
such as “left,” “one,” “stock,” “time,” and “limit.”
Also, purchase-related words such as “purchase,”
“offer,” “bought,” and “cancel” appear in high
numbers, as these texts are likely to convey a
transactional element. This bar chart is another
examination of the DD practices, showing specific
word patterns used to influence user manipulation.
The distribution of words in a DD text is seen in
Figure 4. It is evident that, in particular, the
analyzed texts have fewer than 20 words, with the
watershed being between 5-10 words.

This finding implies that DDs are typically
created as brief messages to immediately capture
the user's attention or create pressure. In addition,
the distribution is characterized by a long sentence
structure, with a small number of sentences lasting
up to 100 words. This rightward shift emphasizes

the appropriate brevity about fraudulent patterns.

3.4. Feature Engineering

In this study, Word2Vec embedding method
was used to extract semantic features, with each
word represented by a 300-dimensional feature
vector. Pretrained Word2Vec embeddings from
GoogleNews-vectors-negative300.bin were used,
with embeddings loaded via the Gensim library.
The dataset was tokenized with a maximum
vocabulary size of 2000, and sequences were
padded to ensure the model received a uniform
input lengths for the model [26].

We preferred to employ Word2Vec in this study
instead of BERT [10] due to its computational
viability and ability to efficiently detect deceptive
language patterns. Word2Vec is a lightweight word
embedding technique that maps words into dense
vector representations based on their co-occurrence
in a corpus with much less computational power
than BERT. Since deceptive design detection
involves analyzing high-scale text-based patterns,
BERT would have been necessary to use high GPU
or TPU resources, which are not always readily
available.

Although Word2Vec provides static word
embeddings, like each word having an identical
representation. While it lacks depth in contextual
knowledge, it is effective in capturing semantic
equivalences between words, an important feature
to determine deceptive design patterns based on

Figure 3: Word count frequency.

Figure 3: Top 30 Most Frequent Words in Deceptive Text

Figure 4. Distribution of Deceptive Text Length

 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 2, June 2025

244

intentional keyword-focused manipulation, like
persistent insincere wording. Word2Vec
embeddings are also more interpretable than
transformer-based token representations from
BERT so that the effects of which deceptive words
and wording influence model decision-making
most are more easily explored.

By combining Word2Vec embeddings with
CNN and BiLSTM, we achieve balance in
effectiveness and efficiency and thereby make it a
viable choice for deceptive design detection and
lay a good groundwork for subsequent studies.

3.5. Model Training

We employed three deep learning models -
Convolutional Neural Network (CNN),
Bidirectional Long Short-Term Memory
(BiLSTM), and the combined model of these two
models (CNN+BiLSTM). During the training
phase, we split the dataset into a training subset and
a test subset using Scikit-learn's train and test
function [27]. Here, a training-to-test ratio of 80%
is employed. The binary cross-entropy loss
function and Adam optimizer were used to
optimize these deep learning models [9].

Loss=	-
1
N)[yi log(pi)+(1-yi) log(i-pi)]

N

i=1

(1)

where yi is true label and pi is the predicted
probability for the ith sample.

3.5.1 Convolutional Neural Network (CNN)

Figure 5 shows a block diagram of the
suggested Convolutional Neural Network (CNN)
architecture for the task. The execution process
steps of the DDs identification model using CNN
are as follows:
The input layer receives a tokenized text sequence
as input (length sequence_length).

Using embedding sequences, the embedding
layer turns these token indices into dense word
vector representations. With EMBEDDING_DIM
representing the word embedding dimension, the
embedding layer's output shape is
(sequence_length, EMBEDDING_DIM). The
embedding tensor is changed by the reshaping
layer so that the convolutional layers can use it.
This is accomplished by adding a dimension for
channel consistency.

R∈R%sequence_length×EMBEDDING_DIM×17 (2)

This model's convolutional layers collect
valuable n-gram features via embeddings. The
model contains three transition layers with 100
filters each for the three, four, and five filter sizes.
Each transition layer is designed to detect 100
unique properties. By applying
BatchNormalization to each input, the
convolutional layer's output is normalized,
resulting in a stable and quick training process. The
smooth, nonlinear Swish activation function is
subjected to the normalized output:

Swish(x)=x.σ(x)

(3)

where:

σ(x)=	
1

1+e-1 	is	the	sigmoid	function

(4)

The most important feature signals for each

convolutional layer are recovered from the global
maximum pooling layers by picking the highest
value of each feature map. The model uses a
concatenate layer to merge the outputs of the three
global maximum convolutional layers into a
composite feature representation. A flattened layer
converts the resulting multi-dimensional tensor
into a one-dimensional vector, which is then fed
into the dense layer. A dropout technique is
employed to avoid overfitting of the dense layer,
and a sigmoid activation function is employed for
binary classification, generating a probability for
the two classes indicating the presence or absence
of user manipulations.

3.5.2 Bidirectional Long Short-Term Memory

(BiLSTM)

The tokenized text sequence (with a sequence
length of sequence_length) is sent to the initial
layer of this BiLSTM model called the input layer.
The embedding layer uses Word2Vec pre-trained
embeddings to convert these token indices into
dense word vector representations. This

Figure 5. Block diagram for proposed Convolutional Neural
Network

Premathilaka, Context-Aware Detection of Deceptive Design Patterns in E-Commerce Websites

245

embedding layer provides input to bidirectional
LSTM (BiLSTM) layers. These BiLSTM layers
require the model to process the text sequentially
forward and backward in order to gather contextual
information from the lines of text that come before
and after. The BiLSTM layer helps the model
consider word meaning by identifying the
contextual meaning and helpful correlations of this
text. Each BiLSTM in this model is followed by the
use of dropout and batch normalization
capabilities.

The output goes through fully connected dense
layers after processing through the BiLSTM layers.
The model can learn intricate patterns because of
the Swish activation feature. For binary
classification, the model's last layer is a dense layer
with a sigmoid activation function. The probability
ratio that the sigmoid function produces shows
whether the user manipulation (dark patterns)
associated with the two potential classes is present
or not. The proposed BiLSTM model flows as
Figure 6 illustrates.

Figure 6. Block diagram for LSTM model baseline.

Table 3. Convolutional layers and their n-grams pattern
detection capabilities.

Convolutional
Layer

Filter
size/n-
grams

Process Output Shape

01 3

Detects
patterns
form 3
words

collection

(sequence_length-
f+1,1,	number	of	

filters)	
02 4

Detects
patterns
form 4
words

collection

03 5

Detects
patterns
form 5
words

collection

3.5.3 Hybrid model (CNN+BiLSTM)

According to Figure 7, the hybrid model
performs both CNN and BiLSTM models
simultaneously. In the combined model there were
two input layers for the separate CNN block and
BiLSTM block. Both inputs are sharing the same
embedding layer.

Figure 7. Block diagram for combined model baseline.

The convolutional operation is applied kernels of
different filter sizes (k). Below are the equations
for each kernel:

Z_conv=Conv2D(Z_embed,W_conv,b_conv) (5)

where Z_embed stands for embedded input that has
been reshaped. W_conv represents the learnable
convolutional kernel of size k× embedding
dimension. b_conv is representing a bias vector.
Also, these convolutional layers contain a dropout
function and batch normalization function. Batch
normalization is computed through integration, as
illustrated in the following equations:

Znorm=
Zconv-µ
√σ2+ϵ

.γ+β

(6)

Global max pooling uses the following calculation
to minimize the feature map after receiving input
from the CNN block.

 Z_pool=max(Z_norm,axis=1) (7)

The following mathematical operation is used by
the bidirectional LSTM block to identify
contextual representation by operating the
sequence in both forward and backward directions:

ht=LSTMf(xt,ht-1)+LSTMb(xt,ht+1)

(8)

Feature fusion performed concatenation of features
extracted from the CNN block and the BiLSTM
block using the below equation:

Zfused=[Zpool:h]

(9)

Sigmoid activation is utilized to construct the final
classification using the fused features dense layer.

 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 2, June 2025

246

3.6. Performance Metrics

The trained deep-learning models were
evaluated on a held-out test set to assess their
performance in detecting DDs. We employed the
standard evaluation metrics such as accuracy,
precision, recall, and F1-score to measure the
model’s predictive performance.
Accuracy: Accuracy can be defined as the
proportion of correctly identified samples to all
samples [9].

Accuracy=	

Correctly	classified
	samples

Total	number	of	samples
(10)

Precision: Precision measures the ratio of correctly
classified positive samples (true positives) to the
total number of samples classified as positive (true
positives + false positives) [9].

Precision=
TP

TP+FP

(11)

Above,
 The anticipated positive samples that
correspond to the actual positive results are
denoted as TP.
 Predicted positive samples (FP) are those that
don't match the actual negative results.

Sensitivity: Measures the proportion of accurately
recognized true positives to all actual positive
samples; also referred to as recall [9].

Sensitivity=	
TP

TP+FN

(12)

F1-Score: The F1-score offers a fair assessment of
a model's performance since it is the harmonic
mean of precision and sensitivity [9].

 F1-score=
2×Precision×Sensitivity
Precision+Sensitivity (13)

4. Implementation

4.1 Performance Evaluation

The performance of the three deep learning
models on the tasks of deceptive design detection
was rigorously evaluated using McNemar’s paired
test [28].This test is utilized to statistically compare
the performance of three deep learning models.
Figure 8 depicts how two models perform

differently on the McNemar’s test. Besides, it
indicates that the hybrid outperforms the other two
models. As shown there, the Bonferroni Threshold
has been used for multiple comparisons in
hypothesis testing to reduce the risk of false
positives. In comparing the CNN and BiLSTM
models separately, the p-value was greater than the
Bonferroni value, indicating that their performance
was not statistically significantly different. The
hybrid model outperformed the CNN and BiLSTM
models with p-values less than the Bonferroni
value, which signifies a statistically significant
improvement in performance.

Table 4 summarizes these evaluation metrics
for each model on the utilized dataset. To assess the
performance of proposed deep learning models,
training loss was tracked across 30 epochs. It is
proved that the hybrid model outperforms the
others across all parameters, achieving superior
superior performance. With an accuracy of 0.95 as
opposed to 0.94 for BiLSTM and 0.93 for CNN,
the hybrid model continuously beat the others. The
hybrid model had the highest precision at 0.96,
followed by BiLSTM at 0.93. A comparable
pattern was seen in sensitivity, with the hybrid
model reaching 0.95. These findings demonstrate
the benefits of mixing sequential and convolutional
designs to enhance classification performance.

Table 4. Overview of the model’s performance.

4.2 Confusion Matrix

The confusion matrix provides a visual
representation of the model's performance in

Model Accuracy

Precision Sensitivity

F1-
score

CNN 0.93 0.93 0.92 0.93

BiLSTM 0.94 0.93 0.92 0.93

CNN+
BiLSTM 0.95 0.96 0.95 0.95

Figure 8. McNemar’s paired test results.

Premathilaka, Context-Aware Detection of Deceptive Design Patterns in E-Commerce Websites

247

classifying instances as true positive (actual
positive and predicted positive), false positive
(actual negative and predicted positive), true
negative (actual negative and predicted negative),
and false negative (actual positive and predicted
negative) [9]. The confusion matrices for all three
model configurations are presented in the
following figures.

5. Discussion

In various domains like healthcare and

financial, these deceptive design patterns can cause
significant ethical and financial failures. As Figure
12 illustrates, with 1% accuracy over BiLSTM and
2% accuracy over CNN, the hybrid model is
demonstrated to be better appropriate in this case
for detecting deceptive designs. This approach
works well in scenarios where real-time inference
is not necessary, but it is less helpful for mobile
apps, browser extensions, or edge devices due to its
speed and performance constraints. Figure 13
directly addresses these efficiency trade-offs.

Additionally, this model might not be sensitive
enough to social and cultural cues in misleading
designs, which would prevent it from identifying
subtle or indirect forms of language or dark pattern
text. Furthermore, overfitting problems also occur,
particularly with the hybrid model, whose test data
accuracy decreases after multiple epochs,
indicating that the model is overly focused on
specific features in the training data. As a result,
the model suffers when dealing with more varied
data variants, like texts that are absent from the
training set or have a different structure. More
diversity in the training data, improved
regularization methods, and enhanced
preprocessing to accommodate more complicated
and ambiguous texts are required to solve this
problem [13].

A deceptive design strategy is not limited to
textual context alone. However, we only take text-
based designs into consideration in our study. In the
future, we can investigate the use of a multi-fusion
model in conjunction with other design strategies
to detect false designs.

Second, this research solely uses a conventional
word embedding technique. This is another study
limitation. Future studies can examine how more
sophisticated word and sentence embedding
techniques function in the detection of deceptive
designs.

Figure 10. Confusion matrix for BiLSTM.

Figure 11. Confusion matrix for Hybrid model.

Figure 9. Confusion matrix for CNN.

Figure 12. Model comparison.

 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,
 issue 2, June 2025

248

6. Conclusion

The primary goal of this study is to investigate
how well deep learning models identify misleading
designs. Using a hybrid model that blends
CNN+BiLTM models, we have achieved notable
performance by utilizing the Word2Vec model.
Even while the CNN and BiLSTM models perform
worse than the hybrid model when used alone, they
are still very good.

The hybrid model proposed here combines
Convolutional Neural Networks (CNN) and
Bidirectional Long Short-Term Memory
(BiLSTM) networks with Word2Vec embeddings
to create a comprehensive approach to text
classification that takes full advantage of both
semantic and sequential feature extraction. The
CNN part of the model is great at picking up local
patterns and key phrases within text data, which
makes it particularly effective at identifying fixed-
length contextual dependencies. The BiLSTM part
of the model, on the other hand, processes long-
term dependencies really well and picks up on
contextual features from both past and future
sequences.

In summary, this research paper shows a
method for finding deceptive designs in user
interfaces using deep learning paradigms. By
analyzing textual features and deep learning
methods, the approach effectively identifies
misleading design practices and helps users make
intelligent decisions through online platforms. The
results demonstrate that the mixed model
successfully tells apart deceptive and non-
deceptive UI patterns with strong metrics like
accuracy, precision, recall, and F1-score.
Analyzing feature importance sheds light on the
language cues and patterns that signal misleading
designs, aiding in understanding the model's
predictions.

References

[1] K. (Kathy) Kim, W. G. Kim, and M. Lee, “Impact of

dark patterns on consumers’ perceived fairness and

attitude: Moderating effects of types of dark patterns,
social proof, and moral identity,” Tourism Management,
vol. 98, p. 104763, Oct. 2023, doi:
10.1016/j.tourman.2023.104763.

[2] T. H. Soe, C. T. Santos, and M. Slavkovik, “Automated
detection of dark patterns in cookie banners: how to do
it poorly and why it is hard to do it any other way,” Apr.
21, 2022, arXiv: arXiv:2204.11836. doi:
10.48550/arXiv.2204.11836.

[3] A. R. Johnson, “Marketing Firm Affinion To Pay $30
Million in Multistate Settlement - WSJ.” Accessed: Jan.
22, 2025. [Online]. Available:
https://www.wsj.com/articles/marketing-firm-agrees-
to-30-million-settlement-1381441148

[4] Anon, “Deceptive Patterns (aka Dark Patterns) -
spreading awareness since 2010.” Accessed: Jan. 12,
2025. [Online]. Available:
https://www.deceptive.design/

[5] B. Shaffer, “Shopify Cracking Down On Fake
Scarcity?,” Medium. Accessed: Jan. 22, 2025. [Online].
Available: https://benjshaffer.medium.com/shopify-
cracking-down-on-fake-scarcity-e1509b11cb75

[6] D. Nazarov and Y. Baimukhambetov, “Clustering of
Dark Patterns in the User Interfaces of Websites and
Online Trading Portals (E-Commerce),” Mathematics,
vol. 10, no. 18, Art. no. 18, Jan. 2022, doi:
10.3390/math10183219.

[7] C. M. Gray and S. S. Chivukula, “Ethical Mediation in
UX Practice,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems,
in CHI ’19. New York, NY, USA: Association for
Computing Machinery, May 2019, pp. 1–11. doi:
10.1145/3290605.3300408.

[8] A. Mathur et al., “Dark Patterns at Scale: Findings from
a Crawl of 11K Shopping Websites,” Proc. ACM Hum.-
Comput. Interact., vol. 3, no. CSCW, pp. 1–32, Nov.
2019, doi: 10.1145/3359183.

[9] A. Umar, M. Lawan, A. Lawan, A. Abdulkadir, and M.
Dahiru, “Detecting Dark Patterns in User Interfaces
Using Logistic Regression and Bag-of-Words
Representation,” 2024. doi: 10.2139/ssrn.5050732.

[10] A. Ramteke, S. Tembhurne, G. Sonawane, and R. N.
Bhimanpallewar, “Detecting Deceptive Dark Patterns in
E-commerce Platforms,” May 27, 2024, arXiv:
arXiv:2406.01608. doi: 10.48550/arXiv.2406.01608.

[11] Y. Yada, J. Feng, T. Matsumoto, N. Fukushima, F. Kido,
and H. Yamana, “Dark patterns in e-commerce: a
dataset and its baseline evaluations,” Nov. 12, 2022,
arXiv: arXiv:2211.06543. doi:
10.48550/arXiv.2211.06543.

[12] A. S. Constâncio, D. F. Tsunoda, H. de F. N. Silva, J. M.
da Silveira, and D. R. Carvalho, “Deception detection
with machine learning: A systematic review and
statistical analysis,” PLOS ONE, vol. 18, no. 2, p.
e0281323, Feb. 2023, doi:
10.1371/journal.pone.0281323.

[13] R. Angger Saputra and Y. Sibaroni, “Multilabel Hate
Speech Classification in Indonesian Political Discourse
on X using Combined Deep Learning Models with
Considering Sentence Length,” Jurnal Ilmu Komputer
dan Informasi, vol. 18, no. 1, pp. 113–125, Feb. 2025,
doi: 10.21609/jiki.v18i1.1440.

[14] S. H. Mansur, S. Salma, D. Awofisayo, and K. Moran,
“AidUI: Toward Automated Recognition of Dark
Patterns in User Interfaces,” Mar. 12, 2023, arXiv:
arXiv:2303.06782. doi: 10.48550/arXiv.2303.06782.

[15] S. Shahriar, A. Mukherjee, and O. Gnawali, “A Domain-
Independent Holistic Approach to Deception
Detection,” in Proceedings of the International
Conference on Recent Advances in Natural Language
Processing (RANLP 2021), R. Mitkov and G. Angelova,
Eds., Held Online: INCOMA Ltd., Sep. 2021, pp. 1308–
1317. Accessed: May 27, 2025. [Online]. Available:

Figure 13. Computational cost comparison.

Premathilaka, Context-Aware Detection of Deceptive Design Patterns in E-Commerce Websites

249

https://aclanthology.org/2021.ranlp-1.147/
[16] C. M. Gray, Y. Kou, B. Battles, J. Hoggatt, and A. L.

Toombs, “The Dark (Patterns) Side of UX Design,” in
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, Montreal QC Canada:
ACM, Apr. 2018, pp. 1–14. doi:
10.1145/3173574.3174108.

[17] L. Di Geronimo, L. Braz, E. Fregnan, F. Palomba, and
A. Bacchelli, “UI Dark Patterns and Where to Find
Them: A Study on Mobile Applications and User
Perception,” in Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems,
Honolulu HI USA: ACM, Apr. 2020, pp. 1–14. doi:
10.1145/3313831.3376600.

[18] S. Hidaka, S. Kobuki, M. Watanabe, and K. Seaborn,
“Linguistic Dead-Ends and Alphabet Soup: Finding
Dark Patterns in Japanese Apps,” in Proceedings of the
2023 CHI Conference on Human Factors in Computing
Systems, Hamburg Germany: ACM, Apr. 2023, pp. 1–
13. doi: 10.1145/3544548.3580942.

[19] J. Zagal, S. Björk, and C. Lewis, “Dark patterns in the
design of games,” presented at the International
Conference on Foundations of Digital Games, 2013.
Accessed: May 28, 2025. [Online]. Available:
https://www.semanticscholar.org/paper/Dark-patterns-
in-the-design-of-games-Zagal-
Bj%C3%B6rk/19a241378b06d868eb5f6b76027172c3a
aca86f4

[20] S. Niknejad, T. Mildner, N. Zargham, S. Putze, and R.
Malaka, “Level Up or Game Over: Exploring How Dark
Patterns Shape Mobile Games,” in Proceedings of the
International Conference on Mobile and Ubiquitous
Multimedia, in MUM ’24. New York, NY, USA:
Association for Computing Machinery, Dec. 2024, pp.
148–156. doi: 10.1145/3701571.3701604.

[21] M. Potel-Saville and M. Da Rocha, “From Dark
Patterns to Fair Patterns? Usable Taxonomy to
Contribute Solving the Issue with Countermeasures,” in
Privacy Technologies and Policy, K. Rannenberg, P.

Drogkaris, and C. Lauradoux, Eds., Cham: Springer
Nature Switzerland, 2024, pp. 145–165. doi:
10.1007/978-3-031-61089-9_7.

[22] M. D. P. P. Goonathilake and P. P. N. V. Kumara,
“Stance-Based Fake News Identification on Social
Media with Hybrid CNN and RNN-LSTM Models,” Int
J on Adv. in ICT for Emerging Countries, vol. 16, no. 3,
pp. 1–12, Dec. 2023, doi: 10.4038/icter.v16i3.7234.

[23] S. Biswas, D. Sengupta, R. Bhattacharjee, and M.
Handique, “Text Manipulation Using Regular
Expression,” in 2016 IEEE 6th International
Conference on Advanced Computing (IACC), Feb.
2016, pp. 62–67. doi: 10.1109/IACC.2016.22.

[24] D. Khyani, B. S. Siddhartha, N. M. Niveditha, and B.
M. Divya, “An Interpretation of Lemmatization and
Stemming in Natural Language Processing,” Journal of
University of Shanghai for Science and Technology.
Accessed: May 28, 2025. [Online]. Available:
https://jusst.org/an-interpretation-of-lemmatization-
and-stemming-in-natural-language-processing/

[25] J. Simangunsong, M. S. Simanjuntak, and N. D.
Simanjuntak, “Mental disorder classification with
exploratory data analysis (EDA),” idss, vol. 7, no. 3, pp.
210–217, Jul. 2024, doi: 10.35335/idss.v7i3.252.

[26] H. Dinkel, M. Wu, and K. Yu, “Text-based depression
detection on sparse data,” Jul. 08, 2020, arXiv:
arXiv:1904.05154. doi: 10.48550/arXiv.1904.05154.

[27] B. G. Bokolo and Q. Liu, “Advanced Comparative
Analysis of Machine Learning and Transformer Models
for Depression and Suicide Detection in Social Media
Texts,” Electronics, vol. 13, no. 20, Art. no. 20, Jan.
2024, doi: 10.3390/electronics13203980.

[28] M. Q. R. Pembury Smith and G. D. Ruxton, “Effective
use of the McNemar test,” Behav Ecol Sociobiol, vol.
74, no. 11, p. 133, Oct. 2020, doi: 10.1007/s00265-020-
02916-y.

