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Abstract  

 
Multitasking is one of the most challenging issues in the automation industry which is highly depen-
ded on the embedded system. There are two methods to perform multitasking in embedded system: 
RTOS and primitive interrupt. The main purpose of this research is to compare the performance of R-
TOS with primitive method while concurrently undertaking multiple tasks. The system, which is able 
to perform various tasks, has been built to evaluate the performance of both methods. There are four 
tasks introduced in the system: servo task, sensor task, LED task, and LCD task. The performance of 
each method is indicated by the success rate of the sensor task detection. Sensor task detection will be 
compared with the true value which is calculated and measured manually during observation time. 
Observation time was varied after several iterations and the data of the iteration are recorded for both 
RTOS and primitive interrupt methods. The results of the conducted experiments have shown that, 
RTOS is more accurate than interrupt method. However, the data variance of the primitive interrupt 
method is narrower than RTOS. Therefore, to choose a better method, an optimization is needed to be 
done and each product has its own standard. 
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Abstrak 
 

Multitasking adalah salah satu tantangan besar dalam industri otomasi yang sangat bergantung pada 
embedded system. Untuk melakukan multitasking pada embedded system, terdapat dua metode utama, 
yaitu RTOS dan primitive interrupt. Tujuan utama dari penelitian ini adalah untuk membandingkan 
kinerja metode RTOS dengan primitive interrupt ketika mengerjakan banyak pekerjaan secara ber-
samaan. Sistem yang mengerjakan beragam pekerjaan dibuat untuk mengevaluasi kinerja dari kedua 
metode. Terdapat empat pekerjaan yang diberikan kepada sistem, motor servo, sensor ultrasonik, 
LED, dan LCD. Kinerja dari metode diindikasi oleh keberhasilan sensor ultrasonik untuk mendeteksi 
objek yang bergerak. Hasil deteksi sensor ultrasonik akan dibandingkan dengan nilai sebenarnya yang 
diperoleh dari perhitungan dan pengukuran manual selama waktu pengamatan. Waktu pengamatan 
akan diubah setelah dilakukan iterasi dan data dari setiap iterasi akan dicatat untuk metode RTOS dan 
metode primitive interrupt. Berdasarkan eksperimen yang dilakukan, RTOS lebih akurat apabila 
dibandingkan dengan metode primitive interrupt. Akan tetapi, varian nilai dari primitive interrupt 
lebih sempit dibanding dengan RTOS. Oleh karena itu, untuk menentukan metode yang lebih baik, 
optimisasi perlu dilakukan karena setiap produk mempunyai standar masing-masing. 
 
Kata Kunci: multi tasking, RTOS, primitive interrupt, kinerja metode, keberhasilan 

 
 

1. Introduction  

Automation industry has been soaring recently. 
The labour empowerment has been hampered wi-
th various human limitations such as human error 
which in turn causes inaccuracies, and not to men-
tion inconsistencies in the applied standard of pro-
cedure. Labour performances are highly depended 
on the conditions of environment, human body 
(fatigue, not feeling well), degree of comfort, etc. 
These weaknesses are endeavoured to be eradica-

ted by empowering robots as replacements of hu-
man labourer.  
 Robot possess miscellaneous advantageous 
over human employees. Error would be minimum 
in robot, the accuracy of robot is undoubtedly hi-
gh, and finally robot is capable to undertake repe-
titive task identically (high precision/small vari-
ance) [1]. Furthermore, robot performance would 
not be affected by the altering of the job site con-
ditions.  
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 In the manufacturing industries, robot select-
ion has become challenging issue. There are vari-
ous criteria underlie robot selection, such as capa-
bilities, specifications, range of applications, and 
constant time during repetitive tasks [2]. Constant 
and accurate time during operation is predominant 
criteria which should be elaborated for robot sele-
ction. Inconsistency and inaccurate timing during 
job undertaking, would lead to error that will be 
accumulated each time and likely to cause product 
rejection by means of tolerance incompliance. Th-
erefore, while deciding the automation machine to 
be chosen, both accuracy and precision are neces-
sitated to be considered. 
 In this study, Real Time Operating Systems 
(RTOS) will be evaluated and compared against 
primitive interrupt for embedded system since bo-
th are frequently utilized in industrial robot imple-
mentation. RTOS operation is based on the prio-
rity which is predetermined by the deadline time 
[3]. The scheduling will be undertaken by RTOS 
to meet the deadlines, unlike the primitive inter-
rupt which is prescribed manually. There are ma-
ny kinds of RTOS, for example free RTOS, Real-
Time Unit (RTU) hardware RTOS, the pure soft-
ware Atalanta RTOS, and a hardware/software 
RTOS composed of part of Atalanta interfaced to 
the System on-a-Chip Lock Cache (SoCLC) hard-
ware [4]. On the other hand, there are two catego-
ries of primitive interrupt, preemptive and non-
preemptive interrupt. In the preemptive interrupt 
tasks could be halted in the middle of processing 
and replaced by another task which have higher 
priority. On the contrary, in non-preemptive inter-
rupt the higher priority task is must wait until the 
running task finished and all tasks have to coo-
perate to undertake the entire job. 
 While RTOS is undertaking multiple tasks, 
each task is placed into one of these four states, 
running, ready, block, and suspended state. First 
of all, if task is in the running states, it means that 
the processor is being utilized to perform the task. 
Secondly, a task would be in the ready state if the 
task is executable because is in neither blocked 
nor suspended state, and has not been executed 
because a higher priority task is still in the run-
ning state. Thirdly, a task is placed into a blocked 
state if the task is waiting for triggers. Triggers 
could be external triggers such as button or switch 
and temporal trigger (for instance timer delay). Fi-
nally, a task would not enter nor exit the suspend-
ed state, unless that task is called by a certain co-
de. 
 Research on RTOS has been conducted for 
many years. For example, a research which was 
conducted by Neishaburi et al. (2007) which has 
focused on robustness improvement of RTOS [5]. 
Secondly, Maruyama et al. in 2010 have investi-

gated energy conservation by implementing RTOS 
in hardware [6]. In the robotic field, Liu Xianhua 
et al. (2003) have conducted a research that imple-
mented Digital Signal Processing (DSP) devices 
and RTOS platform as a control architec-ture of 
autonomous robot [7]. While in 2006, Serker et al 
have developed network-based real-time for robot 
control system [8]. In 2014, Atmadja et al. exami-
ned RTOS in Embedded Linux for mobile robot 
implementation [9]. Finally, Hoxing Wei et al. 
(2014) have conducted a research in Robot Opera-
ting System (ROS) which utilized the hybrid of 
RTOS and General Purpose Operating System 
(GPOS) [10]. 
 In this research, the performance of RTOS 
will be investigated while undergoing multiple ta-
sks. The results of which will be compared against 
primitive interrupt performance in the similar sce-
nario.  
 
2. Methods 

 
Components utilized to evaluate the performance 
of both RTOS and primitive interrupt comprises: 
DT-Combo AVR-51 Starter Kit which is employ-
ed as the main board, microcontroller ATMEL AT-
mega32, servo motor GWS S03N Standard, SRF 
08 ultrasonic sensor, and LCD and LED which are 
embedded in the main board. The scheme of the 
architecture of the system is shown in Figure 1. 
The specifications of the microcontroller used in 
the experiment are shown in Table 1. Meanwhile, 
the specifications of the ultrasonic sensor and the 
mainboard are listed in Table 2 and Table 3, resp-
ectively. 

In this research, microcontroller would be 
imposed multitasking job. The performance of the 
system would be examined while undertaking 
multiple tasks, especially in time precision and ac-
curacy. There are four concurrent tasks that will 
be appointed to the system. First of all, the system 
had to operate and control servo motor motion ba-
sed on the code. The servo motor will rotate recip-
rocally from 0o to 180o. In addition, there was an-
other microcontroller to control another servo mo-
tor. The rotation of the latter servo motor would 
be converted to be translation by connected it to 
rack and pinion mechanism. The position of the 
rack (translation) would be observed by ultrasonic 
sensor (SRF08) and become the second task of the 
system. The amount of which the ultrasonic sen-
sor detected the rack would be recorded in a pres-
cribed observation time. The schematic of servo 
motor and rack and pinion mechanism are shown 
in Figure 2. 

The two last tasks appointed to the system 
were the counting that would be displayed on 
LCD and LED which indicated the conformity of 
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Figure. 1.  Scheme of the system’s architecture. 
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Figure 2.  Scheme of the rack and pinion mechanism. 

TABLE 1 
MICROCONTROLLER’S SPECIFICATIONS 

Features Value 
In-System Programmable Flash 32 KB 
EEPROM 1024 B 
SRAM 2 KB 
General Purpose I/O lines 32 
Voltage 4.5V - 5.5V 

 
 

TABLE 3 
MAINBOARD’S SPECIFICATIONS 

Features Value 
Voltage 9-12 V 
LCD  8x2 characters 
LED 8 pcs (0-7) 
Switch button 8 pcs (0-7) 
Path I / O 35 pins 
Dimensions 17.5 cm x 12.5 cm x 2 cm 

 
TABLE 4 

TASKS DESCRIPTION 
Components Task 

LED Counting per 1 s 

LCD Displaying hit counting 

Servo Reciprocally rotating (0 – 180o) 

Ultrasonic sensor Transmit/receive ultrasonic 
wave 

 
 

time measurement. The time recorded will be eva-
luated using the predetermined time, both accura-
cy and precision. This scenario also will be appoi-
nted to the system with primitive interrupt and 
thereupon the behaviour of each system would be 
compared. The tasks that would be executed are 
summarized in Table IV. 

 
Free RTOS and Non-preemptive Interrupt 
 
FreeRTOS was used in this research due to its va-
rious advantageous. The benefits of using RTOS 
constitute its capability of providing solution for 
many different architectures, its reliability, under-
going active development, free of charge, its sim-
plicity, and various minor benefit [11]. 
 The task’s priorities in the freeRTOS are 
defined in the FreeRTOSConfig.h. These priorities 
are ranging from 0 to (configMAX_PRIORITIES 
-1) [12]. The value of (configMAX_PRIORITIES 
-1) could be described to be any number, the only 
restriction is the RAM capacity. Never-theles, if 
the value of configUSE_PORT_OPTIMISED_ 
TASK_SELECTION is set to be 1 in the FreeRTOS 
Config.h, the maximum value of configMAX_ 
PRIORITIES cannot exceed 32. Meanwhile, the 

task which has priority of 0 is defined by tsk 
IDLE_PRIORITY. 

On the other side, non-preemptive interrupt 
was used in this study. This type of interrupt was 
used because in the experiment the tasks were 
deemed have equal priorities. Therefore, to make 
it comparable with the RTOS which use similar 
priority on each task, non-preemptive interrupt 
was used instead of preemptive interrupt. 

The priorities of the interrupt are defined in 
the microcontroller datasheet [13]. For instance, 
RESET which has the highest priority and TIMER0 
COMP which was used in this research. To define 
the interrupt, Interrupt Service Routine (ISR) must 
be included into the code. Further on, to activate 
the global interrupt so that the interrupt would be 
running, macro sei() was called.  
 
Servo Motor 
 
The architecture of servo motor is shown in Fi-
gure 3. There are four foremost components inside 
servo motor, potentiometer, motor shaft, internal 
signal generator, and comparator. Poten-tiometer 
angular position resembles motor shaft position 
by means of gear power transm-ission. The angu-

TABLE 2 
ULTRASONIC SENSOR’S SPECIFICATIONS 

Features Value 
Max. distance 11 m 
Max. Operating distance 6 m 
Voltage 5V 
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Figure 3.  Architecture of servo motor. 
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Figure 4.  PWM signal. 

lar position of potentiometer defines the variable 
voltage generated by internal signal generator. 
The above-mentioned voltage there-upon transmi-
tted to te comparator to be compared with control 
signal which is Pulse Width Modulated (PWM) 
signal (Figure 4) .  

The difference of the voltage then define the 
direction of the rotation of motor shaft (whether 
clockwise or counter clockwise). Motor shaft is 
rotated by utilizing Direct Current (DC) voltage, 
thus by the existence of gear mechanism will ro-
tates the potentiometer. The potentiometer’s angu-
lar position will be altered afterward that lead to 
the change of the generated voltage from internal 
signal generator. The aforementioned consecutive 
events will run continuously until the equivalence 
of the signals in the comparator attained. 

PWM signal is employed to control the ser-
vo motor. As shown in Figure 4. There are two pa-
rts in PWM signal, high voltage (1) and low volta-
ge (0). The DC voltage generated is underlied by 
the difference between the generated signal by 
means of potentiometer and the average of the 
PWM signal. The average of the PWM signal can 
be calculated by empowering equa-tion(1). X is 
the high voltage duration which is ranging from 1 
ms to 4 ms, T is PWM signal period (20 ms), and 
V is voltage. Meanwhile, to define the angular po-
sition of the motor shaft by means of the potentio-
meter, equation(2) can be utilized. Xo is the high 
voltage duration to be positioned in the smallest 
angle (in this case 4 ms for 0o). Xf is the high vol-
tage duration to be positioned in the largest angle 
(in this case 1 ms for 180o). Finally θm is the range 
of the angle (180o). 

 

 𝑽𝑽� =
𝑿𝑿
𝑻𝑻
𝑽𝑽 

 

(1) 
 

 𝜽𝜽 =
𝑿𝑿 − 𝑿𝑿𝒐𝒐
𝑿𝑿𝒇𝒇 − 𝑿𝑿𝒐𝒐

𝜽𝜽𝒎𝒎 (2) 

 

Ultrasonic Sensor 
 
The ultrasonic sensor works based on the frequen-
cy of the signal transferred to the magnetic mem-
bran in the actuator. The current will flow into the 
actuator and will vibrate the magnetic membrane 
by means of Lorentz force. The vibration frequen-
cy will be equal to the excitation signal frequency, 
hence by determining the excitation signal freque-
ncy the vibration frequency can be defined. The 
vibration of the mag-netic membrane thereupon 
will lead to the generation of ultrasonic sound that 
will be fired to the object to measure the distance 
of which. The distance of the object is estimated 
by reckoning of the duration of the reflected ultra-
sonic signal perceived by the reciever (equati-
on(3)). L is the distance of the object, T is the du-
ration of the reflected signal recieved by the 
reciever, and c is the sound speed (340 m/s). 
 

 𝑳𝑳 =
𝑻𝑻
𝟐𝟐
𝒄𝒄 (3) 

 
As described in the previous chapter, the ul-

trasonic sensor employed in this research is SRF 
08. The maximum distance can be measured bu 
utilizing this sensor is 11 m (Table II). The afore-
mentioned value is corresponding to the interval 
of which the ultrasonic remain idle while shooting 
ultrasonic wave (65 ms). This value can be altered 
to reduce the interval time of which the u;trasonic 
sensor is idling. If the interval time is abridged, 
the firing repetition will be more frequent. Thus, 
the delay of which the position of the object over-
looked will be minimized, and it will lead to the 
surging of the accuracy. Equation(4) can be empo-
wered to calculate the maximum distance ultraso-
nic sensor can detects. Lm is the maximum distan-
ce and reg is range register which is defined by 
hexadecimal number, for instance 0xFF means 
255 that makes Lm to be approximately 11 m. Fin-
ally the number 43 is defined by the code inherent 
in the sensor. 

 
 𝑳𝑳𝒎𝒎(𝒎𝒎𝒎𝒎) = (𝒓𝒓𝒓𝒓𝒓𝒓 ∙ 𝟒𝟒𝟒𝟒) + 𝟒𝟒𝟒𝟒 (4) 
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Figure. 5.  Installation of the system. 

T-test  
 
To examine the significant of both the methods, t-
test was employed. There are two criteria in the t-
test. Firstly Ho, which means there is no signifi-
cant in the both methods. Secondly Ha, is the op-
posite of the aforementioned criteria. The methods 
are included into Ho criteria if in equation(5) is 
fulfilled. Otherwise the methods belong to Ha cri-
teria. t calculation formula follows equation(6), 
and t table is defined in the t-test table. T calcula-
tion is the function of the mean of the data, the 
amount of the data, and also variant of both the 
methods. 

 

 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕− ≤ 𝒕𝒕𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ≤ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕+  
 

(5) 
 

 𝒕𝒕𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =
𝒙𝒙�𝟏𝟏 − 𝒙𝒙�𝟐𝟐

�𝒔𝒔𝟏𝟏
𝟐𝟐

𝒏𝒏𝟏𝟏
+ 𝒔𝒔𝟐𝟐

𝟐𝟐

𝒏𝒏𝟐𝟐

 (6) 

 
Experimental Setup 

 
In the experiment, main board was connected with 
two external hardware, ultrasonic sensor and ser-
vo motor. Whereas LCD and LED, had been initi-
ally attached to the main board. The servo motor 
which rack and pinion mechanisms are installed 
on was operated by different main board to keep 
RTOS and primitive interrupt experiment compar-
able. The installation of the system is shown in Fi-
gure 5. In Figure 5. number 1 is rack and pinion 
mechanism, number 2 is ultrasonic sensor, num-
ber 3 is servo motor, number 4 is LED, and num-
ber 5 is LCD. 

Figure 6 shows the setup of the sensor. Whi-
le rack was reciprocally moving from left to right 
and vice versa, ultrasonic sensor transmitted the 
wave in certain period. There are two positions of 
which the ultrasonic sensor is imposed to detect 
the object, the starting point (x cm) and the end 
point (10 cm). If the rack was in the prescribed 
position, the ultrasonic sensor would detect the 
rack and deemed it as hit. Otherwise the sensor 
would mull it as miss. Every hit was counted and 
accumulated, then eventually would be recorded 
and compared to the real hit for both the methods. 
Furthermore, there were three main scenarios con-
ducted in the reaserch. Those scenarios were ba-
sed on the period of the rack mechanism (Table 
5). The period of the rack were stipulated by alter-
ing the angular movement of the servo motor whi-
ch rotated the rack mechanism. Larger the angular 
movement, longer the period would be. Moreover, 
to diminished the period, the loop number in the 
code was reduced so that the delay in the edge po-
int (turning point) would me decreased. Hence the 
rack period would be declined.  

The success rate of the ultrasonic sensor de-
tect the occurrence of rack was used as perform-
ance indicator of both the methods. The observing 
time of the system were prescribed and altered af-
ter several iterations. The observation time wass 
ranging from 10 s to 50 s with the increment of 10 
s. The amount of success reading by sensor are 
compared with the true value of the counting whi-
ch is acquired by manual calculation and measure-
ments. Parameters employed in this research are 
presented in Table 6. Figure 7 illustrates the sche-
dulling of the tasks in RTOS. There are four tasks 
connected to the RTOS scheduller. Each task con-
nection has two direction of operation, from and 
to RTOS scheduller. Meanwhile, the sensor task is 
also connected to LCD to display the data obtain-
ed by the sensor. 

In non-preemptive interrupt, three main co-
des for determining the behavior of the interrups 
are represented in Figure 8, Figure 9, and Figure 
10. In Figure 8. ISR is declared and empower TI-
MER0_COMP vector to stipulate the task’s priority. 
The interrupt timer was set to be 1 ms, therefore 
the Output Compare Register (OCR0) was defined 
to be 187.5, the value of which is elaborated in the 
Figure 7. The task delay is explained in the three 
last rows of the code. The counting variable was 
initially set to be 2000 in this research. There-up-
on, in every rising clock which was prescribed to 
be 1 ms the counting value would be one value 
lower than the prior value. When the counting va-
lue reach 0 the task would be conducted which 
means the delay for each task is 2 s. The detail of 
which is elucidated in Figure 10. 
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Figure 6.  Scheme of the data acquisition. 

TABLE 6 
PARAMETERS USED IN EXPERIMENT 

Symbol Parameter Value 
V Servo motor voltage (V) 4.8 

n Servo motor speed (rpm) 43.47 
i Number of iterations 10 

 

RTOS
Scheduler

Sensor
Task

LED
Task

Servo
Task

LCD
Task

 
 

Figure 7.  Scheme of task schedulling. 

ISR(TIMER0_COMP_vect) { 
    time++; 
    if  (OCR0 == 187)  OCR0 = 188; 
    else OCR0 = 187; 
    for (int i = 0; i < task_count(); ++i) 
{ 

    if (all_task[i].counting != 
INT16_MIN && all_task[i].counting 
!= INT16_MAX) { 

        all_task[i].counting--; 
                } 
    } 
} 
 

Figure 8.  ISR declaration in non-preemptive interrupt. 

Figure 9 shows the enable control of the in-
terrupt. Corresponding to the desired period of the 
timer (1 ms) and CPU (Central Processing Unit) 
speed (12 MHz), the clock needed to attain it is 
12000 clocks. Thereby the clock would rise after 
12000 times of the CPU periodically rose. Interru-
pt mode which is used in this study is CTC (Clear 
Time on Compare), and the prescaler used is 64. 
Because of that, the TOP value of CTC becomes 
187.5 as the result of the division of 64 on 12000. 
Hence, as written in the previous paragraph the 
value of OCR0 is set to be 187 to approximate the 
187.5 value. Finally, in Figure 7 sei() macro is 
declared which means the declaration of the glo-
bal interrupt activation.  

In Figure 10 tasks are called in acccordance 
to the delay. The delay is determined by the count-
ing variable. When the counting variable less than 
or equal 0, the task will be undertaken, and vice 
versa. 
 
3. Results and Analysis 

 
There are three main results in the experiment 
which was conducted. First of all is hit rate of the 
system for both RTOS and interrupt method (sho-
wn is Figure 11, Figure 14, and Figure 17). Sec-
ondly, the relative error of both the methods by 
means of the comparison with the real hit which 
are illustrated in Figure 12, Figure 15, and Figure 
18 for the three scenarios. Finally, Figure 13, Fig-
ure 16, and Figure 19 represent the standard devi-
ation of the data obtained from the experiment. 
 According to Figure 11 RTOS hit rates in 1.7 
rack period were closer to the real hit rates than 
interrupt hit rates for both the turning points (start 
and end). This means RTOS accuracy was better 

than interrupt accuracy. The aforementioned dedu-
ction was strengthened by Figure 12 the relative 
errors of the interrupt method were higher than 
RTOS methods. The errors of RTOS method fluc-
tuated near 40% for starting point and 60% for 
ending point. Whereas the errors of interrupt were 
approximately 85% for starting point and 90% for 
ending point. On the contrary, as shown in Figure 
13 RTOS results varied wider than interrupt me-
thod.  
  

RTOS standard deviation values were higher 
than interrupts standard deviation, above all while 
the observation time was longer for both the turn-
ing points. For instance, the standard deviation of 
RTOS in 50 s observation time was almost thrice 
higher than interrupt method for starting point and 
50% higher for ending point. These results indica-
ted that interrupt method was more stable than 

TABLE 5 
SCENARIO OF THE EXPERIMENT 

Scenario x (cm) t (s) 
1 7 1.7 
2 7 2.6 

3 5 3 
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Figure 11.  Average hit rate of RTOS, Interrupt, and 
manual calculation for 1.7 s period. 

10 20 30 40 50
RTOS (start) 2.4 6.6 9.6 10.2 13.6
Interrupt (start) 1 0.9 2.8 3.6 3.4
Real Hit 5 11 17 23 29
RTOS (end) 2.1 3.6 4.3 5.3 7.3
Interrupt (end) 0.4 0.7 2.2 2.2 2
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// CTC mode is used for interrupt setup 
// CPU speed is 12 Mhz, hence 12000 clock 
is needed to acquire 1 ms 
// prescaler is set to be 64, thus TOP for 
CTC is 12000/64 = 187.5 
OCR0 = 187; 
TCNT0 = 0; 
TCCR0|=_BV(WGM01)|_BV(CS01)|_BV(CS00); 
TIMSK |= _BV(OCIE0); 
sei(); 

 
Figure 9.  Interrupt enable control in non-preemptive 

interrupt. 

for (int i = 0; i < task_count(); ++i)  
{ 

if (tmp[i] <= 0) { 
tmp[i] = all_task [i].function(); 
if (tmp[i] < 0) tmp [i] = 0; 
}  
else  
{ 

tmp [i] = 0; 
} 

} 
 

Figure 10.  Task control in non-preemptive interrupt. 

RTOS method. This means interrupt method was 
more precise than RTOS method, even though less 
accurate.  

The trend for another scenarios are quite si-
milar. The accuracy of the RTOS was higher than 
the accuracy of interrupt, and interrupt was more 
precise than RTOS depicted in the smaller stan-
dard deviation.  

Meanwhile, the comparison based on the 
scenario in RTOS does not show the propensity of 
the results. The average relative errors for 2.6 s 
and 3 s in starting point are about 10% and 20% 
respectively, whereas in the ending point are arou-
nd 40% for both the scenarios. In contrast, in inte-
rrupt results show the tendency of the decreasing 
error as the rack period increased. The average re-
lative error for 2.6 s and 3 s period is starting poin 
are approximately 80% and 60% consecutively, 
whereas in the ending point are near the value of 
80% and 70% respectively. 

Finally, in the standard deviation figure obs-
ervation time does not give a certain trendline by 
means that each scenario has its own trendline. 
Firstly in 1.7 s rack period scenario for RTOS me-
thod, the standard deviation rise as the observati-
on time increase in the starting point, whereas in 
the interrupt, the value rise until reach the culmi-
nation point (30 s) then drop and stable.  

On the other hand, the standard deviation 
value in the 1.7 s scenario for both the methods 
remain stable throughout the observation time in 
ending point. Meanwhile, in the other two scena-
rios the standard deviation value fluctuate irregu-
larly for each sub-scenario. According to the ex-

periment conducted, RTOS exhibited higher accu-
racy than interrupt method, but surprisingly inter-
rupt method has higher precision than RTOS. The-
re are several reasons for the aforementioned oc-
curring results. 

First of all, concerning to the accuracy result 
RTOS exhibited better results due to its schedul-
ling technique. While one task is in the running 
state, the other tasks are stored in the ready state. 
This means when the running task is over, the oth-
er task from the ready state could be delivered to 
the running state directly. Because of it, the ex-
changing process of the tasks would be faster. If 
the exchanging process of the tasks is faster it wo-
uld lead to the more frequent of the ultrasonic wa-
ve excitation. The more ultrasonic wave is shot, 
the higher the possibility of rack detection.  

In contrast, interrupt method consider interr-
upt as a task. Therefore, there would be delays ev-
ery time interrupt was called. This trait would de-
celerate the exchanging process of the tasks. Mo-
reover, the task in the interrupt method would be 
executed sequantially by means while a certain 

 
 
Figure 12.  Relative error of RTOS and Interrupt for 1.7 s 

period. 

10.00 20.00 30.00 40.00 50.00
RTOS (start) 52.00 40.00 43.53 55.65 53.10
Interrupt (start) 80.00 91.82 83.53 84.35 88.28
RTOS (end) 58.00 67.27 74.71 76.96 74.83
Interrupt (end) 92.00 93.64 87.06 90.43 93.10
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Figure 14.  Average hit rate of RTOS, Interrupt, and 
manual calculation for 2.6 s period. 

10 20 30 40 50
RTOS (start) 2.7 6.7 9.3 11.4 17
Interrupt (start) 0.2 1.5 1.5 2.3 3.1
Real Hit 3 7 11 15 19
RTOS (end) 1.6 5.5 8.3 9.7 10.3
Interrupt (end) 0.8 0.6 1.4 2.3 2.1
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Figure 15.  Relative error of RTOS and Interrupt for 2.6  s 

period. 

10.00 20.00 30.00 40.00 50.00
RTOS (start) 10.00 4.29 15.45 24.00 10.53
Interrupt (start) 93.33 78.57 86.36 84.67 83.68
RTOS (end) 46.67 21.43 24.55 35.33 45.79
Interrupt (end) 73.33 91.43 87.27 84.67 88.95
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Figure 16.  Standard deviation of RTOS and Interrupt for 

2.6s period. 

10 20 30 40 50
RTOS (start) 0.67 0.67 1.34 1.26 1.56
Interrupt (start) 0.42 0.71 0.71 1.06 1.20
RTOS (end) 0.84 0.85 1.34 1.06 1.34
Interrupt (end) 0.63 0.70 1.07 1.57 1.10
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task was running, the other task could not interfe-
re it. The aforementioned deduction was proved 
by the behavior of the system during experiment. 
Even though the delay of the LED was prescribed 
by 1 s, but in the experiment the LED delay was 
more than 1 s, more precisely the LED altered af-
ter the servo motor finished its task. 

Secondly, regarding the precision of the sys-
tem interrupt have better performance on repeti-
tion. The results variation of the interrupt was nar-
rower than RTOS. The reason of which is because 
of the task undertaking process. In the interrupt 
the consecutive tasks were undertaken repeatedly 
with the similar sequence and with the same pe-
riod. This behavior made the time when the ultra-
sonic wave was transmitted similar each period. 
Hence, the hit rate of the system using interrupt 
would not vastly varied. 

On the other hand, RTOS task executing 
process varied each period. It is shown in the 
experiment that the LED task complied with the 
code (1s) delay. This means that there were alter-
nation when the exchanging process of the task 

occured. Because of it, the sequence of the task 
execution was differrent each period. Thus, the 
time of when the sensor transmitted the ultrasonic 
wave was a time arbitrary task. This lead to the 
widely variation of the data acquired from the 
RTOS method. 

In RTOS rack period did not affect the 
accuracy of the ultrasonic sensor because the de-
lay of the sensor was only from the interval time 
of the ultrasonic sensor. On the contrary in the in-
terrupt, the longer rack period time higher the 
accuracy this due to the delay which existed in the 
interupt was not only from the sensor but also fr-
om the interrupt itself. Thus, longer the period 
higher the probability of the detection would be. 
Finally in the standard deviation, neither obser-
vation time nor rack period gave certain behavior 
to the system since there is no solid connectivity 
between the schedulling and either observation 
time or rack period. 

After the data have been entirely obtained, t-
test was conducted to examine the significant of 
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Figure 19.  Standard deviation of RTOS and Interrupt for 

3s period. 

10 20 30 40 50
RTOS (start) 0.82 1.26 2.21 2.31 2.70
Interrupt (start) 0.57 0.52 0.67 0.57 0.47
RTOS (end) 0.67 0.71 1.23 1.43 1.25
Interrupt (end) 0.71 0.71 0.92 0.52 1.25
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Figure 18.  Relative error of RTOS and Interrupt for 3 s 
period. 

10.00 20.00 30.00 40.00 50.00
RTOS (start) 33.33 23.33 30.00 20.77 13.75
Interrupt (start) 70.00 56.67 67.00 62.31 68.75
RTOS (end) 33.33 41.67 52.00 58.46 48.13
Interrupt (end) 83.33 91.67 88.00 87.69 83.13
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Figure 17.  Average hit rate of RTOS, Interrupt, and 
manual calculation for 3s period. 

10 20 30 40 50
RTOS (start) 2 4.6 7 10.3 13.8
Interrupt (start) 0.9 2.6 3.3 4.9 5
Real Hit 3 6 10 13 16
RTOS (end) 2 3.5 4.8 5.4 8.3
Interrupt (end) 0.5 0.5 1.2 1.6 2.7
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TABLE 7 
T -CALCULATION OF EACH SCENARIO 

Group Rack Period (s) 
1.7 2.6 3 

Start (10 s) 11.03 18.75 12.39 
Start (20 s) 22.68 38.34 14.04 
Start (30 s) 12.56 18.39 6.63 
Start (40 s) 15.29 22.17 8.98 
Start (50 s) 3.13 22.43 8.15 
End (10 s) 18.90 9.30 11.82 
End (20 s) 5.88 22.12 17.89 
End (30 s) 3.12 14.40 10.96 
End (40 s) 10.87 14.06 10.74 
End (50 s) 10.42 18.15 15.70 

 

the methods (Table 7). The t-test shows that RTOS 
and interrupt are significant because the tcalc value 
more than ttable (2.101) for each scenario. This me-
ans employing RTOS method will significantly 
differ with utilizing interrupt method. 

 
4. Conclusions 

 
To recapitulate, RTOS has given a higher accura-
cy performance about 40 % than interrupt in every 
starting point scenarios and about 20 % in every 
end point scenarios due to the higher probability 
of the sensor detects the rack because of it is more 
frequent ultrasonic wave transmission. On the 
contrary, interrupt method exhibited narrrower 
output data variance (higher precision) compared 
to the RTOS, interrupt has given a smaller stan-
dard deviation than RTOS in all scenarios. Exam-
ple, in scenario’s with period 1.7 s, interrupt stan-
dard deviation is about 1.03 (starting point) and 
1.14 (end point) against RTOS standard deviation 
is about 1.71 (starting point) and 2.54 (end point), 
then with period 2.6 s, interrupt standard deviation 

is about 0.71 (starting point) and 1.07 (end point) 
against RTOS standard deviation is about 1.34 
(starting point) and 1.34 (end point) and finally, 
with period 3 s, interrupt standard deviation is 
about 0.67 (starting point) and 0.92 (end point) 
against RTOS standard deviation is about 2.21 
(starting point) and 1.23 (end point). The reason 
is, the interrupt method with sequential processs 
did not vary at each period, unlike in the RTOS 
method. Thus, while choosing the perfect machine 
for industry, optimizations are needed to be con-
ducted which is restricted by the output tolerance 
of the product itself. Therefore a better choice of 
either RTOS or interrupt is driven by the indus-
try’s product specification. 
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