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Abstract 
 
Deceptive designs (DDs) are a hidden technological tactic that manipulates the user's 
consumer behavior in a way that benefits website vendors without them knowing. Proper 
identification of deceptive designs is essential to prevent users from being misled by hidden 
tactics. To fulfill this requirement, this study assesses Word2Vec word embedding based deep 
learning models for text based deceptive design detection. Models trained consist of 
Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory (BiLSTM), 
and a hybrid model (CNN + BiLSTM) that combines the two aforementioned models. These 
four key score indices of accuracy, precision, sensitivity, and F1-score are computed to 
compare the performance of each proclaimed model. When compared to the existing DD 
detection techniques, all three of these approaches attain state-of-the-art performance. The 
results of this evaluation illustrate that the hybrid model achieves the highest accuracy of 
95% in capturing the nuanced text context of deceptive designs. Furthermore, even when 
other metrics are considered, the hybrid model performs more effectively. To guarantee the 
independence and security of user activities, intelligent deep learning paradigms are 
integrated to identify hidden deceptive activities automatically. This allows for the accurate 
detection and classification of deceptive designs in intricate e-commerce environments. 
 
Keywords: deceptive design detection, word embeddings, CNN, BiLSTM 

 
 

 
1. Introduction 
 

"Deceptive design" is a subset of User Interface 
(UI) design techniques used to influence user 
behavior on various digital platforms subtly. These 
misleading designs inadvertently undermine users' 
autonomy and capacity to make wise decisions. 
According to earlier research, deceptive designs 
can be found anywhere on digital platforms, such 
as social networking sites [1], e-commerce sites, 
and apps and cookies [2]. These design tactics have 
garnered more attention lately because many of 
them are illegal and have ethical effects on the user. 
Financial loss [3], deceiving users into disclosing a 
great deal of personal information [4], or causing 
compulsive and addictive behavior in both adults 
[5] and children [6] are the most catastrophic 
results that may arise from these deceitful designs. 

Therefore, it is crucial to accurately recognize 
and comprehend these designs to mitigate the 
effects. The majority of earlier research 
concentrated on manually detection [7] or labelling 
[8] of deceptive design patterns. Currently, several 
recent studies have taken steps to automatically 
detect these designs using a few types of traditional 
machine learning models for feature engineering 
and classification [9]. The main goal of this 
research is to address the limitations raised by 
those earlier studies by offering deep learning 
model-based solutions. 

This study aims to address two key questions to 
bridge this gap: 

Q1. How effectively can different deep learning 
paradigms detect dark patterns in e-commerce 
websites using word embeddings? 

Q2. Which deep learning algorithms provide 
the highest performance for key indicators? 

http://dx.doi.org/10.21609/jiki.v18i2.1530
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To fill this research gap and enhance design 
detection performance, we implemented three deep 
learning paradigms on an improved dataset. Word 
embeddings have been employed by all models to 
capture contextual and semantic nuances in the 
data. The performance of the models was measured 
using four key indicators. They are accuracy, 
precision, sensitivity, and F1 score, respectively. 

In summary, the contributions of this work are 
as follows: 

1. Convolutional Neural Network + 
Word2Vec: First, we use a convolutional neural 
network in conjunction with the Word2Vec model 
to extract semantic features from textual context. 
The convolutional layers in this model finds n-
grams of word patterns to collect the essential 
features required for  deceptive designs detection. 

2. Bidirectional Long Short-Term Memory + 
Word2Vec: Long-range dependencies and 
contextual linkages are extracted from textual 
context using this method, which combines 
BiLSTM layers with a Word2Vec pre-trained 
model. Because the model is bidirectional, it 
performs well on tasks that call for in-depth 
contextual understanding. 

3. Convolutional Neural Network + 
Bidirectional Long Short-Term Memory with 
Word2Vec: The development of this method 
involved combining the strong elements of the two 
aforementioned approaches. By integrating the two 
architectures, it seeks to offer an all-encompassing 
strategy for identifying deceptive designs while 
striking a balance between effectiveness and 
contextual awareness. 

Section 2 covers related work. The 
methodology, including the development of the 
DDs dataset and the strategy employed in this 
investigation, is explained in Section 3. Section 4 
presents the implementation setup, detailing the 
performance metrics, confusion matrix and 
comparative analysis. Section 5 provides in-depth 
analysis of  key findings and model performance. 
Finally, section 6 concludes the complete study 
with final remarks. 

 
2. Literature 
 

User experience designer Harry Brignull first 
coined these deceptive designs termed 'dark 
patterns (DPs)' in 2010. The detection and 
classification of dark patterns in user interfaces 
have garnered significant attention from 
researchers and practitioners in the fields of 
human-computer interaction (HCI), computer 
science, and digital ethics [9]. This section 
provides a comprehensive exploration of existing 
research efforts in the context of detecting hidden 
tactics of deceptive designs and identifies gaps that 

motivate my focus on scalable, generalizable 
solutions for real – world deployment. 

 
2.1. Automated DPs Detection Techniques 
 

Umar et al. [9] have provided a solution to 
detect DPs in user interfaces using Logistic 
Regression (LR) and Bag-of-Words 
Representation (BoWR). In another study, Mathur 
et al. [8] propose an automated systematic 
approach to identify dark patterns on large scale e-
commerce websites. They utilized Bag of Words 
(BoW) representation, Principal Component 
Analysis (PCA), and the Hierarchical Density-
Based Spatial Clustering of Applications with 
Noise (HDBSCAN) algorithm for feature 
engineering with clustering. Soe et al. [2] suggest a 
machine learning workflow comprising feature 
engineering, parameter search, gradient boosted 
tree classifier training, and evaluation to forecast 
dark patterns on cookie banners. In a similar study 
carried out by Ramteke [10], the development of an 
automated approach that combines web scraping 
techniques with contextual understanding through 
fine-tuned BERT language models for identifying 
outlier dark patterns was highlighted. Inspired by 
the emerging machine learning techniques, Yada et 
al. [11] examined four machine learning models, 
including BERT, RoBERTa, ALBERT, and XLNet. 
At the end of the 5-fold cross-validation, it 
achieved superior accuracy with RoBERTa. Most 
subsequent studies focused on exposing 
taxonomies of dark patterns without large-scale 
evidence demonstrating their prevalence across a 
wide range of websites.  

In 2023, Constâncio et al. [12] conducted a 
systematic review of deception detection with 
machine learning, which highlights the 
performance of several machine learning 
techniques, including neural networks, support 
vector machines, random forests, decision trees, 
and K-nearest neighbors. Also, they employed 
monomodal, bimodal, and multimodal approaches 
for their study. 

This study builds on these efforts by combining 
Word2Vec vector representations with deep 
learning architectures, focusing on capturing 
nuanced semantic features to detect deceptive 
design patterns [13].   

 
2.2. Multimodal Approaches 
 

Using computer vision and natural language 
processing techniques, another study [14] 
presented a new automated system dubbed 
"AidUI" that can identify the presence of a set of 
distinct DPs. They combined text analysis, color 
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analysis, and semantic analysis to achieve the final 
solution. Recently, a domain-independent holistic 
approach to deception detection was developed 
using deep learning architecture [15]. With an 
overall accuracy of 93%, their approach beat the 
State-of-the-Art (SOTA) performance of the 
majority of benchmark datasets. 

This work differs in the use of a hybrid deep 
learning model to concatenate local and sequential 
semantic features. Furthermore, unlike the 
aforementioned multimodal approaches, this work 
is a text-centric approach. 

 
2.3. Taxonomies and Real-World Prevalence 

 
Gray et al. [16] and Di Geronimo et al. [17] 

proposed a taxonomy that classified DPs into 
distinct categories based on their characteristics 
and user impacts. Hidaka et al. [18] investigated 
DDs in Japanese apps using that taxonomy as a 
basis. Additionally, Zagal et al. [19] established the 
notion of dark patterns in games and discussed 
some of the nuances involved in detecting them 
that can be used to help guide the development and 
identification of future dark patterns. Another 
study [20] examined the frequency of dark patterns 
in mobile games that exploit players on a temporal, 
monetary, social, and psychological basis. 

Two distinct scenario-based experiments were 
carried out by Kim [1] to examine the moderating 
effects of deceptive design techniques and social 
proof. The study also finds that dark patterns have 
a negative impact on consumer attitudes and 
perceptions of justice. By addressing a taxonomy 
that transitions from a problem-oriented 
perspective to a problem-solving framework, 
Saville [21] suggested a novel method for DP 
detection. 

Same as these studies, our models aim for 
superior and scalable performance in dark pattern 
detection. Beyond that, in this study we concentrate 
on generalizable detection rather than taxonomy 
expansion. 

This study explores methods and developments 
in identifying dark patterns (DPs) and deceptive 
designs using machine learning and deep learning 
approaches. However, understanding the presence 
and effects of DPs in the real world remains 
challenging due to limited empirical evidence and 
reliance on fictitious statistics. There is an urgent 
need to create sophisticated deep learning 
algorithms capable of detecting and 
neutralizing misleading designs in user interfaces, 
hence preserving user autonomy and decision-
making authority. 

 
 
 

3. Methodology 
 

     This research is conducted in two main parts: 
model training, which is the primary focus, and 
performance evaluation as the secondary aspect. A 
Jupyter notebook was utilized for all machine 
learning tasks. Figure 1 illustrates the structure of 
the method that is being used. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

3.1. Dataset 
 

The dataset in this study was sourced from 
previous research by Mathur et al. [9], which also 
utilized datasets from earlier studies [8], [11]. The 
initial dataset included 1818 deceitful texts from 
1254 online retail websites, which were chosen 
based on their popularity in the online shopping 
market. The websites were chosen to represent a 
massive diversity of online websites. The dataset 
was built in 2019. By using the non-dark pattern 
texts scraped from the same e-commerce websites, 

Feature Engineering and Model Training 

Word 
embeddings 

Deep Learning Models 

Word2Vec 

2D - CNN 

BiLSTM 

CNN + BiLSTM 

Figure 1. Framework for proposed methodology. 
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they balanced their dataset. They scraped text from 
websites using the puppeteer library. The absence 
of manipulative or deceptive features allowed the 
identification of non-deceptive content. They 
employed a manual validation step to ensure that 
selected texts did not have features equivalent to 
deceptive designs. In this dataset there are two 
labels in the class column as Dark Patterns (DP) 
and Non-Dark Patterns (non-DP). 

3.2. Data Preprocessing 
 

Data preprocessing is a step in which we 
transform and prepare raw data into a form relevant 
to the data mining procedure. This stage aims to 
reduce the data size, find the relationship between 
data, remove outliers, and extract features for data 
[18]. Below, I describe the critical steps involved 
in this data preprocessing with the help of Figure 2. 
 
1. Tokenization: Tokenization is the most 
substantial and initial stage in natural language 
processing (NLP). It entails dividing entire textual 
input into discrete units called tokens. The needs of 
the analysis will determine whether the tokens are 
words, phrases, or even characters. Tokenization 
was done in this study using ToktokTokenizer [22]. 
Transforming unstructured text into a structured 
format that deep learning models can handle is the 
main goal of tokenization. 
 
2. Data Cleaning: The initial step in the data 
cleaning process is text normalization. In this stage, 
we transformed all the numbers within the row text 
into their textual representation using two libraries 
called re and inflect. This stage ensures it 
amalgamates numerical information into the 
textual data in a semantic manner. The subsequent 
step in the data cleaning phase considered adding 
required spaces before corresponding capitals. 
Here, regex recognized uppercase transitions and 
added spaces as applicable. The next phase of the 
data-cleaning process entailed the removal of 
symbols, specialized characters, and punctuation to 
convert text into a standardized form. This was 
kept only alphanumeric characters and a few 
essential punctuations (., /-) using regex text clean 
patterns [23]. Strip HTML tag removal was the 
next step in the data cleaning process, and the bs4 

library was utilized to complete this task. This 
helped to filter the dataset, removing HTML tags 
and including only the scraped data that was most 
pertinent for analysis and interpretation. The next 
step addressed the removal of noise from the text. 
Using the re and bs4 libraries, this step executed a 
high-level function that integrates HTML tag 
stripping and square bracket removal. Stemming is 
a process of removing the associated affixes from 
a word to reduce it to its standard form, or root [19]. 
The NLTK’s PorterStemmer was employed to filter 
out these root words, ensuring that only the most 
essential word forms remained [24]. The attention 
turned to eliminating common words (stopwords: 
is, the, and) from the textual data content after the 
remove stop words stage. This was achieved 
through the NLTK’s stop words library, which 
identified and omitted common words that do not 
come up with much semantic value.  
Then, any remaining inconsistencies in text 
formatting were addressed by converting all 
characters to lowercase and eliminating redundant 
spaces. At the completion of data preprocessing, 
the class column's categorical data were renamed 
as DP (Dark Patterns) and non-DP (Non-Dark 
Patterns) by using the replace function. The binary 
classification distinguishes between interfaces with 
deceptive patterns and non-deceptive patterns. An 
example of the preprocessed text obtained after 
completing all the preprocessing steps is described 
in Table 1. 
 

Table 1. Example of preprocessed text. 

Input Text Final Preprocessed Text 

"""This is an example of 
text data, including# 
numbers like 123 and 
abbreviations such= as 
e.g. or i.e. We need to 
preprocess this text for 

GAN-based text-to-
speech conversion.""" 

exampl text data, includ 
number like one hundr 

twenty-thre abbrevi 
exampl need preprocess 

text gan-bas text-to-speech 
convers. 

 
3.  Data Refinement: As the concluding step, 
eliminate any words that are unable to contribute 
significant information to the context in the stage 
that deals with removing irrelevant terms by using 
specific techniques, including lemmatization and 
non-alphabetic token removal [24]. Additionally, 
the refinement step that handled both too-short and 
too-long textual inputs removed outliers that can 
skew analysis or hinder model performance. 
Handle these too-long and too-short words  by 
using the min and max of word count. Figure 3 
helps in understanding how the word count 
frequency is distributed after removing outliers. 

Figure 2. Preprocessing pipeline. 
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3.3. Exploratory Data Analysis (EDA) 
 

This study's EDA step uses descriptive analysis 
to characterize the dataset's essential properties. 
Table 2 showcases the descriptive statistic 
parameters of a numerical variable in dataset. The 
following table briefly demonstrates statistical 
parameters including mean, standard deviation 
(std), minimum (min), percentage, and maximum 
(max). This section figures out some visual 
representations of data, including bar charts, 
heatmaps, bar plots, and histograms, highlighting 
trends, outliers, and relationships [25]. 
 

Table 2. Descriptive statistics for numeric variable. 

 page_id 
Count 2,356.00 
Mean 904.33 
Std 539.82 
min 1.00 
25% 380.75 
50% 965.50 
75% 1,385.25 
max 1,818.00 

 
Figure 3 shows a bar chart showing the 30 most 

naturally occurring words in the deceptive texts in 
dark patterns. The analysis highlights the 
importance of threat-related and numerical words 
such as “left,” “one,” “stock,” “time,” and “limit.” 
Also, purchase-related words such as “purchase,” 
“offer,” “bought,” and “cancel” appear in high 
numbers, as these texts are likely to convey a 
transactional element. This bar chart is another 
examination of the DD practices, showing specific 
word patterns used to influence user manipulation. 
The distribution of words in a DD text is seen in 
Figure 4. It is evident that, in particular, the 
analyzed texts have fewer than 20 words, with the 
watershed being between 5-10 words.  

This finding implies that DDs are typically 
created as brief messages to immediately capture 
the user's attention or create pressure. In addition, 
the distribution is characterized by a long sentence 
structure, with a small number of sentences lasting 
up to 100 words. This rightward shift emphasizes 

the appropriate brevity about fraudulent patterns. 
 

 
3.4. Feature Engineering 
 

In this study, Word2Vec embedding method 
was used to extract semantic features, with each 
word represented by a 300-dimensional feature 
vector. Pretrained Word2Vec embeddings from 
GoogleNews-vectors-negative300.bin were used, 
with embeddings loaded via the Gensim library. 
The dataset was tokenized with a maximum 
vocabulary size of 2000, and sequences were 
padded to ensure the model received a uniform 
input lengths for the model [26]. 

We preferred to employ Word2Vec in this study 
instead of BERT [10] due to its computational 
viability and ability to efficiently detect deceptive 
language patterns. Word2Vec is a lightweight word 
embedding technique that maps words into dense 
vector representations based on their co-occurrence 
in a corpus with much less computational power 
than BERT. Since deceptive design detection 
involves analyzing high-scale text-based patterns, 
BERT would have been necessary to use high GPU 
or TPU resources, which are not always readily 
available.  

Although Word2Vec provides static word 
embeddings, like each word having an identical 
representation. While it lacks depth in contextual 
knowledge, it is effective in capturing semantic 
equivalences between words, an important feature 
to determine deceptive design patterns based on 

Figure 3: Word count frequency. 

Figure 3: Top 30 Most Frequent Words in Deceptive Text 

Figure 4. Distribution of Deceptive Text Length 



   Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,  
         issue 2, June 2025 
 

244 

intentional keyword-focused manipulation, like 
persistent insincere wording. Word2Vec 
embeddings are also more interpretable than 
transformer-based token representations from 
BERT so that the effects of which deceptive words 
and wording influence model decision-making 
most are more easily explored.  

By combining Word2Vec embeddings with 
CNN and BiLSTM, we achieve balance in 
effectiveness and efficiency and thereby make it a 
viable choice for deceptive design detection and 
lay a good groundwork for subsequent studies. 
 
3.5. Model Training 
 

We employed three deep learning models - 
Convolutional Neural Network (CNN), 
Bidirectional Long Short-Term Memory 
(BiLSTM), and the combined model of these two 
models (CNN+BiLSTM). During the training 
phase, we split the dataset into a training subset and 
a test subset using Scikit-learn's train and test 
function [27]. Here, a training-to-test ratio of 80% 
is employed. The binary cross-entropy loss 
function and Adam optimizer were used to 
optimize these deep learning models [9]. 
 

 

Loss=	-
1
N)[yi log(pi)+(1-yi) log(i-pi)]

N

i=1

 

 

(1) 

where yi is true label and pi is the predicted 
probability for the ith sample. 
 
3.5.1 Convolutional Neural Network (CNN) 
 

Figure 5 shows a block diagram of the 
suggested Convolutional Neural Network (CNN) 
architecture for the task. The execution process 
steps of the DDs identification model using CNN 
are as follows: 
The input layer receives a tokenized text sequence 
as input (length sequence_length).  

Using embedding sequences, the embedding 
layer turns these token indices into dense word 
vector representations. With EMBEDDING_DIM 
representing the word embedding dimension, the 
embedding layer's output shape is 
(sequence_length, EMBEDDING_DIM). The 
embedding tensor is changed by the reshaping 
layer so that the convolutional layers can use it. 
This is accomplished by adding a dimension for 
channel consistency. 
 

R∈R%sequence_length×EMBEDDING_DIM×17 (2) 

This model's convolutional layers collect 
valuable n-gram features via embeddings. The 
model contains three transition layers with 100 
filters each for the three, four, and five filter sizes. 
Each transition layer is designed to detect 100 
unique properties. By applying 
BatchNormalization to each input, the 
convolutional layer's output is normalized, 
resulting in a stable and quick training process. The 
smooth, nonlinear Swish activation function is 
subjected to the normalized output: 

  
Swish(x)=x.σ(x) 

 
(3) 

where: 
  

σ(x)=	
1

1+e-1 	is	the	sigmoid	function 
 

(4) 

 
The most important feature signals for each 

convolutional layer are recovered from the global 
maximum pooling layers by picking the highest 
value of each feature map. The model uses a 
concatenate layer to merge the outputs of the three 
global maximum convolutional layers into a 
composite feature representation. A flattened layer 
converts the resulting multi-dimensional tensor 
into a one-dimensional vector, which is then fed 
into the dense layer. A dropout technique is 
employed to avoid overfitting of the dense layer, 
and a sigmoid activation function is employed for 
binary classification, generating a probability for 
the two classes indicating the presence or absence 
of user manipulations. 
 
3.5.2 Bidirectional Long Short-Term Memory 

(BiLSTM) 
 

The tokenized text sequence (with a sequence 
length of sequence_length) is sent to the initial 
layer of this BiLSTM model called the input layer. 
The embedding layer uses Word2Vec pre-trained 
embeddings to convert these token indices into 
dense word vector representations. This 

Figure 5. Block diagram for proposed Convolutional Neural 
Network 
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embedding layer provides input to bidirectional 
LSTM (BiLSTM) layers. These BiLSTM layers 
require the model to process the text sequentially 
forward and backward in order to gather contextual 
information from the lines of text that come before 
and after. The BiLSTM layer helps the model 
consider word meaning by identifying the 
contextual meaning and helpful correlations of this 
text. Each BiLSTM in this model is followed by the 
use of dropout and batch normalization 
capabilities. 

The output goes through fully connected dense 
layers after processing through the BiLSTM layers. 
The model can learn intricate patterns because of 
the Swish activation feature. For binary 
classification, the model's last layer is a dense layer 
with a sigmoid activation function. The probability 
ratio that the sigmoid function produces shows 
whether the user manipulation (dark patterns) 
associated with the two potential classes is present 
or not. The proposed BiLSTM model flows as 
Figure 6 illustrates. 

Figure 6. Block diagram for LSTM model baseline. 

Table 3. Convolutional layers and their n-grams pattern 
detection capabilities. 

Convolutional 
Layer 

Filter 
size/n-
grams 

Process Output Shape 

01 3 

Detects 
patterns 
form 3 
words 

collection 

(sequence_length-
f+1,1,	number	of	

filters)	
02 4 

Detects 
patterns 
form 4 
words 

collection 

03 5 

Detects 
patterns 
form 5 
words 

collection 

 
3.5.3 Hybrid model (CNN+BiLSTM) 
 

According to Figure 7, the hybrid model 
performs both CNN and BiLSTM models 
simultaneously. In the combined model there were 
two input layers for the separate CNN block and 
BiLSTM block. Both inputs are sharing the same 
embedding layer. 

 

 
Figure 7. Block diagram for combined model baseline. 

The convolutional operation is applied kernels of 
different filter sizes (k). Below are the equations 
for each kernel: 
  
Z_conv=Conv2D(Z_embed,W_conv,b_conv)  (5) 

 
where Z_embed stands for embedded input that has 
been reshaped. W_conv represents the learnable 
convolutional kernel of size k× embedding 
dimension. b_conv is representing a bias vector. 
Also, these convolutional layers contain a dropout 
function and batch normalization function. Batch 
normalization is computed through integration, as 
illustrated in the following equations: 
  

  

Znorm=
Zconv-µ
√σ2+ϵ

.γ+β 

 

(6) 

 
Global max pooling uses the following calculation 
to minimize the feature map after receiving input 
from the CNN block. 
  

 Z_pool=max(Z_norm,axis=1) (7) 
 
The following mathematical operation is used by 
the bidirectional LSTM block to identify 
contextual representation by operating the 
sequence in both forward and backward directions: 
 

  
ht=LSTMf(xt,ht-1)+LSTMb(xt,ht+1) 

 
(8) 

 
Feature fusion performed concatenation of features 
extracted from the CNN block and the BiLSTM 
block using the below equation: 
  

  
Zfused=[Zpool:h] 

 

 
(9) 

Sigmoid activation is utilized to construct the final 
classification using the fused features dense layer. 
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3.6. Performance Metrics 
 

The trained deep-learning models were 
evaluated on a held-out test set to assess their 
performance in detecting DDs. We employed the 
standard evaluation metrics such as accuracy, 
precision, recall, and F1-score to measure the 
model’s predictive performance. 
Accuracy: Accuracy can be defined as the 
proportion of correctly identified samples to all 
samples [9]. 
 

 

Accuracy=	

Correctly	classified
	samples

Total	number	of	samples 
(10) 

 
Precision: Precision measures the ratio of correctly 
classified positive samples (true positives) to the 
total number of samples classified as positive (true 
positives + false positives) [9]. 

  

Precision=
TP

TP+FP 
 

(11) 

Above, 
 The anticipated positive samples that 
correspond to the actual positive results are 
denoted as TP.  
 Predicted positive samples (FP) are those that 
don't match the actual negative results. 
 
Sensitivity: Measures the proportion of accurately 
recognized true positives to all actual positive 
samples; also referred to as recall [9]. 
 

  

Sensitivity=	
TP

TP+FN 
 

(12) 

 
F1-Score: The F1-score offers a fair assessment of 
a model's performance since it is the harmonic 
mean of precision and sensitivity [9]. 
 

 F1-score=
2×Precision×Sensitivity
Precision+Sensitivity  (13) 

 
4. Implementation 
 
4.1 Performance Evaluation 
 

The performance of the three deep learning 
models on the tasks of deceptive design detection 
was rigorously evaluated using McNemar’s paired 
test [28].This test is utilized to statistically compare 
the performance of three deep learning models. 
Figure 8 depicts how two models perform 

differently on the McNemar’s test. Besides, it 
indicates that the hybrid outperforms the other two 
models. As shown there, the Bonferroni Threshold 
has been used for multiple comparisons in 
hypothesis testing to reduce the risk of false 
positives. In comparing the CNN and BiLSTM 
models separately, the p-value was greater than the 
Bonferroni value, indicating that their performance 
was not statistically significantly different. The 
hybrid model outperformed the CNN and BiLSTM 
models with p-values less than the Bonferroni 
value, which signifies a statistically significant 
improvement in performance. 

Table 4 summarizes these evaluation metrics 
for each model on the utilized dataset. To assess the 
performance of proposed deep learning models, 
training loss was tracked across 30 epochs. It is 
proved that the hybrid model outperforms the 
others across all parameters, achieving superior 
superior performance. With an accuracy of 0.95 as 
opposed to 0.94 for BiLSTM and 0.93 for CNN, 
the hybrid model continuously beat the others. The 
hybrid model had the highest precision at 0.96, 
followed by BiLSTM at 0.93. A comparable 
pattern was seen in sensitivity, with the hybrid 
model reaching 0.95. These findings demonstrate 
the benefits of mixing sequential and convolutional 
designs to enhance classification performance. 
 

Table 4. Overview of the model’s performance. 

 
4.2 Confusion Matrix 
 

The confusion matrix provides a visual 
representation of the model's performance in 

Model Accuracy 
 

Precision Sensitivity 
 

F1-
score 

CNN 0.93 0.93 0.92 0.93 

BiLSTM 0.94 0.93 0.92 0.93 

CNN+ 
BiLSTM 0.95 0.96 0.95 0.95 

 

Figure 8. McNemar’s paired test results. 
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classifying instances as true positive (actual 
positive and predicted positive), false positive 
(actual negative and predicted positive), true 
negative (actual negative and predicted negative), 
and false negative (actual positive and predicted 
negative) [9]. The confusion matrices for all three 
model configurations are presented in the 
following figures. 
 

 

 

 

 
 

5. Discussion 
 
In various domains like healthcare and 

financial, these deceptive design patterns can cause 
significant ethical and financial failures. As Figure 
12 illustrates, with 1% accuracy over BiLSTM and 
2% accuracy over CNN, the hybrid model is 
demonstrated to be better appropriate in this case 
for detecting deceptive designs. This approach 
works well in scenarios where real-time inference 
is not necessary, but it is less helpful for mobile 
apps, browser extensions, or edge devices due to its 
speed and performance constraints. Figure 13 
directly addresses these efficiency trade-offs. 

Additionally, this model might not be sensitive 
enough to social and cultural cues in misleading 
designs, which would prevent it from identifying 
subtle or indirect forms of language or dark pattern 
text. Furthermore, overfitting problems also occur, 
particularly with the hybrid model, whose test data 
accuracy decreases after multiple epochs, 
indicating that the model is overly focused on 
specific features in the training data.  As a result, 
the model suffers when dealing with more varied 
data variants, like texts that are absent from the 
training set or have a different structure.  More 
diversity in the training data, improved 
regularization methods, and enhanced 
preprocessing to accommodate more complicated 
and ambiguous texts are required to solve this 
problem [13]. 

A deceptive design strategy is not limited to 
textual context alone. However, we only take text-
based designs into consideration in our study. In the 
future, we can investigate the use of a multi-fusion 
model in conjunction with other design strategies 
to detect false designs.  

Second, this research solely uses a conventional 
word embedding technique. This is another study 
limitation. Future studies can examine how more 
sophisticated word and sentence embedding 
techniques function in the detection of deceptive 
designs. 

 

Figure 10. Confusion matrix for BiLSTM. 

Figure 11. Confusion matrix for Hybrid model. 

Figure 9. Confusion matrix for CNN. 

Figure 12. Model comparison. 
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6. Conclusion 
 

The primary goal of this study is to investigate 
how well deep learning models identify misleading 
designs. Using a hybrid model that blends 
CNN+BiLTM models, we have achieved notable 
performance by utilizing the Word2Vec model. 
Even while the CNN and BiLSTM models perform 
worse than the hybrid model when used alone, they 
are still very good.   

The hybrid model proposed here combines 
Convolutional Neural Networks (CNN) and 
Bidirectional Long Short-Term Memory 
(BiLSTM) networks with Word2Vec embeddings 
to create a comprehensive approach to text 
classification that takes full advantage of both 
semantic and sequential feature extraction. The 
CNN part of the model is great at picking up local 
patterns and key phrases within text data, which 
makes it particularly effective at identifying fixed-
length contextual dependencies. The BiLSTM part 
of the model, on the other hand, processes long-
term dependencies really well and picks up on 
contextual features from both past and future 
sequences. 

In summary, this research paper shows a 
method for finding deceptive designs in user 
interfaces using deep learning paradigms. By 
analyzing textual features and deep learning 
methods, the approach effectively identifies 
misleading design practices and helps users make 
intelligent decisions through online platforms. The 
results demonstrate that the mixed model 
successfully tells apart deceptive and non-
deceptive UI patterns with strong metrics like 
accuracy, precision, recall, and F1-score. 
Analyzing feature importance sheds light on the 
language cues and patterns that signal misleading 
designs, aiding in understanding the model's 
predictions.  
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