
50

OPERATING SYSTEM FOR WIRELESS SENSOR NETWORKS AND AN EXPERIMENT OF

PORTING CONTIKIOS TO MSP430 MICROCONTROLLER

Thang Vu Chien1, Hung Nguyen Chan2, and Thanh Nguyen Huu2

1Thai Nguyen University of Information and Communication Technology, Thai Nguyen, province

Vietnam, 23999, Vietnam
2Hanoi University of Science and Technology, Số 1 Đại Cồ Việt, Hai Bà Trưng, Hanoi, 71000, Vietnam

E-mail: vcthang@ictu.edu.vn

Abstract

Wireless Sensor Networks (WSNs) consist of a large number of sensor nodes, and are used for

various applications such as building monitoring, environment control, wild-life habitat monitoring,
forest fire detection, industry automation, military, security, and health-care. Each sensor node needs

an operating system (OS) that can control the hardware, provide hardware abstraction to application

software, and fill in the gap between applications and the underlying hardware. In this paper,

researchers present OS for WSNs and an experiment of porting contikiOS to MSP430 microcontroller
which is very popular in many hardware platforms for WSNs. Researchers begin by presenting the

major issues for the design of OS for WSNs. Then, researchers examine some popular operating

systems for WSNs including TinyOS, ContikiOS, and LiteOS. Finally, researchers present an

experiment of porting ContikiOS to MSP430 microcontroller.

Keywords: operating system, porting contikiOS to MSP430, wireless sensor networks

Abstrak

Wireless Sensor Networks (WSNs) terdiri dari sejumlah besar sensor nodes, dan digunakan untuk

berbagai aplikasi seperti pemantauan gedung, pengendalian lingkungan, pemantauan kehidupan

habitat liar, deteksi kebakaran hutan, otomatisasi industri, militer, keamanan, dan kesehatan. Setiap

sensor node memerlukan sistem operasi (SO) yang dapat mengontrol hardware, menyediakan
abstraksi hardware untuk aplikasi perangkat lunak, dan mengisi kesenjangan antara aplikasi dan

hardware. Dalam penelitian ini, peneliti menyajikan SO untuk WSNs dan percobaan dari port

contikiOS untuk MSP430 mikrokontroler yang sangat populer di platform hardware untuk WSNs.

Peneliti memulai dengan menghadirkan isu utama yaitu desain SO untuk WSNs. Lalu, peneliti
memeriksa beberapa sistem operasi populer untuk WSNs, termasuk TinyOS, ContikiOS, dan LiteOS.

Akhirnya peneliti menyajikan sebuah percobaan dari port ContikiOS untuk MSP430 mikrokontroler.

Kata Kunci: sistem operasi, port ContikiOS untuk MSP430, wireless sensor networks

1. Introduction1

 A WSN is generally composed of a

centralized station (sink) and tens, hundreds, or

perhaps thousands of tiny sensor nodes. With the

integration of information sensing, computation,

and wireless communication, these devices can

sense the physical phenomenon, (pre-)process the

raw information, and share the processed

information with their neighboring nodes.

 Typical sensor nodes are equipped with a

sensor, a microprocessor or microcontroller, a

memory, a radio transceiver, and a battery.

Therefore, these hardware components should be

This paper is the extended version from paper titled "A

Comparative Study on Operating System for Wireless Sensor

Networks" that has been published in Proceeding of ICACSIS

2012.

organized in a way that makes them work

correctly and effectively without a conflict in

support of the specific applications for which they

are designed. Each sensor node needs an OS that

can control the hardware, provide hardware

abstraction to application software, and fill in the

gap between applications and the underlying

hardware.

 The basic functionalities of an OS include

resource abstractions for various hardware

devices, interrupt management and task

scheduling, concurrency control, and networking

support. Based on the services provided by the

OS, application programmers can conveniently

use high-level application programming interfaces

(APIs) independent of the underlying hardware.

 The traditional OS is system software

that operates between application software and

Chien, et al., Operating System for Wireless Sensor Networks 51

hardware and is often designed for workstations

and PCs with plenty of resources. This is usually

not the case with sensor nodes in WSNs. There

are also embedded operating systems such as

VxWorks [1] and WinCE [2], none of which is

specially designed for data-centric WSNs with

constrained resources. Sensors usually have a

slow processor and small memory, different from

most current systems. These parameters should be

kept in mind in the process of OS design for WSN

nodes.

 In this paper, researchers identify several

major issues for the design of OS for WSNs. By

examining some existing operating systems for

WSNs, researchers hope this research may allow

research community to know the strengths and

weaknesses a number of different operating

systems.

2. Methodology

 Traditional operating systems are system

software, including programs that manage

computing resources, control peripheral devices,

and provide software abstraction to the

application software. Traditional OS functions are

therefore to manage processes, memory, CPU

time, file system, and devices. This is often

implemented in a modular and layered fashion,

including a lower layer of kernels and a higher

layer of system libraries. Traditional operating

systems are not suitable for WSNs because WSNs

have constrained resources and diverse data-

centric applications, in addition to a variable

topology. WSNs need a new type of operating

system, considering their special characteristics.

There are several issues to consider when

designing sensor network OS.

 First, process management and scheduling.

The traditional OS provides process protection by

allocating a separate memory space (stack) for

each process. Each process maintains data and

information in its own space. But this approach

usually causes multiple data copying and context

switching between processes. This is obviously

not energy efficient for WSNs. Sensor network

operating systems should provide efficient

resource management mechanisms in order to

allocate microprocessor time and limited memory.

The CPU time and limited memory must be

scheduled and allocated for processes carefully to

guarantee fairness (or priority if required).

 Second, memory management. Memory is

often allocated exclusively for each process/task

in traditional operating systems, which is helpful

for protection and security of the tasks. Since

sensor nodes have small memory, another

approach, sharing, can reduce memory

requirements.

 Third, kernel model. The event-driven and

finite state machine (FSM) models have been used

to design microkernels for WSNs. The event-

driven model may serve WSNs well because they

look like event-driven systems. An event may

comprise receiving a packet, transmitting a

packet, detection of an event of interest, alarms

about energy depletion of a sensor node, and so

on. The FSM-based model is convenient to realize

concurrency, reactivity, and synchronization.

 Fourth, energy efficiency. Sensor nodes

provide very limited battery lifetime. On the other

hand, guaranteeing sensor networks to operate for

3 to 5 years is a very desirable objective. Sensor

network OS should support power management,

which helps to extend the system lifetime and

improve its performance. For example, the

operating system may schedule the process to

sleep when the system is idle, and to wake up with

the advent of an incoming event or an interrupt

from the hardware.
 Fiveth, application program interface. Sensor

nodes need to provide modular and general APIs

for their applications. The APIs should enable

applications access the underlying hardware. This

may allow access and control of hardware

directly, to optimize system performance.

 Sixth, code upgrade and reprogramming.

Since the behavior of sensor nodes and their

algorithms may need to be adjusted either for their

functionality or for energy conservation, the

operating system should be able to reprogram and

upgrade.

 Seventh, small footprint. The limited

memory of only a few kilobytes on a sensor node

necessitates the OS to be designed with a very

small footprint. It is a fundamental characteristic

of a sensor network OS and is the primary reason

why so many sophisticated embedded operating

systems can not be easily ported to sensor nodes.

 Eighth real-time guarantee. As most sensor

network applications such as surveillance tend to

be time-sensitive in nature where packets must be

relayed and forwarded on a timely basis, real-time

guarantee is a necessary requirement for such

applications.

The last is reliability. In most applications,

sensor networks are deployed once and intended

to operate unattended for a long period of time.

OS reliability is of great importance to facilitate

developing complex WSN software, ensuring the

correct functioning of WSN systems.

Over the years, researchers have seen many

operating systems for wireless sensor networks

such as TinyOS, Contiki, SOS, Mantis OS, Nano-

RK, RETOS and LiteOS [3]. In this paper,

52 Journal of Computer Science and Information, Volume 5, Issue 1, February 2012

researchers present only TinyOS, Contiki (many

interested OS users), and LiteOS (the newest

sensor network OS).

TinyOS is developed in UC Berkeley [4].

The design of TinyOS allows application software

to access hardware directly when required.

TinyOS is a tiny microthreaded OS that attempts

to address two issues: how to guarantee

concurrent data flows among hardware devices,

and how to provide modularized components with

little processing and storage overhead. These

issues are important since TinyOS is required to

manage hardware capabilities and resources

effectively while supporting concurrent operation

in an efficient manner. TinyOS uses an event-

based model to support high levels of concurrent

application in a very small amount of memory.

Compared with a stack-based threaded approach,

which would require that stack space be reserved

for each execution context, and because the

switching rate of execution context is slower than

in an event-based approach, TinyOS achieves

higher throughput. It can rapidly create tasks

associated with an event, with no blocking or

polling. When CPU is idle, the process is

maintained in a sleep state to conserve energy.

Figure 1 illustrates the basic architecture of

TinyOS. TinyOS includes a tiny scheduler and a

set of components.

Figure 1. TinyOS architecture.

The scheduler schedules operation of those

components. Each component consists of four

parts: command handlers, event handlers, an

encapsulated fixed-size frame, and a group of

tasks. Commands and tasks are executed in the

context of the frame and operate on its state. Each

component will declare its commands and events

to enable modularity and easy interaction with

other components. The current task scheduler in

TinyOS is a simple FIFO mechanism whose

scheduling data structure is very small, but it is

power efficient since it allows a processor to sleep

when the task queue is empty and while the

peripheral devices are still running. The frame is

fixed in size and is assigned statically. It specifies

the memory requirements of a component at

compile time and removes the overhead from

dynamic assignment. Commands are nonblocking

requests made to the low-level components.

Therefore, commands do not have to wait a long

time to be executed. A command provides

feedback by returning status indicating whether it

was successful (e.g., in the case of buffer overrun

or of timeout). A command often stores request

parameters into its frame and conditionally

assigns a task for later execution. The occurrence

of a hardware event will invoke event handlers.

An event handler can store information in its

frame, assign tasks, and issue high-level events or

call low-level commands. Both commands and

events can be used to perform a small and usually

fixed amount of work as well as to preempt tasks.

Tasks are a major part of components. Like

events, tasks can call low-level commands, issue

high-level events, and assign other tasks. Through

groups of tasks, TinyOS can realize arbitrary

computation in an event-based model. The design

of components makes it easy to connect various

components in the form of function calls. In order

to provide a better support for the component

architecture and execution model of TinyOS, the

nesC language [5] was designed for programming

based on TinyOS. TinyOS has a component-based

programming model, codified by the nesC

language.

This WSN operating system defines three

types of components: hardware abstractions,

synthetic hardware, and high-level software

components. Hardware abstraction components

are the lowest-level components. They are

actually the mapping of physical hardware such as

Input/Output (I/O) devices, a radio transceiver,

and sensors. Each component is mapped to a

certain hardware abstraction. Synthetic hardware

components are used to map the behavior of

advanced hardware and often sit on the hardware

abstraction components. TinyOS designs a

hardware abstract component called the Radio-

Frequency Module (RFM) for the radio

transceiver, and a synthetic hardware component

called radio byte, which handles data into or out

of the underlying RFM.

TinyOS supports a wide range of hardware

platforms and has been used on several

generations of sensor nodes. Supported processors

include the Texas Instruments MSP430 and the

Atmel AVR. TinyOS applications may be

compiled to run on any of these platforms without

modification.

The Contiki operating system is an open

source operating system for networked embedded

systems in general, and wireless sensor nodes in

particular. It is developed by a team of developers

Chien, et al., Operating System for Wireless Sensor Networks 53

from the industry and academia [6]. The Contiki

project is lead by Adam Dunkels.

Typically, a running Contiki system consists

of the kernel, libraries, the program loader, and a

set of processes. Communication between

processes always goes through the kernel, which

does not provide a hardware abstraction layer, but

lets device drivers and applications communicate

directly with the hardware.

 A process is defined by an event handler

function and an optional poll handler function.

The process state is held in the process' private

memory and the kernel only keeps a pointer to the

process state. All processes share the same

address space and do not run in different

protection domains. Interprocess communication

is done by posting events.

Looking at it from a higher perspective, the

Contiki system is partitioned into two parts: the

core and the loaded programs as shown in figure

2. Typically, the core consists of the Contiki

kernel, the program loader, the most commonly

used parts of the language run-time and support

libraries, and a communication stack with device

drivers for the communication hardware. The core

is compiled into a single binary image and is

usually not modified after deployment, although it

is possible to use a special boot loader to

overwrite or patch the core. Programs are loaded

into the system by the program loader. The

program loader is in charge of loading or

unloading the programs into the system either by

using the communication stack or directly

attached storage (such as EEPROM).

Figure 2. Contiki system.

The Contiki kernel consists of a lightweight

event scheduler that dispatches events to running

processes and periodically calls processes' polling

handlers. All program execution is triggered either

by events dispatched by the kernel or through the

polling mechanism. The kernel does not preempt

an event handler once it has been scheduled. The

kernel supports two kinds of events: asynchronous

and synchronous events. In addition to the events,

the kernel provides a polling mechanism. Polling

can be seen as high priority events that are

scheduled in-between each asynchronous event.

Contiki was the first operating system for

wireless sensor nodes that provided IP

communication with the uIP TCP/IP stack. In

2008, the Contiki system incorporated uIPv6, the

world’s smallest IPv6 stack. The footprints of the

uIP and uIPv6 stacks are small: less than 5 kB for

the uIP stack and approximately 11 kB for uIPv6.

This makes them suitable for use in the

constrained environment of a wireless sensor

node.

Both the Contiki system and applications for

the system are implemented in the C

programming language. Because Contiki is

implemented in C, it is highly portable. Contiki

has been ported to a number of microcontroller

architectures, including the Texas Instruments

MSP430 and the Atmel AVR.

LiteOS [7], developed in the University of

Illinois at Urbana Champaign, is designed to

provide a traditional Unix-like environment for

programming WSN applications. It includes: a

hierarchical file system and a wireless shell

interface for user interaction using UNIX-like

commands; kernel support for dynamic loading

and native execution of multithreaded

applications; and online debugging, dynamic

memory, and file system assisted communication

stacks. LiteOS also supports software updates

through a separation between the kernel and user

applications, which are bridged through a suite of

system calls.

Figure 3. LiteOS architecture.

Figure 3 shows the overall architecture of the

LiteOS operating system, partitioned into three

subsystems: LiteShell, LiteFS, and the Kernel.

Implemented on the base station PC side, the

LiteShell subsystem interacts with sensor nodes

(motes) only when a user is present. Therefore,

54 Journal of Computer Science and Information, Volume 5, Issue 1, February 2012

LiteShell and LiteFS are connected with a dashed

line in this figure.

The LiteShell subsystem provides Unix-like

commandline interface to motes. This shell runs

on the base station PC side. Therefore, it is a

front-end that interacts with the user. The motes

do not maintain command-specific state, and only

respond to translated messages (represented by

compressed tokens) from the shell, which are

sufficiently simple to parse.

The interfaces of LiteFS provide support for

both file and directory operations. The APIs of

LiteFS can be exploited in two ways; either by

using shell commands interactively, or by using

application development libraries.

The kernel subsystem of LiteOS takes the

thread approach, but it also allows user

applications to handle events using callback

functions for efficiency. It implements both

priority-based scheduling and round-robin

scheduling in the kernel. It also support dynamic

loading and un-loading of user applications, as

well as a suite of system calls for the separation

between kernel and applications.

The LiteOS 2.0 is the latest version of

LiteOS. It runs on the following platforms: MicaZ

as target board, and MIB510/MIB520 as

programming boards. Unlike 1.0, LiteOS 2.0 is

closely integrated with AVR Studio 5.0. This

brings multiple advantages, such as IDE editing,

debugging, and built-in JTAG support. Due to a

problem of compatiability between IRIS and AVR

Studio, IRIS mote support will be added in

version 2.1.

Table I provides a comparison between

TinyOS, Contiki, and LiteOS by examining some

important OS features.

3. Results and Analysis

This section is devided into three sections.

First, introduction to msp430 microcontroller. The

Texas Instruments MSP430 family of ultralow

power microcontroller consists of several devices

featuring different sets of peripherals targeted for

various applications. The architecture, combined

with five low power modes is optimized to

achieve extended battery life in portable

measurement applications. The device features a

powerful 16-bit RISC CPU, 16-bit registers, and

constant generators that contribute to maximum

code efficiency. The digitally controlled oscillator

(DCO) allows wake-up from low-power modes to

active mode in less than 6 μs [8]. The typical

operating conditions of the MSP430

microcontroller are presented in detail in table II.

 The MSP430 family microcontrollers are

used in many hardware platforms for wireless

sensor network such as Eyes, EyesIFX, TelosB,

Tmote Sky, Shimmer, Zolertia [9]. They permit

wireless sensor nodes to operate in the low power

mode. So wireless sensor nodes can run for years

on a single pair of AA batteries. In this paper,

researchers present an experiment of porting

ContikiOS to MSP430F1611 microcontroller.

 Second, designing hardware with

msp430f1611. Researchers design a hardware for

porting ContikiOS to MSP430F1611. Figure 4

illustrates the functional block diagram of the

hardware and figure 5 illustrates the printed

circuit board of the hardware.

TABLE I

A COMPARISON BETWEEN TINYOS, CONTIKIOS AND LITEOS

Features TinyOS
ContikiO

S
LiteOS

Publication

(Year)

ASPLOS

(2000)

EmNets

(2004)

IPSN

(2008)

Website
www.tinyo

s.net

www.sics

.se/

contiki

www.liteos

.net

Static/Dynamic

System
Static Dynamic Dynamic

Monolithic/Mo

dular System
Monolithic Modular Modular

Networking

Support

Active

Message

uIP.

uIPv6,

Rime

File-

Assisted

Real-Time

Guarantee
No No No

Language

Support
nesC C LiteC++

Event Based

Programming
Yes Yes

Yes

(through

callback

functions)

Multi-

Threading

Support

Partial

(through

TinyThread

s)

Yes (also

supports

Protothre

ads)

Yes

Wireless

reprogramming
Yes Yes Yes

File Sytem

Single level

(ELF,

Matchbox)

Coffee

Hierarchic

al Unix-

like

Platform

Support

Mica,

Mica2,

MicaZ,

TelosB,

Tmote,

XYZ, IRIS,

Tinynode,

Eyes,

Shimmer

Tmote,

TelosB,

ESB,

AVR

MCU,

MSP430

MCU

MicaZ,

IRIS, AVR

MCU

Simulator

TOSSIM,

Power

Tossim

Cooja,

MSPSim,

Netsim

Through

AVRORA

The main aim of this design is researchers

can program MSP430F1611 microcontroller with

using ContikiOS. The program after compiling

with using ContikiOS that will create a *.hex file.

This file can be written to the ROM of

MSP430F1611 microcontroller through JTAG

connector. The result of the program can be

http://www.tinyos.net/
http://www.tinyos.net/
http://www.sics.se/%20contiki
http://www.sics.se/%20contiki
http://www.sics.se/%20contiki
http://www.liteos.net/
http://www.liteos.net/

Chien, et al., Operating System for Wireless Sensor Networks 55

observed through LED display including 8 single

LEDs.

TI MSP 430F1611

Microcontroller

LED Display

Power

JTAG Connector

Figure 4. Functional block diagram of the hardware.

TABLE II

TYPICAL OPERATING CONDITIONS OF MSP430

MICROCONTROLLER

 Min Nom Max Unit

Supply voltage

during program

execution

1.8 3.6 V

Supply voltage

during flash memory

programming

2.7 3.6 V

Operating free air

temperature
-40 85 oC

Low frequency

crystal frequency
 32.768 kHz

Active current at

Vcc = 3V, 1MHz
 500 600 μA

Sleep current in

LPM3 Vcc = 3V,

32.768KHz active

 2.6 3.0 μA

Wake up from

LPM3 (low power

mode)

 6 μs

Figure 5. Printed circuit board of the hardware.

 Third, porting contikios to msp430f1611.

Researchers write a contiki program (blink.c) that

controls LED effect with researchers hardware.

Figure 6 illustrates this program. In this program,

LEDs are turned on respectively. After all 8 LEDs

are bright, the program turns off them. This

process is regularly repeated.

This program is only a experiment which

helps us to know how to write a contiki program.

After the program is compiled, a hex file

(blink.hex) is created. Finally, this file is written

to the ROM of MSP430F1611. The result shows

that 8 LEDs are controlled correctly.

However, researchers did not use

communication stack in this program. In the

future work, researchers will manufacture some

wireless sensor nodes which have radio modules.

Researchers hope that researchers can program

and test with communication stack in ContikiOS

for this future hardware.

Figure 6. Contiki program controlling LED effect.

4. Conclusion

In this paper, researchers present operating

system for wireless sensor networks and several

major design issues with sensor network operating

system. By examining some existing sensor

network operating systems, researchers know the

strengths and weaknesses of a number of different

operating systems. An experiment of porting

ContikiOS to MSP430 microcontroller are also

provided. Researchers hope this research may

allow research community to know the features of

a number of different operating systems. So they

can select a sensor network operating system that

is the most appropriate for their applications.

56 Journal of Computer Science and Information, Volume 5, Issue 1, February 2012

References

[1] Vxwork, The RTOS That Powers More Than

1 Billion Embedded Systems Around the

Globe,

http://www.windriver.com/products/vxworks/

, retrieved December 2, 2011.

[2] WinCE,

http://www.microsoft.com/windowsembedde

d/en-us/windows-embedded.aspx, retrieved

December 2, 2011.

[3] D. Wei & L. Xue, “Providing OS Support for

Wireless Sensor Networks: Challenges and

Approaches,” IEEE communications surveys

& tutorials, vol. 12, pp. 519-530, 2010.

[4] TinyOS,

 http://tinyos.net/, retrieved December 2, 2011.

[5] D. Gay, P. Levis, R. von Behren, M. Welsh,

E. Brewer, & D. Culler, “The nesC language:

A holistic approach to networked embedded

systems” In Proceeding ACM PLDI, pp. 1-

11, 2003.

[6] A. Dunkels, B. Grönvall, & T. Voigt,

“Contiki – a lightweight and flexible

operating system for tiny networked sensors”

In Proceeding EmNets, pp. 455-462, 2004.

[7] Q. Cao, A. Tarek, & J.A. Stankovic, “The

LiteOS operating system: towards Unix-like

abstractions for wireless sensor networks” In

Proceeding ACM/IEEE IPSN, pp. 233-244,

2008.

[8] Texas Instruments MSP430x1xx Family

User’s Guide. http://ti.com/msp430, retrieved

December 3, 2011.

[9] V.C. Thang, N.C. Hung, & N.H. Thanh, “A

Comparative Study on Hardware Platforms

for Wireless Sensor Networks,”

International Journal on Advanced Science

Engineering Information Technology, vol. 2,

pp. 70-74, 2012.

http://www.windriver.com/products/vxworks/
http://www.windriver.com/products/vxworks/
http://www.microsoft.com/windowsembedded/en-us/windows-embedded.aspx
http://www.microsoft.com/windowsembedded/en-us/windows-embedded.aspx
http://tinyos.net/
http://ti.com/msp430

