
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)  
18/2 (2025), 261-275. DOI: http://dx.doi.org/10.21609/jiki.v18i2.1489  

 
 

261 
 

 
 

A Hybrid Vision Transformer Model for Efficient Waste Classification 
 
 
 

Amir Mahmud Husein1, Baren Baruna Harahap2*, Tio Fulalo Simatupang3, Karunia Syukur Baeha4, 
Bintang Keitaro Sinambela5 

 
Study Program in Informatics Engineering, Faculty of Science and Technology,  

Universitas Prima Indonesia, Medan, Indonesia 
 

E-mail: 1amirmahmud@unprimdn.ac.id, 2*barenbarunaharahap@gmail.com, 3fulalotio@gmail.com, 
4karuniasyukur73@gmail.com, 5bintangkeitaro22@gmail.com 

 
Abstract 

 
The rapid and accurate sorting of municipal waste is essential for efficient recycling and sustainable 
resource recovery. Most existing AI solutions focus only on four common materials (plastic, paper, 
metal, and glass), overlooking many other routinely encountered waste types and losing accuracy when 
applied to the mixed waste compositions seen in operational environments. We introduce HR-ViT, a 
hybrid network that combines ResNet50 residual blocks, which capture fine-grained local cues, with 
Vision Transformer global self-attention. Trained on a balanced six-class benchmark of about 775 
images per class (plastic, paper, organic, metal, glass, batteries), HR-ViT attains 98.27 % accuracy and 
a macro-averaged F1-score of 0.98, outperforming a pure ViT, VT-MLH-CNN, and Garbage FusionNet 
by up to five percentage points in both metrics. Gains arise from selective fine-tuning of the last ten 
ResNet layers, lightweight ViT hyper-parameter optimisation, and targeted data augmentation that 
mitigates cluttered backgrounds, uneven lighting, and object deformation. These results show that 
hybrid attention-residual architectures provide reliable predictions under complex imaging conditions. 
Future work will extend the method to multi-object scenes and domain-adaptive deployment in smart-
city recycling systems. 

 
Keywords: Deep Learning, Fine-Tuning, Hybrid Approach, ResNet50, Vision Transformers, Waste 
Classification 

 
 

 
1. Introduction 

 
Waste management has evolved into an 

increasingly urgent global crisis as population and 
consumption continue to rise [1], [2], [3], [4], [5], 
[6]. Many major cities worldwide report annual 
increases in waste volume, triggering various 
environmental problems, including soil, water, and 
air pollution [3], [4]. Proper waste sorting can 
mitigate these negative impacts, as each waste 
category can be treated or recycled according to its 
unique characteristics [5], [6]. Unfortunately, 
manual sorting remains time-consuming, depends 
on the skill of the operator, and is prone to 
inaccuracies [7], [8], [9]. As waste management 
challenges become more complex, implementing 
artificial intelligence (AI)-based automation is 
becoming increasingly necessary to develop more 
efficient and stable waste classification systems 
[10], [11]. 

Over the last decade, Convolutional Neural 
Networks (CNNs) have made a significant impact 
in various areas, particularly waste management. 
For instance, Cheema et al. [12] focused on four 
classes (glass, metal, plastic, and trash) using 
VGG16, achieving 96% accuracy. Laksono et al. 
[13] studied HDPE bottles, PET bottles, glass, 
cans, cardboard, and plastic using DenseNet-201 
(95.6% accuracy), while Alrayes et al. [14] tested 
six classes (glass, paper, cardboard, plastic, metal, 
trash) with VT-MLH-CNN (95.8% accuracy). Qin 
et al. [15] employed SVM, and Zhou et al. [16] 
implemented a combination of ResNet50, 
YOLOv5, and CNN on the same classes, attaining 
83.46% and 95.88%, respectively. Li et al. [17] 
used CNN & Graph LSTM for cardboard, metal, 
glass, paper, plastic, and organic waste, reaching 
97.5%. Although these results are promising, a 
large fraction of existing studies still employs 
datasets comprising fewer than eight distinct 
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classes or, when larger corpora are used, they 
present extreme class imbalance. Larger datasets 
with 10 [18] or 12 [19] classes do exist, but they 
suffer from severe class imbalance (e.g., “clothes” 
comprises over 5.325 samples versus fewer than 
800 for several other categories), which can 
hamper training stability and inflate performance 
metrics. This disparity destabilizes training, biases 
evaluation metrics toward majority categories, and 
increases the computational burden during re-
balancing. Consequently, many CNN-based 
approaches that excel on small, balanced 
collections exhibit degraded efficiency and limited 
generalisation as class counts rise or as dataset 
imbalance worsens [20]. Moreover, CNNs have a 
limited capacity to capture global image context 
because they rely on local receptive fields, making 
it difficult to learn long-range relationships among 
objects within an image [21], [22]. Some models 
experience overfitting when faced with diverse 
backgrounds and lighting conditions commonly 
found in waste disposal processes [23]. 

 Recently, the Vision Transformer (ViT) has 
emerged as a different approach from CNNs for 
image classification. By leveraging the self-
attention mechanism originally introduced in 
Natural Language Processing [24], [25], [26], ViT 
represents an image as a series of patches and 
examines global relationships among them, 
proving effective on large-scale datasets such as 
ImageNet [24], [27]. However, pure ViT often 
lacks the ability to capture local features (inductive 
bias) and requires extensive data to achieve optimal 
performance [28], [29]. Various efforts have been 
made to enhance ViT, for instance, using the 
Discrete Cosine Transform [30], add-embedding 
[31], and Token-aware Average Pooling [32]. 
Although ViT performs well on standard datasets 
(e.g., CIFAR-10 and ImageNet), studies [33] and 
[34] reveal that a pure ViT remains suboptimal 
when data are limited or highly variable, which is 
typical in waste classification. For example, one 
implementation of ViT on five waste categories 
attained only 92.36% accuracy [35], indicating that 
ViT without additional adjustments can experience 
performance degradation under highly diverse 
backgrounds and object shapes. Thus, ViT faces a 
significant challenge in waste classification, where 
visual variation is high and data are often 
insufficient [34], [36]. 

In response to the need to harness the 
advantages of both architectures, several 
researchers have started to develop hybrid models 
combining CNNs and ViT [37], [38]. This 
approach capitalizes on the strength of CNNs in 
extracting local features [39] and the self-attention 
mechanism in ViT, which excels at understanding 
global information [40], [41]. For example, in [42], 

integrating the two architectures improved the 
accuracy in detecting steel surface defects. Other 
applications in [43], [44], and [45] have also 
demonstrated significant potential in the medical 
field. Meanwhile, for waste classification, Alrayes 
et al. [14] tried a hybrid approach, but still 
encountered efficiency challenges when the dataset 
size increased. Overall, these findings indicate that 
hybrid approaches can improve ViT in capturing 
local details [29], although they remain 
underexplored for waste classification with a larger 
number of classes and datasets than TrashNet [46]. 

This study introduces a Hybrid ResNet50-
Vision Transformer (HR-ViT), a hybrid 
architecture that integrates the residual learning of 
ResNet50 with ViT’s self-attention mechanism. We 
hypothesized that this hybrid approach could 
enhance ViT’s ability to capture local details while 
drawing on ResNet50’s strengths in identifying 
diverse visual features [24], [47]. Although newer 
CNN architectures such as EfficientNet and 
DenseNet deliver high accuracy and parameter 
efficiency, we selected ResNet50 as our backbone 
for three reasons. First, its residual block design is 
well validated for preventing degradation in deep 
networks. Second, pretrained ResNet50 weights 
are widely accessible, enabling stable and rapid 
fine-tuning in a hybrid CNN–Transformer setting 
[48]. Third, its moderate depth strikes an effective 
balance between model expressiveness and 
computational efficiency, making it particularly 
suitable for resource-constrained waste-sorting 
systems, where both performance and operational 
efficiency are key. Moreover, we emphasize fine-
tuning so that HR-ViT can be optimized without 
excessive computational overhead [49], supporting 
applications in waste-sorting industries or public 
facilities that prioritize efficiency [46]. We also 
integrated two different datasets, Garbage 
Classification (6 Classes) [19] and Garbage 
Classification (12 Classes) [50], totaling 4,650 
images. These datasets have been utilized in 
several previous studies, such as by Ahmed et al. 
[7], who compared various methods and reported 
the highest accuracy of 98.95% using ResNet50, 
and by Quy [51], who achieved 92% accuracy 
using a Vision Transformer-based approach. 
However, our work distinguishes itself by 
employing a hybrid Vision Transformer-based 
model and combining both datasets to enhance data 
diversity, going beyond conventional TrashNet-
based approaches [20], [52], [53], [54], [55]. We 
considered six waste categories: batteries, plastic, 
paper, metal, organic, and glass, chosen to 
represent the major types of waste in management 
systems and provide a more comprehensive and 
realistic dataset. This approach is important for 
testing the model under realistic conditions, given 
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that waste issues often involve nonideal data [56]. 
Using a more extensive dataset, we aimed for better 
generalization and improved handling of noise 
arising from variations in texture, shape, and 
background [57], [58], [59]. 

This study offers four main contributions. First, 
we propose HR-ViT, a hybrid model that integrates 
ResNet50’s residual learning and ViT’s self-
attention mechanism to improve waste 
classification performance. Second, we tested HR-
ViT on six waste classes (batteries, plastic, paper, 
metal, organic, and glass) comprising 4,650 
images, expanding upon previous work that mostly 
addressed four to six categories without fully 
representing everyday waste. Third, we adopted a 
fine-tuning strategy to maintain model efficiency 
and minimize computational load, thus supporting 
real-world adoption. Fourth, we integrated HR-ViT 
into a cross-platform mobile application and real-
time backend, enabling instant waste classification 
and facilitating global scalability. To support 
transparency and reproducibility, the source code 
for this work is available at 
https://github.com/barenbaruna/HR-ViT. Through 
this approach, we aim to pave new ground for 
developing smarter, more efficient waste 
classification systems, while also contributing to 
the broader literature on hybrid architectures. 
 
2. Literature Review 

 
2.1 Convolutional Neural Networks (CNN) 

 
Waste management has become a critical 

global issue due to the continuous increase in waste 
volume, which impacts the environment and public 
health. Consequently, efforts to automate waste 
classification continue to develop greater 
efficiency and accuracy. One frequently used 
method is Convolutional Neural Networks (CNN), 
which excels at extracting local features from 
images. Several studies have highlighted the 
success of CNN in various waste classification 
scenarios, while also identifying certain limitations 
that motivate the development of new approaches. 

Early research utilizing pure CNNs, for 
instance, Bobulski et al. [60], achieved 74% 
accuracy in distinguishing four types of plastic 
waste (PS, PP, PE-HD, PET), indicating limited 
model performance on complex backgrounds. 
Nnamoko et al. [61] found that image resolution 
and dataset size significantly affect model 
performance, with lower resolution achieving 
greater efficiency (80.88% vs. 76.19%) but still 
trailing behind more advanced architectures. Tatke 
et al. [62] reported the use of ResNet50 on the 
Garbage in Images (GINI) dataset with 95.93% 
accuracy, exceeding that of a simpler CNN at 

82.19%. This result demonstrates that adding 
residual learning layers can mitigate vanishing 
gradient issues and improve training stability. 

Subsequent studies adopted transfer learning 
using popular CNN architectures. Cheema et al. 
[12] achieved over 90% accuracy on TrashNet 
(four classes: glass, metal, plastic, and trash) using 
VGG16, whereas Laksono et al. [13] expanded to 
six classes (HDPE, PET, glass, cans, cardboard, 
and plastic) with DenseNet-201 (95.6% accuracy). 
These studies confirm that CNN-based approaches 
are relatively strong at extracting local features; 
however, when datasets become increasingly 
heterogeneous, models may face overfitting or 
require substantial computational resources to 
maintain accuracy. 

Other studies have introduced specialized 
modules to complement CNNs. Li et al. [17] added 
Graph LSTM to CNN, raising classification 
accuracy for six classes of waste to 97.5%. Qin et 
al. [15] employed the lightweight MobileNetV2 
architecture for efficiency, although its 83.46% 
accuracy lagged behind that of more complex CNN 
approaches. This underscores the trade-off between 
model size and performance, which is becoming 
increasingly important in edge device or real-time 
applications where resources are limited. Rayhan 
and Rifai [63] also found that DenseNet121 
outperformed MobileNetV2 (95.2% vs. 92%) 
across 13 heterogeneous waste classes, yet adding 
more classes increased the model’s susceptibility to 
overfitting. 

Research focusing on background variation 
and noise further reinforces the notion that pure 
CNNs may not suffice in real-world conditions. 
Yuan and Liu [64] split the classification task into 
two streams (dual-stream CNN) prior to the final 
stage, achieving 98.5% accuracy on TrashNet. 
Yang et al. [65] incorporated a preprocessing step 
(for example, Canny edge detection) to address 
lighting disturbances, lifting accuracy to 96.77% 
on an in-house dataset and 93.72% on TrashNet. 
Although such techniques can improve 
performance, they typically rely on the local 
feature extraction characteristics of CNNs, making 
them vulnerable when objects overlap (occlusion) 
or when background clutter is present. While 
CNNs have become the backbone of waste image 
classification, with accuracies ranging from 74% to 
98.5% across different studies, challenges emerge 
when data become more diverse, the number of 
classes increases, and systems must remain 
efficient. CNNs are also relatively limited in 
capturing the global context, especially in 
scenarios with complex backgrounds or 
overlapping classes (occlusions) [66]. These 
limitations have driven researchers to explore other 
architectures, such as the Vision Transformer 
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(ViT), which offers a self-attention mechanism for 
broader contextual understanding. 

 
2.2 Vision Transformer (ViT) 

 
The Vision Transformer (ViT) employs a self-

attention mechanism originally prominent in 
Natural Language Processing. Its primary 
advantage is its ability to grasp the global context, 
addressing a key limitation of CNNs. In waste 
classification, ViT has been applied to a limited 
extent, yet the results demonstrate significant 
potential. Wu et al. [35] implemented Query2Label 
(Q2L) based on ViT-B/16 in the “Garbage In, 
Garbage Out” (GIGO) dataset, which includes 
25,000 street images with four types of waste 
(bulkywaste, garbagebag, cardboard, litter). Using 
asymmetric loss and replacing the ResNet10 
backbone with ViT-B/16 increased the accuracy by 
4.75%. This improvement underlines the 
effectiveness of global attention in dealing with 
multi-label data in real-world settings. However, 
the study was confined to four waste categories, 
which do not fully capture the variety of urban 
waste. 

Huang et al. [67] used ViT on TrashNet’s six 
classes, achieving 96.98% accuracy. Their focus 
was on real-time inference on a cloud server, 
making ViT accessible from mobile devices. This 
finding highlights ViT’s scalability for remote 
processing, while also noting that high 
computational power is essential. For edge-device 
applications, a pure ViT is often considered 
resource-intensive. Although ViT consistently 
outperforms conventional CNNs in terms of 
accuracy, its large data requirements and high 
processing costs pose significant challenges for 
deployment in low-power or real-time 
applications. Consequently, current ViT-based 
waste classifiers are typically limited to a few 
easily distinguishable categories and have yet to 
address more complex waste types. 

Despite these advantages, certain waste 
categories remain particularly challenging for ViT-
based classifiers. Electronic waste, such as circuit 
boards, batteries and cables, exhibits high intra-
class variance due to pronounced differences in 
shape, size and material composition. Medical 
waste items, for example used gloves or infusion 
bottles, often present visual ambiguity, because 
stains, folds or partial occlusions can cause them to 
be mistaken for non-hazardous debris. Organic 
waste, including food scraps and vegetable peels, 
undergoes rapid changes in colour and morphology 
during decomposition, further complicating feature 
extraction. Moreover, the scarcity of large-scale, 
well-annotated datasets for these complex waste 
types requires robust data augmentation and 

transfer learning strategies to ensure reliable model 
generalization.   

 
2.3 Hybrid CNN-ViT 

 
To overcome the limitations of each method, a 

hybrid approach combining the benefits of local 
feature extraction (CNN) and global attention 
(ViT) has emerged. The main objective of this 
combination is to achieve higher accuracy while 
maintaining computational efficiency and 
robustness under various conditions. Liu et al. [68] 
introduced Garbage Classification Net (GCNet), 
integrating EfficientNetV2, ViT, and DenseNet for 
four main waste categories (recyclable, hazardous, 
kitchen waste, other garbage). GCNet achieved 
97.54% accuracy, surpassing individual models 
such as DenseNet (96.40%), ViT (96.75%), and 
EfficientNetV2 (96.12%). The advantage of 
GCNet lies in its fusion of models and transfer 
learning, enabling the effective capture of local 
features (DenseNet, EfficientNet) and leveraging 
global attention (ViT). However, this approach 
requires more computational resources, posing a 
challenge for real-time or low-power devices. 
Additionally, the scope of waste classes remains 
limited to four broad categories, excluding other 
types of urban waste. 

A similar approach was presented by Cai et al. 
[69] through CT-Net (CNN + Transformer), which 
reached 96.55% accuracy on the Huawei Cloud 
dataset. The authors highlighted robustness and 
scalability, but did not provide detailed 
computational overhead data for industrial 
environments with more classes. Alrayes et al. [14] 
tested VT-MLH-CNN on six classes (glass, paper, 
cardboard, plastic, metal, trash), achieving 95.8% 
accuracy. Although this represents more classes 
than those in Cai et al. [69] and Liu et al. [68], the 
dataset is relatively small and prone to overfitting. 

Wang et al. [18] introduced Garbage 
FusionNet (GFN), combining ResNet, ViT, and 
additional modules like the Pyramid Pooling 
Module (PPM) and Convolutional Block Attention 
Module (CBAM). Tested on two datasets 
(TrashNet and Garbage Dataset), it attained 
accuracies of 94.21% and 96.54%, respectively, 
surpassing standalone ResNet and Swin 
Transformer. This study underscores the 
advantages of combining residual learning and 
global attention but also notes that each additional 
module increases the computational overhead. 

From these studies, it is clear that waste 
classification research has focused on three main 
pillars: (1) local feature extraction through CNN, 
(2) global context awareness using ViT, and (3) 
hybrid architectures that blend both approaches. 
Through analysis of existing literature, three major 
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knowledge gaps have emerged. First, few studies 
have truly tested the scalability of hybrid models 
for larger numbers of classes (including e-waste, 
medical waste, or multi-fraction categories). 
Second, some studies have not emphasized 
optimizing models for deployment on limited-
resource devices, even though real-world 
applications increasingly require on-device 
inference with low latency. Third, many studies 
focus on adding modules to boost accuracy yet give 
less attention to adaptive fine-tuning or continuous 
learning methods, both of which are pertinent for 
handling dynamic waste data. 

Based on this review, a hybrid CNN–ViT 
approach has the potential to be a comprehensive 
solution for overcoming the challenges of local 
versus global feature understanding in waste 
classification. Although previous research has 
largely been limited to four classes, the dataset in 
this study covers six categories (batteries, plastic, 
paper, metal, organic, and glass). This broader 

scope requires a model that is more efficient and 
robust against waste diversity. Therefore, this study 
focuses on designing and evaluating a hybrid 
CNN–ViT architecture that emphasizes scalability, 
reliable performance under various data 
conditions, and computational optimization to be 
feasible for real-time or limited-resource scenarios. 
Thus, the proposed solution is expected not only to 
excel in accuracy, but also to be practically relevant 
for industries and public facilities that require 
modern and adaptive waste classification systems. 

 
3. Method 

 
3.1 HR-ViT Model 

 
This study proposes HR-ViT, a hybrid architecture 
that combines the Vision Transformer (ViT) and 
ResNet50 to enhance image classification 
performance (see Figure 1).  

 

 
 

Figure 1. HR-ViT architecture. 
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In the ResNet50 component, we fine-tuned the last 
ten layers to learn domain-specific local 
characteristics without modifying the pretrained 
weights in the earlier layers. To determine the 
optimal depth of fine-tuning, we conducted an 
experiment by unfreezing 10, 15, and 20 layers of 
the ResNet50 backbone. After these experiments, 
we found that unfreezing the last ten layers offered 
the best balance between preserving foundational 
weights (capturing general features such as edges 
and textures), adapting waste-specific features, 
computational efficiency, and overfitting 
mitigation. This strategy preserves training 
stability while maximizing the adaptation of local 
features [70]. Meanwhile, ViT is used without 
further modifications to capture the global context 
through its self-attention mechanism, which 
partitions an image into smaller patches and 
analyzes their global relationships [24]. 
 
- Feature Extraction with ResNet50 

The first step in HR-ViT is feature extraction 
using ResNet50, which processes an input image 𝑥 
of dimension (𝐻,𝑊, 3) into a feature tensor 
𝑓!"#$"%(𝑥) with dimension (𝐻′,𝑊′, 𝐶). Through a 
series of residual blocks, local features such as 
edges, texture patterns, and basic shapes are 
extracted using convolutional strides and pooling, 
gradually reducing the spatial dimensions 𝐻 and 𝑊 
to  𝐻′ and 𝑊′. The output channel count, 𝐶, is 
typically 2048 in the final layer before global 
pooling. This feature tensor provides a high-level 
of representation of the image, making it an ideal 
input for the subsequent stage. 
  

𝑓!"#$"%(𝑥) = 	𝑅𝑒𝑠𝑁𝑒𝑡50(𝑥) ∈ 	ℝ('!×)!×*) (1) 
 
- Converting to Patches 

Next, the tensor 𝑓!"#$"%(𝑥) from ResNet50 is 
transformed into a series of patches. At this stage, 
the spatial dimensions (𝐻&,𝑊′) are combined into 
𝑁 = 𝐻′ ×𝑊′, representing the number of patches. 
Each patch retains a channel dimension 𝐶, which is 
the output from ResNet50. This process 
reorganizes the spatial features produced by 
ResNet50 into a two-dimensional vector 𝑋', which 
is then ready for further processing by the Vision 
Transformer. Effectively, each spatial location in 
the image is mapped into a distinct feature vector. 

 
𝑋, = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒4𝑓!"#$"%(𝑥)5 ∈ ℝ($×*), 𝑁 = 𝐻′ × 𝑊′ (2) 

 
- Linear Projection of Patches into 

Embedding Space 
Each patch in 𝑋' is linearly projected into a 

lower-dimensional embedding space 𝐷 using a 
matrix 𝐸 ∈ ℝ($×*). Matrix 𝐸 is a trainable 

parameter that maps the ResNet features into the 
Transformer’s embedding space. This projection 
reduces dimensionality while preserving essential 
information from the features, resulting in an 
embedding 𝑍 of dimension(𝑁 × 𝐷). This 
representation allows the Transformer to treat each 
patch as an individual input token. 
 

𝑍 = 𝑋,	𝐸 ∈ ℝ($×-) (3) 
 
- Adding the Class Token and Positional 

Embedding 
A class token (𝑥,-.## ∈ ℝ(/×*)) is prepended 

to the sequence of embeddings 𝑍 to capture global 
information from all patches. Additionally, a 
positional embedding (𝐸012 ∈ ℝ(($3/)×*)) is 
added to provide position information for each 
patch. Positional embedding is crucial because the 
self-attention mechanism in the Transformer is 
order-agnostic, necessitating an explicit spatial 
relationship signal among patches. This combined 
representation, 𝑍′, is then ready for processing by 
the Transformer Encoder. 
 

𝑍′ = [𝑥./0##; 𝑍] + 𝐸123 ∈ ℝ(($45)×-) (4) 
 
- Processing by the Transformer Encoder 

The Transformer Encoder processes 𝑍′ using 
multi-head self-attention and a feed-forward 
network. Self-attention enables the model to 
capture global relationships among patches, while 
the feed-forward network deepens the feature 
representation. The outcome is 𝑍′′, where the class 
token (𝑍4&&) now contains the global information 
necessary for classification. This step ensures that 
the model fully grasps the global context of the 
input image. 
 

𝑍66 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟	(𝑍6) ∈ ℝ(($45)×-) (5) 
 
- Final Classification 

The class token (𝑍4&&) from the Transformer 
Encoder output is used for classification. This class 
token representation is projected through a weight 
matrix 𝑊 and activated via the softmax function on 
to yield a probability distribution over the classes. 
This distribution reflects the model’s confidence in 
each target class, allowing for the final decision in 
image classification. 
 

𝑦	 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥	(𝑊. 𝑍766) (6) 
 
3.2 Model Parameters  

 
Balancing computational efficiency with 

improved accuracy during training is the primary 
focus; therefore, the HR-ViT model parameters are 
carefully designed to optimize both modeling 
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capacity and training stability. Table 1 summarizes 
the key parameters used in this study, such as the 
embedding dimension, number of heads, and feed-
forward network size. These parameter values were 
selected based on a series of preliminary 
experiments, including manual tuning strategies, 
considering hardware limitations, and the need for 
efficient inference.  

 
Table 1. Model parameters. 

Parameter Value Description 

d_model 192 Embedding dimension 

n_heads 6 Number of heads in Multi-
Head Attention 

d_ff 768 Hidden layer size in the Feed-
Forward Network (FFN) 

dropout_rate 0.15 Dropout rate in the 
Transformer Encoder 

n_layers 4 Number of layers in the 
Transformer Encoder 

mlp_head_size 192 Hidden layer size in the MLP 
for the classification head 

patch_size 1 Patch size (1 × 1) from the 
ResNet backbone output 

In some cases, values were also informed by 
configurations from prior state-of-the-art studies, 
particularly those involving vision transformers for 
similar classification tasks [71]. Additionally, the 
patch size was set to 1 × 1, representing the 
transformation of the ResNet50 output into 
individual tokens, thus providing a patch 
representation for each specific spatial location. 
 
3.3 Dataset 

 
This study used a six-class waste dataset 

containing plastic, paper, organic, metal, glass, and 
batteries, totaling 4,650 images. Each class had 775 
images, ensuring a balanced distribution and 
minimizing model bias. Figure 2 shows the sample 
images for each category. The dataset was sourced 
from two repositories [19], [50], which were 
combined and standardized to offer more 
comprehensive class coverage than TrashNet [20], 
[52], [72]. 

 

 
 

Figure 2. Samples of each class. 
 
3.4 Data Preprocessing 

 
All images were resized to 224×224 pixels, 

following the standard input dimensions of 
ImageNet-pretrained models, such as ResNet50. 
Pixel values were normalized to the range [−1,1] to 
stabilize the weight updates [73]. We also 
performed on-the-fly data augmentation (rotation, 
translation, shear, zoom, horizontal flip, fill mode 
set to “nearest”) to increase the example diversity 
[74], [75]. Table 2 lists the augmentation 
parameters. This strategy is expected to improve 
the robustness of the model to variations in object 

position, orientation, and scale. 
 

Table 2. Data augmentation parameters. 
Technique Value 

Rotation 30° 

Width Shift 0.3 

Height Shift 0.3 

Shear Transformation 0.3 

Zoom 0.3 

Horizontal Flip True 

Fill Mode Nearest 
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After preprocessing and augmentation, the 
entire dataset (4,650 images) was split into training 
(80 %), validation (10 %), and testing (10 %) 
subsets using stratified sampling with 
random_state=42 to preserve class proportions and 
ensure reproducibility. The training set (3,720 
images) was used for model fitting; the validation 
set (465 images) guided hyperparameter selection 
and early stopping; and the testing set (465 images) 
provided an unbiased estimate of final 
performance. 

Table 3 details the per-class distribution across 
all subsets, confirming that each of the six waste 
categories remains evenly represented and that 
sampling bias is minimized. This approach aims to 
maintain the data balance while improving the 
generalization capability of the model prior to 
further training and optimization. 

 
Table 3. Dataset split distribution. 

Class Training 
Set 

Validation 
Set 

Testing 
Set Total 

organic 620 77 78 775 

metal 620 77 78 775 

paper 620 77 78 775 

glass 620 78 77 775 

plastic 620 78 77 775 

battery 620 78 77 775 

Total 3.720 465 465 4.650 

 
3.5 Model Training and Optimization 

 
Training aims to minimize the loss function 

while maximizing the predictive accuracy on the 
validation set [76]. We chose categorical cross-
entropy to handle multi-class classification [77]. 
For weight optimization, we used the Adam 
optimizer due to its stability and rapid convergence 
in complex architectures [78]. The initial learning 
rate was set to 1 × 1056, selected based on 
preliminary experiments which indicated better 
stability and convergence behavior at lower rates, 
particularly for transformer-based models. 

The batch size was limited to 16 due to 
hardware constraints, as larger batch sizes (e.g., 32) 
led to memory exhaustion during training. To 
enhance generalization and avoid overfitting, early 
stopping was applied with a patience of 10 epochs, 
which was found effective during our internal 
testing to balance training duration and model 
performance. Furthermore, the learning rate was 
adaptively halved when the validation loss 
plateaued for 5 consecutive epochs, down to a 
minimum of 1 × 1057, allowing the model to 
refine weights more cautiously during the later 

stages of training. These values were selected 
based on iterative experimentation and are also 
commonly recommended in related transformer-
based classification studies. Finally, model 
checkpoints were saved based on the lowest 
validation loss to ensure the best-performing 
weights were used for evaluation. Table 4 
summarizes the primary training parameters used 
in this study. 
 

Table 4. Training parameters. 
Parameter Value 

Optimizer Adam 

Learning rate 1 × 1089 

Loss function Categorical Cross-Entropy 

Metrics Accuracy 

Batch Size 16 

Maximum Epoch 100 
Early Stopping 

Patience 10 epoch 

Learning Rate 
Reduction 

Factor 0.5, Patience = 5, 
Minimum: 1 × 108: 

Model Checkpoint 
Monitor Validation Loss 

 
3.6 Cloud-Mobile Integration 

 
This research not only focuses on HR-ViT 

development but also on its large-scale deployment 
using a cloud–mobile architecture. Flask was 
chosen as the backend framework due to its 
flexibility in handling Python-based machine 
learning libraries [79], [80]. This approach 
facilitates the design of a REST API for server-side 
model inference requests. 

To address the limited resources of mobile 
devices (computing power and storage), 
classification runs on an AWS-hosted server, 
optimizing scalability and uptime [67], [81]. To 
ensure cost efficiency, the backend was activated 
only during the study period. On the front-end, 
React Native supports cross-platform mobile 
application development, ensuring a responsive 
user interface compatible with various operating 
systems [82]. 

Figure 3 illustrates the system’s workflow, from 
uploading an image via the app and invoking the 
Flask API for cloud-based model inference to 
returning the classification results to the phone. By 
placing computationally intensive tasks (training 
and inference) in the cloud, mobile devices 
primarily handle user interfaces and server 
requests. This strategy reduces user-side latency 
but requires a stable internet connection for real-
time performance. 
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Figure 3. System architecture. 
 

4. Result and Discussion 
 
4.1 Model Training and Validation 

 
This study was conducted in a Python 

environment under Anaconda to ensure 
experimental compatibility and reproducibility. 
The HR-ViT model was trained on an Intel Core i9-
12900H with 16 GB DDR5 RAM, 512 GB NVMe 
SSD, and an NVIDIA GeForce RTX 3060 GPU (6 
GB GDDR6). GPU acceleration is crucial because 
HR-ViT employs real-time data augmentation and 
requires intensive exploration of the network 
parameters [83]. TensorFlow 2.10.1 was chosen as 
the main framework, combining the Vision 
Transformer (ViT) with ResNet50 as the backbone. 
Keras was used modularly, and libraries such as 
NumPy, Pandas, and Matplotlib facilitated 
numerical operations, data manipulation, and result 
visualization. 

The training exhibited rapid convergence 

within the first 13 epochs: at epoch 1, training and 
validation accuracies were 75.32 % and 91.83 % 
with losses of 0.737 and 0.286, respectively. By 
epoch 4, accuracy rose to 94.68 % (train) and 93.12 
% (val) with corresponding losses of 0.167 and 
0.181. Continued training reduced the training loss 
to 0.044 and increased accuracy to 98.71 % by 
epoch 13, when the minimum validation loss of 
0.088 was attained (val_accuracy = 97.63 %). We 
applied early stopping with a patience of 10 epochs 
and halved the learning rate after 19 stagnant 
epochs. Between epochs 14–33, validation loss 
fluctuated modestly between 0.0785 (epoch 23) 
and 0.1197 (epoch 14), while validation accuracy 
remained within 96.56 %–98.28 %, confirming 
robust generalization and absence of overfitting. 
The loss and accuracy curves (Figure 4a–b) further 
substantiate the effectiveness of our training 
schedule. 

 

 

 
 

(a) (b) 
Figure 4. Training and validation accuracy (a) vs. training and validation loss (b).
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4.2 Testing Results 
 
The performance of the HR-ViT model was 

evaluated using 465 test samples distributed across 
six waste categories: battery, glass, metal, organic, 
paper, and plastic. As shown in Figure 5, the 
confusion matrix exhibits strong diagonal 
dominance, indicating high classification accuracy. 
The model achieved perfect predictions for 
“battery” (77/77) and “organic” (78/78). For the 
“glass” class, four samples were misclassified: one 
as “metal,” one as “paper,” and two as “plastic.” 
The “metal” class included two errors, 
misclassified as “glass” and “plastic,” while 
“paper” had one instance predicted as “metal.” The 
“plastic” class showed one misclassification into 
“paper.” These errors were isolated and did not 
significantly impact the overall distribution, 
affirming the model’s ability to distinguish 
between classes with minimal overlap. 

 

 
 

Figure 5. Confusion matrix HR-ViT. 
 

Table 5. Classification report HR-ViT. 
Class Precision Recall F1-Score Support 

Battery 1.00 1.00 1.00 77 
Glass 0.99 0.95 0.97 77 
Metal 0.97 0.97 0.97 78 

Organic 1.00 1.00 1.00 78 
Paper 0.97 0.99 0.98 78 
Plastic 0.96 0.99 0.97 77 

Accuracy   0.98 465 
Macro 
Avg 0.98 0.98 0.98 465 

Weighted 
Avg 0.98 0.98 0.98 465 

 
Quantitative evaluation results are presented 

in Table 5. The overall classification accuracy 
reached 98%, with macro-average and weighted-
average precision, recall, and F1-scores of 0.98. 
The “battery” and “organic” classes achieved 
perfect scores (1.00) across all metrics. The “glass” 
class reported the lowest recall at 0.95 due to the 

aforementioned misclassifications, while “metal,” 
“paper,” and “plastic” achieved F1-scores ranging 
from 0.97 to 0.98. These results confirm that the 
proposed HR-ViT model maintains reliable and 
balanced classification performance across all 
categories, despite minor inter-class confusion. 
 
4.3 Application Implementation Results 

To test the performance of the mobile-cloud 
application, five real-world samples were used to 
ensure both diversity and model robustness. An 
internet connection with 50 Mbps bandwidth and a 
1:1 upload-to-download ratio was maintained 
throughout. Users captured waste images via the 
in-app camera or selected them from the device 
gallery, then uploaded the images to a back-end 
server, which returned the classification results to 
the device. Table 6 summarizes the test data: image 
source, resolution, file size, and application 
response time. 

 
Table 6. Characteristics of test data and application response. 

No Image 
Source 

Image 
Resolution 

(px) 

Image 
Size 

(MB) 

Response 
Time 
(ms) 

1 In-app 
camera 

2448 x 
3264 1,29 1500 

2 In-app 
camera 

2448 x 
3264 1,21 1400 

3 
Gallery  
(reduce 

resolution) 

1224 x 
1632 411 800 

4 
Gallery  
(another 
source) 

6120 x 
8160 4,11 4000 

5 
Gallery  
(another 
source) 

3472 x 
4624 5,63 4700 

 
The application achieved an average response 

time of 2,480 ms (milliseconds), with a minimum 
of 800 ms and a maximum of 4,700 ms. As 
expected, higher-resolution images incurred 
greater latency: the 6,120 × 8,160 px (4.11 MB) file 
required 4,000 ms, whereas the down-sampled 
1,224 × 1,632 px (0.41 MB) image completed in 
800 ms. These findings confirm that delegating 
inference to the cloud enables efficient 
classification without taxing the user device, 
provided network quality remains consistent. The 
separation of front-end UI and back-end processing 
further enhances scalability, although reliable 
connectivity remains essential to maintain low 
latency across deployment environments [84] [85].  

By contrast, highly optimized on-device 
networks can perform pure inference in only a few 
milliseconds: for instance, EfficientFormer-L1 
achieves 1.6 ms on an iPhone 12 [86], and 
MobileOne-S4 runs under 1 ms on the same 
hardware [87]. While these figures exclude 
network overhead, our end-to-end average of 2,480 
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ms aligns with reported latencies for cloud-based 
vision pipelines, which typically span sub-second 
to multi-second ranges under realistic conditions. 
Taken together, these results demonstrate that HR-
ViT, when deployed as a mobile–cloud service, 
achieves a latency profile that is competitive with 

existing lightweight architectures while offloading 
all intensive computation to the cloud and thus 
minimizing device-side resource consumption. 
Figure 6 illustrates the application workflow and 
system responses. 

 
 

Figure 6. Implementation results. 
 
4.4 Discussion 
 

The HR-ViT model integrates ResNet50 and 
Vision Transformer (ViT), combining localized 
spatial feature extraction with global semantic 
representation. To enhance generalization, training 
incorporated real-time data augmentation 
techniques, including random rotation, scaling, 
flipping, and translation along with fine-tuning of 
the last 10 ResNet50 layers with parameters 
d_model = 192, n_heads = 6, d_ff = 768, and 
dropout_rate = 0.15. Under these settings, the final 
evaluation yielded a test loss of 0.0579 and a test 
accuracy of 0.9827, confirming the model’s strong 
ability to generalize unseen waste images. The 
training curves also exhibited stable convergence 
with no signs of overfitting. The hybrid 
architecture leverages pretrained weights to 
minimize parameter redundancy while maximizing 
feature discrimination, resulting in efficient 
representation learning. 

To assess the impact of augmentation, an 
ablation study was conducted using identical 
settings with and without it. As shown in Table 7, 
augmentation improved accuracy from 97% to 
98%, and all key metrics (precision, recall, and F1-
score) increased from 0.97 to 0.98. These gains 
highlight augmentation's role in mitigating 
overfitting and enhancing intra-class robustness, 
justifying its adoption as an integral part of the HR-
ViT training pipeline. 

 
 

 

Table 7. Comparative performance with and without data 
augmentation. 

Metric No Aug. With Aug.  Improvement 

Accuracy (%) 97 98 +1.00 

Precision 0.97 0.98 +0.01 

Recall 0.97 0.98 +0.01 

F1-Score 0.97 0.98 +0.01 

 
Table 8 compares the classification results 

reported in previous studies with those of our 
proposed HR-ViT, evaluated on the same datasets. 
Quy [51] evaluated a Vision Transformer on the 
Garbage Classification dataset (12 classes), 
reporting 92% across all major metrics. Alrayes et 
al. [14] tested VT-MLH-CNN on the TrashNet 
dataset, achieving 95.8% accuracy, though 
precision, recall, and F1-score were not reported. 
Wang et al. [18] evaluated Garbage FusionNet 
(GFN) on both TrashNet and a 10-class Garbage 
Dataset, achieving 94.21% and 96.54% accuracy, 
with F1-scores of 94.24% and 96.56%, 
respectively.  

To ensure a fair and consistent comparison, we 
re-implemented HR-ViT using the same datasets 
and applied consistent preprocessing, 
augmentation strategies, and 10-layer fine-tuning. 
Our model achieved 96.04% accuracy on 
TrashNet, 96.56% on the Garbage Dataset, and 
97.80% on the Garbage Classification dataset. 
Furthermore, HR-ViT yielded improvements 
across all key metrics (precision, recall, F1-score), 
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reaching 97% uniformly on the 12-class dataset, 
outperforming the baseline Vision Transformer by 
Quy [51] by 5% in each metric. All HR-ViT results 
were generated through controlled experimentation 
and reflect consistent performance gains across 
diverse benchmark datasets. 

Although the model demonstrates strong 
classification performance, this study has some 
limitations. The dataset contains single-object 
images with relatively clean backgrounds, which 
do not fully represent complex waste disposal 
environments. Additionally, performance in a 
cloud–mobile system depends on network quality; 
latency may be affected under low-bandwidth 
conditions. Future work should address these 

issues through domain adaptation, synthetic data 
generation, and Transformer-based object detectors 
(e.g., DETR) to enable real-time multi-object waste 
detection in diverse environmental contexts. 

From an application perspective, HR-ViT is 
well-suited for smart recycling bins, mobile 
environmental monitoring systems, and 
educational tools. Its hybrid design supports both 
accuracy and deployment flexibility, enabling 
scalable implementation across various hardware 
platforms. Academically, the model affirms the 
efficacy of combining CNN and transformer 
structures in visual classification tasks, paving the 
way for further hybrid solutions in computer 
vision. 

 
Table 8. Comparison with previous studies on waste classification. 

Study Dataset Model Accuracy 
(%) Precision (%) Recall (%) F1 Score 

(%) 

Quy 
[51] 

Garbage 
Classification 

(12 class) 
Vision Transformer 92 92 92 92 

Alrayes 
et al. 
[14] 

TrashNet 
(6 class) VT-MLH-CNN 95.8 - - - 

Wang et 
al. [18] 

TrashNet 
(6 class) Garbage FusionNet 

(GFN) 

94.21 94.31 94.21 94.24 

Garbage Dataset 
(10 class) 96.54 96.65 96.54 96.56 

Ours 

TrashNet 
(6 class) 

HR-ViT 

96.04 96 96 96 

Garbage 
Dataset (10 

class) 
96.56 96 96 96 

Garbage 
Classification 

(12 class) 
97.80 97 97 97 

5. Conclusion 
 

This study presents HR-ViT (Hybrid 
ResNet50–ViT), effectively integrating ResNet50's 
residual learning with ViT's self-attention to 
classify six types of waste (plastic, paper, organic, 
metal, glass, and batteries) with 98.27% accuracy 
in testing, significantly outperforming previous 
models and achieving an average precision, recall, 
and F1-score of 0.98. This superior performance is 
attributed to fine-tuning the final ResNet layers, 
optimizing the ViT parameters, and incorporating 
diverse data augmentation to expand the training 
sample variety. However, this study primarily 
addresses single-object classification on simple 
backgrounds, whereas real-world waste conditions 
often involve complex multi-object arrangements. 
This limitation necessitates methods such as 
Transformer-based detection networks (e.g., 
DETR) for enhanced robustness. Additionally, 
mobile–cloud implementation relies heavily on 
stable internet connectivity, emphasizing the need 
for reliable infrastructure to maintain low latency. 
In conclusion, this study underscores the potential 

of hybrid approaches for waste classification and 
establishes a foundation for future research on 
computational optimization and adaptation to more 
complex datasets. 
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