
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information). 8/1 (2015), 35-44
DOI: http://dx.doi.org/10.21609/jiki.v8i1.282

COMPARATIVE STUDY OF RTOS AND PRIMITIVE INTERRUPT IN EMBEDDED SYSTEM

Dwi M J Purnomo1, Machmud R Alhamidi1, Grafika Jati1, Novian Habibie1, Benny Hardjono1,2 and
Ari Wibisono1

1Faculty of Computer Science, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia

2Faculty of Computer Science, Universitas Pelita Harapan, Thamrin Blvd, Lippo Village-Tangerang,
15811, Indonesia

E-mail: ari.w@cs.ui.ac.id

Abstract

Multitasking is one of the most challenging issues in the automation industry which is highly depen-
ded on the embedded system. There are two methods to perform multitasking in embedded system:
RTOS and primitive interrupt. The main purpose of this research is to compare the performance of R-
TOS with primitive method while concurrently undertaking multiple tasks. The system, which is able
to perform various tasks, has been built to evaluate the performance of both methods. There are four
tasks introduced in the system: servo task, sensor task, LED task, and LCD task. The performance of
each method is indicated by the success rate of the sensor task detection. Sensor task detection will be
compared with the true value which is calculated and measured manually during observation time.
Observation time was varied after several iterations and the data of the iteration are recorded for both
RTOS and primitive interrupt methods. The results of the conducted experiments have shown that,
RTOS is more accurate than interrupt method. However, the data variance of the primitive interrupt
method is narrower than RTOS. Therefore, to choose a better method, an optimization is needed to be
done and each product has its own standard.

Keywords: multitasking, RTOS, primitive interrupt, method performance, success rate

Abstrak

Multitasking adalah salah satu tantangan besar dalam industri otomasi yang sangat bergantung pada
embedded system. Untuk melakukan multitasking pada embedded system, terdapat dua metode utama,
yaitu RTOS dan primitive interrupt. Tujuan utama dari penelitian ini adalah untuk membandingkan
kinerja metode RTOS dengan primitive interrupt ketika mengerjakan banyak pekerjaan secara ber-
samaan. Sistem yang mengerjakan beragam pekerjaan dibuat untuk mengevaluasi kinerja dari kedua
metode. Terdapat empat pekerjaan yang diberikan kepada sistem, motor servo, sensor ultrasonik,
LED, dan LCD. Kinerja dari metode diindikasi oleh keberhasilan sensor ultrasonik untuk mendeteksi
objek yang bergerak. Hasil deteksi sensor ultrasonik akan dibandingkan dengan nilai sebenarnya yang
diperoleh dari perhitungan dan pengukuran manual selama waktu pengamatan. Waktu pengamatan
akan diubah setelah dilakukan iterasi dan data dari setiap iterasi akan dicatat untuk metode RTOS dan
metode primitive interrupt. Berdasarkan eksperimen yang dilakukan, RTOS lebih akurat apabila
dibandingkan dengan metode primitive interrupt. Akan tetapi, varian nilai dari primitive interrupt
lebih sempit dibanding dengan RTOS. Oleh karena itu, untuk menentukan metode yang lebih baik,
optimisasi perlu dilakukan karena setiap produk mempunyai standar masing-masing.

Kata Kunci: multi tasking, RTOS, primitive interrupt, kinerja metode, keberhasilan

1. Introduction

Automation industry has been soaring recently.
The labour empowerment has been hampered wi-
th various human limitations such as human error
which in turn causes inaccuracies, and not to men-
tion inconsistencies in the applied standard of pro-
cedure. Labour performances are highly depended
on the conditions of environment, human body
(fatigue, not feeling well), degree of comfort, etc.
These weaknesses are endeavoured to be eradica-

ted by empowering robots as replacements of hu-
man labourer.
 Robot possess miscellaneous advantageous
over human employees. Error would be minimum
in robot, the accuracy of robot is undoubtedly hi-
gh, and finally robot is capable to undertake repe-
titive task identically (high precision/small vari-
ance) [1]. Furthermore, robot performance would
not be affected by the altering of the job site con-
ditions.

35

36 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 8, Issue 1,
February 2015

 In the manufacturing industries, robot select-
ion has become challenging issue. There are vari-
ous criteria underlie robot selection, such as capa-
bilities, specifications, range of applications, and
constant time during repetitive tasks [2]. Constant
and accurate time during operation is predominant
criteria which should be elaborated for robot sele-
ction. Inconsistency and inaccurate timing during
job undertaking, would lead to error that will be
accumulated each time and likely to cause product
rejection by means of tolerance incompliance. Th-
erefore, while deciding the automation machine to
be chosen, both accuracy and precision are neces-
sitated to be considered.
 In this study, Real Time Operating Systems
(RTOS) will be evaluated and compared against
primitive interrupt for embedded system since bo-
th are frequently utilized in industrial robot imple-
mentation. RTOS operation is based on the prio-
rity which is predetermined by the deadline time
[3]. The scheduling will be undertaken by RTOS
to meet the deadlines, unlike the primitive inter-
rupt which is prescribed manually. There are ma-
ny kinds of RTOS, for example free RTOS, Real-
Time Unit (RTU) hardware RTOS, the pure soft-
ware Atalanta RTOS, and a hardware/software
RTOS composed of part of Atalanta interfaced to
the System on-a-Chip Lock Cache (SoCLC) hard-
ware [4]. On the other hand, there are two catego-
ries of primitive interrupt, preemptive and non-
preemptive interrupt. In the preemptive interrupt
tasks could be halted in the middle of processing
and replaced by another task which have higher
priority. On the contrary, in non-preemptive inter-
rupt the higher priority task is must wait until the
running task finished and all tasks have to coo-
perate to undertake the entire job.
 While RTOS is undertaking multiple tasks,
each task is placed into one of these four states,
running, ready, block, and suspended state. First
of all, if task is in the running states, it means that
the processor is being utilized to perform the task.
Secondly, a task would be in the ready state if the
task is executable because is in neither blocked
nor suspended state, and has not been executed
because a higher priority task is still in the run-
ning state. Thirdly, a task is placed into a blocked
state if the task is waiting for triggers. Triggers
could be external triggers such as button or switch
and temporal trigger (for instance timer delay). Fi-
nally, a task would not enter nor exit the suspend-
ed state, unless that task is called by a certain co-
de.
 Research on RTOS has been conducted for
many years. For example, a research which was
conducted by Neishaburi et al. (2007) which has
focused on robustness improvement of RTOS [5].
Secondly, Maruyama et al. in 2010 have investi-

gated energy conservation by implementing RTOS
in hardware [6]. In the robotic field, Liu Xianhua
et al. (2003) have conducted a research that imple-
mented Digital Signal Processing (DSP) devices
and RTOS platform as a control architec-ture of
autonomous robot [7]. While in 2006, Serker et al
have developed network-based real-time for robot
control system [8]. In 2014, Atmadja et al. exami-
ned RTOS in Embedded Linux for mobile robot
implementation [9]. Finally, Hoxing Wei et al.
(2014) have conducted a research in Robot Opera-
ting System (ROS) which utilized the hybrid of
RTOS and General Purpose Operating System
(GPOS) [10].
 In this research, the performance of RTOS
will be investigated while undergoing multiple ta-
sks. The results of which will be compared against
primitive interrupt performance in the similar sce-
nario.

2. Methods

Components utilized to evaluate the performance
of both RTOS and primitive interrupt comprises:
DT-Combo AVR-51 Starter Kit which is employ-
ed as the main board, microcontroller ATMEL AT-
mega32, servo motor GWS S03N Standard, SRF
08 ultrasonic sensor, and LCD and LED which are
embedded in the main board. The scheme of the
architecture of the system is shown in Figure 1.
The specifications of the microcontroller used in
the experiment are shown in Table 1. Meanwhile,
the specifications of the ultrasonic sensor and the
mainboard are listed in Table 2 and Table 3, resp-
ectively.

In this research, microcontroller would be
imposed multitasking job. The performance of the
system would be examined while undertaking
multiple tasks, especially in time precision and ac-
curacy. There are four concurrent tasks that will
be appointed to the system. First of all, the system
had to operate and control servo motor motion ba-
sed on the code. The servo motor will rotate recip-
rocally from 0o to 180o. In addition, there was an-
other microcontroller to control another servo mo-
tor. The rotation of the latter servo motor would
be converted to be translation by connected it to
rack and pinion mechanism. The position of the
rack (translation) would be observed by ultrasonic
sensor (SRF08) and become the second task of the
system. The amount of which the ultrasonic sen-
sor detected the rack would be recorded in a pres-
cribed observation time. The schematic of servo
motor and rack and pinion mechanism are shown
in Figure 2.

The two last tasks appointed to the system
were the counting that would be displayed on
LCD and LED which indicated the conformity of

Dwi M J Purnomo, et al., Comparative Study of RTOS 37

Main Board
DT COMBO AVR 51

LCD

Ultrasonic Sensor
(SRF08)

Servo Motor
(GWS S03N STD)

LED

Figure. 1. Scheme of the system’s architecture.

Servo Motor

Rack

Pinion

Figure 2. Scheme of the rack and pinion mechanism.

TABLE 1
MICROCONTROLLER’S SPECIFICATIONS

Features Value
In-System Programmable Flash 32 KB
EEPROM 1024 B
SRAM 2 KB
General Purpose I/O lines 32
Voltage 4.5V - 5.5V

TABLE 3
MAINBOARD’S SPECIFICATIONS

Features Value
Voltage 9-12 V
LCD 8x2 characters
LED 8 pcs (0-7)
Switch button 8 pcs (0-7)
Path I / O 35 pins
Dimensions 17.5 cm x 12.5 cm x 2 cm

TABLE 4

TASKS DESCRIPTION
Components Task

LED Counting per 1 s

LCD Displaying hit counting

Servo Reciprocally rotating (0 – 180o)

Ultrasonic sensor Transmit/receive ultrasonic
wave

time measurement. The time recorded will be eva-
luated using the predetermined time, both accura-
cy and precision. This scenario also will be appoi-
nted to the system with primitive interrupt and
thereupon the behaviour of each system would be
compared. The tasks that would be executed are
summarized in Table IV.

Free RTOS and Non-preemptive Interrupt

FreeRTOS was used in this research due to its va-
rious advantageous. The benefits of using RTOS
constitute its capability of providing solution for
many different architectures, its reliability, under-
going active development, free of charge, its sim-
plicity, and various minor benefit [11].
 The task’s priorities in the freeRTOS are
defined in the FreeRTOSConfig.h. These priorities
are ranging from 0 to (configMAX_PRIORITIES
-1) [12]. The value of (configMAX_PRIORITIES
-1) could be described to be any number, the only
restriction is the RAM capacity. Never-theles, if
the value of configUSE_PORT_OPTIMISED_
TASK_SELECTION is set to be 1 in the FreeRTOS
Config.h, the maximum value of configMAX_
PRIORITIES cannot exceed 32. Meanwhile, the

task which has priority of 0 is defined by tsk
IDLE_PRIORITY.

On the other side, non-preemptive interrupt
was used in this study. This type of interrupt was
used because in the experiment the tasks were
deemed have equal priorities. Therefore, to make
it comparable with the RTOS which use similar
priority on each task, non-preemptive interrupt
was used instead of preemptive interrupt.

The priorities of the interrupt are defined in
the microcontroller datasheet [13]. For instance,
RESET which has the highest priority and TIMER0
COMP which was used in this research. To define
the interrupt, Interrupt Service Routine (ISR) must
be included into the code. Further on, to activate
the global interrupt so that the interrupt would be
running, macro sei() was called.

Servo Motor

The architecture of servo motor is shown in Fi-
gure 3. There are four foremost components inside
servo motor, potentiometer, motor shaft, internal
signal generator, and comparator. Poten-tiometer
angular position resembles motor shaft position
by means of gear power transm-ission. The angu-

TABLE 2
ULTRASONIC SENSOR’S SPECIFICATIONS

Features Value
Max. distance 11 m
Max. Operating distance 6 m
Voltage 5V

38 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 8, Issue 1,
February 2015

Potentiometer Motor Shaft

Internal Signal Generator

Comparator

Variable Voltage

Control Signal (PWM)

D
C

 M
ot

or
 C

on
tro

l

Figure 3. Architecture of servo motor.

20 ms

X ms

Figure 4. PWM signal.

lar position of potentiometer defines the variable
voltage generated by internal signal generator.
The above-mentioned voltage there-upon transmi-
tted to te comparator to be compared with control
signal which is Pulse Width Modulated (PWM)
signal (Figure 4) .

The difference of the voltage then define the
direction of the rotation of motor shaft (whether
clockwise or counter clockwise). Motor shaft is
rotated by utilizing Direct Current (DC) voltage,
thus by the existence of gear mechanism will ro-
tates the potentiometer. The potentiometer’s angu-
lar position will be altered afterward that lead to
the change of the generated voltage from internal
signal generator. The aforementioned consecutive
events will run continuously until the equivalence
of the signals in the comparator attained.

PWM signal is employed to control the ser-
vo motor. As shown in Figure 4. There are two pa-
rts in PWM signal, high voltage (1) and low volta-
ge (0). The DC voltage generated is underlied by
the difference between the generated signal by
means of potentiometer and the average of the
PWM signal. The average of the PWM signal can
be calculated by empowering equa-tion(1). X is
the high voltage duration which is ranging from 1
ms to 4 ms, T is PWM signal period (20 ms), and
V is voltage. Meanwhile, to define the angular po-
sition of the motor shaft by means of the potentio-
meter, equation(2) can be utilized. Xo is the high
voltage duration to be positioned in the smallest
angle (in this case 4 ms for 0o). Xf is the high vol-
tage duration to be positioned in the largest angle
(in this case 1 ms for 180o). Finally θm is the range
of the angle (180o).

 𝑽𝑽� =
𝑿𝑿
𝑻𝑻
𝑽𝑽

(1)

 𝜽𝜽 =
𝑿𝑿 − 𝑿𝑿𝒐𝒐
𝑿𝑿𝒇𝒇 − 𝑿𝑿𝒐𝒐

𝜽𝜽𝒎𝒎 (2)

Ultrasonic Sensor

The ultrasonic sensor works based on the frequen-
cy of the signal transferred to the magnetic mem-
bran in the actuator. The current will flow into the
actuator and will vibrate the magnetic membrane
by means of Lorentz force. The vibration frequen-
cy will be equal to the excitation signal frequency,
hence by determining the excitation signal freque-
ncy the vibration frequency can be defined. The
vibration of the mag-netic membrane thereupon
will lead to the generation of ultrasonic sound that
will be fired to the object to measure the distance
of which. The distance of the object is estimated
by reckoning of the duration of the reflected ultra-
sonic signal perceived by the reciever (equati-
on(3)). L is the distance of the object, T is the du-
ration of the reflected signal recieved by the
reciever, and c is the sound speed (340 m/s).

 𝑳𝑳 =
𝑻𝑻
𝟐𝟐
𝒄𝒄 (3)

As described in the previous chapter, the ul-

trasonic sensor employed in this research is SRF
08. The maximum distance can be measured bu
utilizing this sensor is 11 m (Table II). The afore-
mentioned value is corresponding to the interval
of which the ultrasonic remain idle while shooting
ultrasonic wave (65 ms). This value can be altered
to reduce the interval time of which the u;trasonic
sensor is idling. If the interval time is abridged,
the firing repetition will be more frequent. Thus,
the delay of which the position of the object over-
looked will be minimized, and it will lead to the
surging of the accuracy. Equation(4) can be empo-
wered to calculate the maximum distance ultraso-
nic sensor can detects. Lm is the maximum distan-
ce and reg is range register which is defined by
hexadecimal number, for instance 0xFF means
255 that makes Lm to be approximately 11 m. Fin-
ally the number 43 is defined by the code inherent
in the sensor.

 𝑳𝑳𝒎𝒎(𝒎𝒎𝒎𝒎) = (𝒓𝒓𝒓𝒓𝒓𝒓 ∙ 𝟒𝟒𝟒𝟒) + 𝟒𝟒𝟒𝟒 (4)

Dwi M J Purnomo, et al., Comparative Study of RTOS 39

Figure. 5. Installation of the system.

T-test

To examine the significant of both the methods, t-
test was employed. There are two criteria in the t-
test. Firstly Ho, which means there is no signifi-
cant in the both methods. Secondly Ha, is the op-
posite of the aforementioned criteria. The methods
are included into Ho criteria if in equation(5) is
fulfilled. Otherwise the methods belong to Ha cri-
teria. t calculation formula follows equation(6),
and t table is defined in the t-test table. T calcula-
tion is the function of the mean of the data, the
amount of the data, and also variant of both the
methods.

 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕− ≤ 𝒕𝒕𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ≤ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕+

(5)

 𝒕𝒕𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =
𝒙𝒙�𝟏𝟏 − 𝒙𝒙�𝟐𝟐

�𝒔𝒔𝟏𝟏
𝟐𝟐

𝒏𝒏𝟏𝟏
+ 𝒔𝒔𝟐𝟐

𝟐𝟐

𝒏𝒏𝟐𝟐

 (6)

Experimental Setup

In the experiment, main board was connected with
two external hardware, ultrasonic sensor and ser-
vo motor. Whereas LCD and LED, had been initi-
ally attached to the main board. The servo motor
which rack and pinion mechanisms are installed
on was operated by different main board to keep
RTOS and primitive interrupt experiment compar-
able. The installation of the system is shown in Fi-
gure 5. In Figure 5. number 1 is rack and pinion
mechanism, number 2 is ultrasonic sensor, num-
ber 3 is servo motor, number 4 is LED, and num-
ber 5 is LCD.

Figure 6 shows the setup of the sensor. Whi-
le rack was reciprocally moving from left to right
and vice versa, ultrasonic sensor transmitted the
wave in certain period. There are two positions of
which the ultrasonic sensor is imposed to detect
the object, the starting point (x cm) and the end
point (10 cm). If the rack was in the prescribed
position, the ultrasonic sensor would detect the
rack and deemed it as hit. Otherwise the sensor
would mull it as miss. Every hit was counted and
accumulated, then eventually would be recorded
and compared to the real hit for both the methods.
Furthermore, there were three main scenarios con-
ducted in the reaserch. Those scenarios were ba-
sed on the period of the rack mechanism (Table
5). The period of the rack were stipulated by alter-
ing the angular movement of the servo motor whi-
ch rotated the rack mechanism. Larger the angular
movement, longer the period would be. Moreover,
to diminished the period, the loop number in the
code was reduced so that the delay in the edge po-
int (turning point) would me decreased. Hence the
rack period would be declined.

The success rate of the ultrasonic sensor de-
tect the occurrence of rack was used as perform-
ance indicator of both the methods. The observing
time of the system were prescribed and altered af-
ter several iterations. The observation time wass
ranging from 10 s to 50 s with the increment of 10
s. The amount of success reading by sensor are
compared with the true value of the counting whi-
ch is acquired by manual calculation and measure-
ments. Parameters employed in this research are
presented in Table 6. Figure 7 illustrates the sche-
dulling of the tasks in RTOS. There are four tasks
connected to the RTOS scheduller. Each task con-
nection has two direction of operation, from and
to RTOS scheduller. Meanwhile, the sensor task is
also connected to LCD to display the data obtain-
ed by the sensor.

In non-preemptive interrupt, three main co-
des for determining the behavior of the interrups
are represented in Figure 8, Figure 9, and Figure
10. In Figure 8. ISR is declared and empower TI-
MER0_COMP vector to stipulate the task’s priority.
The interrupt timer was set to be 1 ms, therefore
the Output Compare Register (OCR0) was defined
to be 187.5, the value of which is elaborated in the
Figure 7. The task delay is explained in the three
last rows of the code. The counting variable was
initially set to be 2000 in this research. There-up-
on, in every rising clock which was prescribed to
be 1 ms the counting value would be one value
lower than the prior value. When the counting va-
lue reach 0 the task would be conducted which
means the delay for each task is 2 s. The detail of
which is elucidated in Figure 10.

40 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 8, Issue 1,
February 2015

Sensor

Rack

10 cm x cm 0 cm

t (Sec/Periode)

Figure 6. Scheme of the data acquisition.

TABLE 6
PARAMETERS USED IN EXPERIMENT

Symbol Parameter Value
V Servo motor voltage (V) 4.8

n Servo motor speed (rpm) 43.47
i Number of iterations 10

RTOS
Scheduler

Sensor
Task

LED
Task

Servo
Task

LCD
Task

Figure 7. Scheme of task schedulling.

ISR(TIMER0_COMP_vect) {
 time++;
 if (OCR0 == 187) OCR0 = 188;
 else OCR0 = 187;
 for (int i = 0; i < task_count(); ++i)
{

 if (all_task[i].counting !=
INT16_MIN && all_task[i].counting
!= INT16_MAX) {

 all_task[i].counting--;
 }
 }
}

Figure 8. ISR declaration in non-preemptive interrupt.

Figure 9 shows the enable control of the in-
terrupt. Corresponding to the desired period of the
timer (1 ms) and CPU (Central Processing Unit)
speed (12 MHz), the clock needed to attain it is
12000 clocks. Thereby the clock would rise after
12000 times of the CPU periodically rose. Interru-
pt mode which is used in this study is CTC (Clear
Time on Compare), and the prescaler used is 64.
Because of that, the TOP value of CTC becomes
187.5 as the result of the division of 64 on 12000.
Hence, as written in the previous paragraph the
value of OCR0 is set to be 187 to approximate the
187.5 value. Finally, in Figure 7 sei() macro is
declared which means the declaration of the glo-
bal interrupt activation.

In Figure 10 tasks are called in acccordance
to the delay. The delay is determined by the count-
ing variable. When the counting variable less than
or equal 0, the task will be undertaken, and vice
versa.

3. Results and Analysis

There are three main results in the experiment
which was conducted. First of all is hit rate of the
system for both RTOS and interrupt method (sho-
wn is Figure 11, Figure 14, and Figure 17). Sec-
ondly, the relative error of both the methods by
means of the comparison with the real hit which
are illustrated in Figure 12, Figure 15, and Figure
18 for the three scenarios. Finally, Figure 13, Fig-
ure 16, and Figure 19 represent the standard devi-
ation of the data obtained from the experiment.
 According to Figure 11 RTOS hit rates in 1.7
rack period were closer to the real hit rates than
interrupt hit rates for both the turning points (start
and end). This means RTOS accuracy was better

than interrupt accuracy. The aforementioned dedu-
ction was strengthened by Figure 12 the relative
errors of the interrupt method were higher than
RTOS methods. The errors of RTOS method fluc-
tuated near 40% for starting point and 60% for
ending point. Whereas the errors of interrupt were
approximately 85% for starting point and 90% for
ending point. On the contrary, as shown in Figure
13 RTOS results varied wider than interrupt me-
thod.

RTOS standard deviation values were higher
than interrupts standard deviation, above all while
the observation time was longer for both the turn-
ing points. For instance, the standard deviation of
RTOS in 50 s observation time was almost thrice
higher than interrupt method for starting point and
50% higher for ending point. These results indica-
ted that interrupt method was more stable than

TABLE 5
SCENARIO OF THE EXPERIMENT

Scenario x (cm) t (s)
1 7 1.7
2 7 2.6

3 5 3

Dwi M J Purnomo, et al., Comparative Study of RTOS 41

Figure 11. Average hit rate of RTOS, Interrupt, and
manual calculation for 1.7 s period.

10 20 30 40 50
RTOS (start) 2.4 6.6 9.6 10.2 13.6
Interrupt (start) 1 0.9 2.8 3.6 3.4
Real Hit 5 11 17 23 29
RTOS (end) 2.1 3.6 4.3 5.3 7.3
Interrupt (end) 0.4 0.7 2.2 2.2 2

0
5

10
15
20
25
30
35

H
it

Observation time (s)

// CTC mode is used for interrupt setup
// CPU speed is 12 Mhz, hence 12000 clock
is needed to acquire 1 ms
// prescaler is set to be 64, thus TOP for
CTC is 12000/64 = 187.5
OCR0 = 187;
TCNT0 = 0;
TCCR0|=_BV(WGM01)|_BV(CS01)|_BV(CS00);
TIMSK |= _BV(OCIE0);
sei();

Figure 9. Interrupt enable control in non-preemptive

interrupt.

for (int i = 0; i < task_count(); ++i)
{

if (tmp[i] <= 0) {
tmp[i] = all_task [i].function();
if (tmp[i] < 0) tmp [i] = 0;
}
else
{

tmp [i] = 0;
}

}

Figure 10. Task control in non-preemptive interrupt.

RTOS method. This means interrupt method was
more precise than RTOS method, even though less
accurate.

The trend for another scenarios are quite si-
milar. The accuracy of the RTOS was higher than
the accuracy of interrupt, and interrupt was more
precise than RTOS depicted in the smaller stan-
dard deviation.

Meanwhile, the comparison based on the
scenario in RTOS does not show the propensity of
the results. The average relative errors for 2.6 s
and 3 s in starting point are about 10% and 20%
respectively, whereas in the ending point are arou-
nd 40% for both the scenarios. In contrast, in inte-
rrupt results show the tendency of the decreasing
error as the rack period increased. The average re-
lative error for 2.6 s and 3 s period is starting poin
are approximately 80% and 60% consecutively,
whereas in the ending point are near the value of
80% and 70% respectively.

Finally, in the standard deviation figure obs-
ervation time does not give a certain trendline by
means that each scenario has its own trendline.
Firstly in 1.7 s rack period scenario for RTOS me-
thod, the standard deviation rise as the observati-
on time increase in the starting point, whereas in
the interrupt, the value rise until reach the culmi-
nation point (30 s) then drop and stable.

On the other hand, the standard deviation
value in the 1.7 s scenario for both the methods
remain stable throughout the observation time in
ending point. Meanwhile, in the other two scena-
rios the standard deviation value fluctuate irregu-
larly for each sub-scenario. According to the ex-

periment conducted, RTOS exhibited higher accu-
racy than interrupt method, but surprisingly inter-
rupt method has higher precision than RTOS. The-
re are several reasons for the aforementioned oc-
curring results.

First of all, concerning to the accuracy result
RTOS exhibited better results due to its schedul-
ling technique. While one task is in the running
state, the other tasks are stored in the ready state.
This means when the running task is over, the oth-
er task from the ready state could be delivered to
the running state directly. Because of it, the ex-
changing process of the tasks would be faster. If
the exchanging process of the tasks is faster it wo-
uld lead to the more frequent of the ultrasonic wa-
ve excitation. The more ultrasonic wave is shot,
the higher the possibility of rack detection.

In contrast, interrupt method consider interr-
upt as a task. Therefore, there would be delays ev-
ery time interrupt was called. This trait would de-
celerate the exchanging process of the tasks. Mo-
reover, the task in the interrupt method would be
executed sequantially by means while a certain

Figure 12. Relative error of RTOS and Interrupt for 1.7 s

period.

10.00 20.00 30.00 40.00 50.00
RTOS (start) 52.00 40.00 43.53 55.65 53.10
Interrupt (start) 80.00 91.82 83.53 84.35 88.28
RTOS (end) 58.00 67.27 74.71 76.96 74.83
Interrupt (end) 92.00 93.64 87.06 90.43 93.10

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

R
el

at
iv

e
er

ro
r (

%
)

Observation time (s)

42 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 8, Issue 1,
February 2015

Figure 14. Average hit rate of RTOS, Interrupt, and
manual calculation for 2.6 s period.

10 20 30 40 50
RTOS (start) 2.7 6.7 9.3 11.4 17
Interrupt (start) 0.2 1.5 1.5 2.3 3.1
Real Hit 3 7 11 15 19
RTOS (end) 1.6 5.5 8.3 9.7 10.3
Interrupt (end) 0.8 0.6 1.4 2.3 2.1

0
2
4
6
8

10
12
14
16
18
20

H
it

Observation time (s)

Figure 14. Average hit rate of RTOS, Interrupt, and
manual calculation for 2.6 s period.

10 20 30 40 50
RTOS (start) 2.7 6.7 9.3 11.4 17
Interrupt (start) 0.2 1.5 1.5 2.3 3.1
Real Hit 3 7 11 15 19
RTOS (end) 1.6 5.5 8.3 9.7 10.3
Interrupt (end) 0.8 0.6 1.4 2.3 2.1

0
2
4
6
8

10
12
14
16
18
20

H
it

Observation time (s)

Figure 15. Relative error of RTOS and Interrupt for 2.6 s

period.

10.00 20.00 30.00 40.00 50.00
RTOS (start) 10.00 4.29 15.45 24.00 10.53
Interrupt (start) 93.33 78.57 86.36 84.67 83.68
RTOS (end) 46.67 21.43 24.55 35.33 45.79
Interrupt (end) 73.33 91.43 87.27 84.67 88.95

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

R
el

at
iv

e
er

ro
r (

%
)

Observation time (s)

Figure 16. Standard deviation of RTOS and Interrupt for

2.6s period.

10 20 30 40 50
RTOS (start) 0.67 0.67 1.34 1.26 1.56
Interrupt (start) 0.42 0.71 0.71 1.06 1.20
RTOS (end) 0.84 0.85 1.34 1.06 1.34
Interrupt (end) 0.63 0.70 1.07 1.57 1.10

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

St
an

da
rd

 d
ev

ia
tio

n

Observation time (s)

task was running, the other task could not interfe-
re it. The aforementioned deduction was proved
by the behavior of the system during experiment.
Even though the delay of the LED was prescribed
by 1 s, but in the experiment the LED delay was
more than 1 s, more precisely the LED altered af-
ter the servo motor finished its task.

Secondly, regarding the precision of the sys-
tem interrupt have better performance on repeti-
tion. The results variation of the interrupt was nar-
rower than RTOS. The reason of which is because
of the task undertaking process. In the interrupt
the consecutive tasks were undertaken repeatedly
with the similar sequence and with the same pe-
riod. This behavior made the time when the ultra-
sonic wave was transmitted similar each period.
Hence, the hit rate of the system using interrupt
would not vastly varied.

On the other hand, RTOS task executing
process varied each period. It is shown in the
experiment that the LED task complied with the
code (1s) delay. This means that there were alter-
nation when the exchanging process of the task

occured. Because of it, the sequence of the task
execution was differrent each period. Thus, the
time of when the sensor transmitted the ultrasonic
wave was a time arbitrary task. This lead to the
widely variation of the data acquired from the
RTOS method.

In RTOS rack period did not affect the
accuracy of the ultrasonic sensor because the de-
lay of the sensor was only from the interval time
of the ultrasonic sensor. On the contrary in the in-
terrupt, the longer rack period time higher the
accuracy this due to the delay which existed in the
interupt was not only from the sensor but also fr-
om the interrupt itself. Thus, longer the period
higher the probability of the detection would be.
Finally in the standard deviation, neither obser-
vation time nor rack period gave certain behavior
to the system since there is no solid connectivity
between the schedulling and either observation
time or rack period.

After the data have been entirely obtained, t-
test was conducted to examine the significant of

Dwi M J Purnomo, et al., Comparative Study of RTOS 43

Figure 19. Standard deviation of RTOS and Interrupt for

3s period.

10 20 30 40 50
RTOS (start) 0.82 1.26 2.21 2.31 2.70
Interrupt (start) 0.57 0.52 0.67 0.57 0.47
RTOS (end) 0.67 0.71 1.23 1.43 1.25
Interrupt (end) 0.71 0.71 0.92 0.52 1.25

0.00

0.50

1.00

1.50

2.00

2.50

3.00

St
an

da
rd

 d
ev

ia
tio

n

Observation time (s)

Figure 18. Relative error of RTOS and Interrupt for 3 s
period.

10.00 20.00 30.00 40.00 50.00
RTOS (start) 33.33 23.33 30.00 20.77 13.75
Interrupt (start) 70.00 56.67 67.00 62.31 68.75
RTOS (end) 33.33 41.67 52.00 58.46 48.13
Interrupt (end) 83.33 91.67 88.00 87.69 83.13

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

R
el

at
iv

e
er

ro
r (

%
)

Observation time (s)

Figure 17. Average hit rate of RTOS, Interrupt, and
manual calculation for 3s period.

10 20 30 40 50
RTOS (start) 2 4.6 7 10.3 13.8
Interrupt (start) 0.9 2.6 3.3 4.9 5
Real Hit 3 6 10 13 16
RTOS (end) 2 3.5 4.8 5.4 8.3
Interrupt (end) 0.5 0.5 1.2 1.6 2.7

0
2
4
6
8

10
12
14
16
18

H
it

Observation time (s)

TABLE 7
T -CALCULATION OF EACH SCENARIO

Group Rack Period (s)
1.7 2.6 3

Start (10 s) 11.03 18.75 12.39
Start (20 s) 22.68 38.34 14.04
Start (30 s) 12.56 18.39 6.63
Start (40 s) 15.29 22.17 8.98
Start (50 s) 3.13 22.43 8.15
End (10 s) 18.90 9.30 11.82
End (20 s) 5.88 22.12 17.89
End (30 s) 3.12 14.40 10.96
End (40 s) 10.87 14.06 10.74
End (50 s) 10.42 18.15 15.70

the methods (Table 7). The t-test shows that RTOS
and interrupt are significant because the tcalc value
more than ttable (2.101) for each scenario. This me-
ans employing RTOS method will significantly
differ with utilizing interrupt method.

4. Conclusions

To recapitulate, RTOS has given a higher accura-
cy performance about 40 % than interrupt in every
starting point scenarios and about 20 % in every
end point scenarios due to the higher probability
of the sensor detects the rack because of it is more
frequent ultrasonic wave transmission. On the
contrary, interrupt method exhibited narrrower
output data variance (higher precision) compared
to the RTOS, interrupt has given a smaller stan-
dard deviation than RTOS in all scenarios. Exam-
ple, in scenario’s with period 1.7 s, interrupt stan-
dard deviation is about 1.03 (starting point) and
1.14 (end point) against RTOS standard deviation
is about 1.71 (starting point) and 2.54 (end point),
then with period 2.6 s, interrupt standard deviation

is about 0.71 (starting point) and 1.07 (end point)
against RTOS standard deviation is about 1.34
(starting point) and 1.34 (end point) and finally,
with period 3 s, interrupt standard deviation is
about 0.67 (starting point) and 0.92 (end point)
against RTOS standard deviation is about 2.21
(starting point) and 1.23 (end point). The reason
is, the interrupt method with sequential processs
did not vary at each period, unlike in the RTOS
method. Thus, while choosing the perfect machine
for industry, optimizations are needed to be con-
ducted which is restricted by the output tolerance
of the product itself. Therefore a better choice of
either RTOS or interrupt is driven by the indus-
try’s product specification.

References

[1] Ş. Özgürler, A.F. Güneri, B. dır Gülsün, & O.

Yılmaz, “Robot Selection for a Flexible Man-
ufacturing System with AHP and TOPSIS
Methods,” In 15th International Research/Ex-
pert Conference, pp. 333-336, 2011.

[2] R. Kumar & R.K. Garg, “Optimal Selection
of Robots by Using Distance Based Approach

44 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 8, Issue 1,
February 2015

Method”, Robotics and Computer-Integrated
Manufacturing, vol. 26, pp. 500-506, 2010.

[3] S.L. Tan, & T.N.B. Anh, “Real-time operating
system (RTOS) for small (16-bit) Micro-con-
troller” In Proceeding of The 13th IEEE In-
ternational Symposium on Consumer Electro-
nics, pp. 1007-1011, 2009.

[4] J. Lee, V.J. Mooney, A. Daleby, K. Ingstrom,
T. Klevin & L. Lindh, “A Comparison of the
RTU Hardware RTOS with a Hardware/Soft-
ware RTOS” In Proceeding of IEEE, pp. 683-
688, 2003.

[5] M.H Neishaburi, M. Daneshtalab, M.R. Ka-
koee, S. Safari, “Improving Robustness of
Real-Time Operating Systems (RTOS) Servi-
ces Related to Soft-Errors” In Proceeding of
IEEE, pp. 528-534, 2007.

[6] N. Maruyama, T. Ishihara, H. Yasuura, “An
RTOS in Hardware for Energy Efficient Soft-
ware-based TCP/IP Processing” In Proceed-
ing of 8thIEEE Symposium on Application
Specific Processor (SASP), pp. 58-63, 2010.

[7] L. Xianhua, Y. Kui, W. Wei, & Z. Wei, “A
Control Architecture of Autonomous Robot
and its Realization using Multiple DSP devi-
ces and RTOS Based Platform” In Proceed-
ing of The IEEE International Conference on
Robotics, Intelligent Systems, and Signal Pro-
cessing, pp. 519-523, 2003.

[8] M.O.F. Sarker, C.H. Kim, J.S. Cho, & B.J.
You, “Development of a Network-based
Real-Time Robot Control System over IEEE
1394: Using Open Source Software Platform”
In Proceeding of The 3rd IEEE International
Conference on Mechatronics (ICM), pp. 563-
568, 2006.

[9] W. Atmadja, B. Christian, L. Kristofel, “Real
Time Operating System on Embedded Linux
with Ultrasonic Sensor for Mobile Robot” In
Proceeding of IEEE International Conference
on Industrial Automation and Information &
Comunication Technology (IAICT), pp. 22-
25, 2014.

[10] H. Wei, Z. Huang, Q. Yu, M. Liu, Y. Guan, &
J. Tan, “RGMP-ROS: a Real-time ROS
Architecture of Hybrid RTOS and GPOS on
Multi-core Processor” In Proceeding of The
IEEE International Conference on Robotics
and Automation (ICRA), pp. 2482-2487,
2014.

[11] Real Time Engineers Ltd, FreeRTOS, http://
www.freertos.org., retrieved March 3, 2015.

[12] Real Time Engineers Ltd, FreeRTOS, http://
www.freertos.org/RTOS-task-priority.html,
retrieved March 3, 2015.

[13] Atmel-8155D-AVR-Atmega32A-Datasheet,
February 2014.

