
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information). 9/1 (2016), 52-58
DOI: http://dx.doi.org/10.21609/jiki.v9i1.366

PARTICLE SWARM OPTIMIZATION (PSO) FOR TRAINING OPTIMIZATION ON
CONVOLUTIONAL NEURAL NETWORK (CNN)

Arie Rachmad Syulistyo1, Dwi M J Purnomo1, Muhammad Febrian Rachmadi2, and Adi Wibowo3

1 Faculty of Computer Science, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia

2 School of Informatics, The University of Edinburgh, 11 Crichton Street, Edinburgh EH8 9LE, United
Kingdom

3 Department Micro-Nano System Engineering, Graduate School of Engineering, Nagoya University, 1
Furocho, Chickusa Ward, 464-8603 Japan

E-mail: arie.rachmad@ui.ac.id

Abstract

Neural network attracts plenty of researchers lately. Substantial number of renowned universities have
developed neural network for various both academically and industrially applications. Neural network
shows considerable performance on various purposes. Nevertheless, for complex applications, neural
network’s accuracy significantly deteriorates. To tackle the aforementioned drawback, lot of research-
es had been undertaken on the improvement of the standard neural network. One of the most pro-
mising modifications on standard neural network for complex applications is deep learning method. In
this paper, we proposed the utilization of Particle Swarm Optimization (PSO) in Convolutional Neural
Networks (CNNs), which is one of the basic methods in deep learning. The use of PSO on the training
process aims to optimize the results of the solution vectors on CNN in order to improve the recog-
nition accuracy. The data used in this research is handwritten digit from MNIST. The experiments
exhibited that the accuracy can be attained in 4 epoch is 95.08%. This result was better than the
conventional CNN and DBN. The execution time was also almost similar to the conventional CNN.
Therefore, the proposed method was a promising method.

Keywords: deep learning, convolutional neural network, particle swarm optimization, deep belief
network

Abstrak

Jaringan syaraf tiruan menarik banyak peneliti dewasa ini. Banyak universitas-universitas terkenal
telah mengembangkan jaringan syaraf tiruan untuk berbagai aplikasi baik kademik maupun industri.
Jaringan syaraf tiruan menunjukkan kinerja yang patut dipertimbangkan untuk berbagai tujuan.
Meskipun begitu, kinerja dari jaringan syaraf tiruan merosot dengan signifikan untuk masalah-masa-
lah yang kompleks. Untuk menyelesaikan masalah tersebut di atas, banyak penelitian yang dilakukan
untuk meningkatkan kinerja dari jaringan syaraf tiruan standar. Salah satu pengembangan yang men-
janjikan untuk jaringan syaraf tiruan pada kasus yang kompleks adalah metode deep learning. Pada
penelitian ini, diusulkan penggunaan metode Particle Swarm Optimization (PSO) pada Convolutional
Neural Networks (CNNs), yang merupakan salah satu metode dasar pada deep learning. Penggunaan
PSO dalam proses pelatihan bertujuan untuk mengoptimalkan hasil vektor solusi pada CNN, sehingga
dapat meningkatkan akurasi hasil pengenalan. Data yang digunakan dalam penelitian ini adalah data
angka yang berasal dari MNIST. Dari percobaan yang dilakukan akurasi yang dicapai dengan 4 iterasi
adalah 95,08%. Hasil ini lebih baik dari CNN konvensional dan DBN. Waktu eksekusinya juga men-
dekati CNN konvensional. Oleh karena itu, metode yang usulkan adalah metode yang menjanjikan.

Kata Kunci: deep learning, convolutional neural network, particle swarm optimization, deep belief
network

1. Introduction

In recent years, many researchers conducted studi-
es on machine learning with deep hierarchical arc-
hitecture. The term deep hierarchical learning was
introduced by Hinton et al. [1]. They proposed a
method to transform high dimensional data into

low dimension data. They employed multilayer
neural network with a small middle layer to re-
construct the input vector. Today, machine learn-
ing with deep hierarchical learning is named as
deep learning.

The concept of deep learning is derived fr-
om neural network research, therefore deep lear-

52

Arie Rachmad Syulistyo, et al., Particle Swarm Optimization 53

Figure 1. The original Convolutional Neural Networks (CNN) architecture [7]

Convolutions

INPUT
28x28

C1: feature maps
6@28x28

S2: f. maps
6@14x14

Subsampling Convolutions Subsampling

C3: f. maps
12@10x10 S4: f. maps

12@5x5 C5: layer
120

Full connection
Full connection

Gaussian connection

F6: layer
84

OUTPUT
10

ning regarded as a “new-generation of neural net-
works” [2]. Deep learning is research intersection
between many areas, such as neural networks, ar-
tificial intelligence, pattern recognition, signal
processing, optimization, and graphical model.
Feedforward neural networks or Multilayer Per-
ceptron (MLPs) with many hidden layers, which
is often called Deep Neural Networks (DNN), is a
good example of a model with deep architecture.
Deep learning demonstrated impressive results
and has been applied in several fields, like object
recognition, computer vision, voice search, con-
versational speech recognition, and language pro-
cessing.

From a wide variety descriptions that exist,
deep learning generally has two aspects [2]. The
first is deep learning is a model consisting of mul-
tiple layers of nonlinear information process-ing.
The second is deep learning is a supervised or an
unsupervised learning method to represent the
features of the bottom layer to the top layers.

Several variations of deep learning are conti-
nually being researched and many of them have
been applied into some machine learning tasks. In
many cases, deep learning exhibited significant
improvement on results, compared to previous
conventional methods. There are plenty of deep
learning algorithms which have been developed
such as, Deep Neural Networks (DNNs) [1], Deep
Boltzmann Machines (DBMs) [3], Recurrent Neu-
ral Networks (RNNs) [4], and Deep Auto encod-
ers [5].

From many deep learning methods, there are
3 basic models that underlie many of the deep lea-
rning methods, i.e. Deep Belief Networks (DBNs)
[6], Convolutional Neural Networks (CNNs) [7],
and Stacked Auto Encoder (SAE) [8]. These three
models are the most prominent and become build-
ing blocks for many deep learning methods, such
as Multiresolution DBN (MrDBN) [9], an exten-
sion of the DBN or Scale-Invariant Convolutional
Neural Network (SiCNN) [10] developed based

on the CNNs model.
In this research, we focus handwritten digit

recognition problem based on data from MNIST.
From three basic models, we empowered CNNs
method as our basic algorithm. CNN was employ-
ed due to its high accuracy on MNIST datasets
[11].

CNNs is a type of feed forward neural net-
work inspired by the structure of visual system.
CNN consists of many neurons that have weights
and biases, where each neuron receives several in-
puts and perform dot products. In terms of arch-
itecture, CNNs composed of one or more convo-
lutional layers with subsampling stages and one or
more fully connected layers as found in a standard
multi-layer neural networks.

Even though standard CNN has shown con-
siderable accuracy, there are still a lot of space for
improvement. To ameliorate performance of CNN
in recognition task, we used PSO to optimize out-
put vector from CNNs. The utilization of PSO is
due to its powerful performance on the optimiza-
tion problems.

PSO in an optimization method developed
by Eberhart and Kennedy [12]. This method is
inspired by social behavior of animals that do not
have a leader in their group. PSO consists of a sw-
arm of particles, where the particles represent a
potential solution.

To assess our proposed method, we compare
results obtained from proposed method with other
existing algorithms results. The existing algorit-
hms used for comparison are the original CNNs
and Deep Belief Networks (DBNs). The perform-
ance criteria used in this research are error and
accuracy.

The remaining of this paper is organized as
follows: Section 2 describes the basic theory of
DBN, CNN, and PSO. Experiment setup and resu-
lts obtained in the comparison study presented in
Section 3. The conclusions of this paper are given
in Section 4.

54 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
1, February 2016

Image Convolved Feature

Figure 2. Convolution operation

Convolved Feature Pooled Feature

Figure 3. Illustration of pooling process

Figure 4. Restricted Boltzmann Machines (RBMs)

2. Methods

Convolution Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) is inspi-
red by cat’s visual cortex [12]. CNN generally
consists of 3 layers which are convolutional layer,
subsample/pooling layer, and fully connected la-
yer. Convolution layer shares a lot of weights wh-
ereas pooling layer performs subsampling func-
tion to resulted output from convolution layer and
reduce data rate of the layer below. The outputs
from pooling layer are used as an input to several
fully connected layers. Figure 1 shows the archi-
tecture of CNNs [7], and the convolution opera-
tion is illustrated on Figure 2. Convolved feature
that is generally called feature maps is the result
of convolving the filter/kernel on dataset.

The convolution process can be written by
the following equation(1):

∑∑ −−==
m n

njmiKnmIjiKIjiS),(),(),)(*(),((1)

where I is an input image, K is kernel/filter used
in convolution process, m is row of image, and n
is column of image. The subsample or pooling is
the process to reduce feature map. The concept of
pooling process almost equal to convolution pro-
cess that is convolving filter on input data. How-
ever, the differences pooling process on shifting
filter that does not overlap on each filter compare
with convolution process. The pooling illustration
can be seen on Figure 2.

Deep Belief Networks (DBNs)

Deep Belief Networks (DBNs), which was intro-
duced by Hinton, et al. [6], is a probabilistic gra-
phical model consisting of multiple layers with
hidden variables. DBNs are trained using greedy
layer wise algorithm which can optimize the wei-
ght of DBNs at the time complexity that linear to
the size and depth of the network. DBNs are train-
ed to extract deep hierarchical representation on
the input data. DBNs are composed of a number

of Restricted Boltzmann Machines (RBMs), a
special kind of Boltzmann Machines, that consist-
ing a layer of visible unit and a layer of hidden
units, with undirected and symmetrical connecti-
ons between visible and hidden layer, but there is
no connection among units in the same layer. Illu-
stration of RBM models can be seen in Figure 4.

The lower layer v is the visible layer, and the
top layer h is the hidden layer, where these two la-
yers are stochastic binary variables. The weights
between the visible layer and the hidden layer (W)
are undirected. In addition each neuron has a bias.

The join distribution function p(v,h) of the
visible units v and the hidden units are defined in
equation(2) in the form of an energy function.

𝑝𝑝(𝑣𝑣,ℎ) =
exp (−𝐸𝐸(𝑣𝑣,ℎ))

𝑍𝑍
 (2)

where Z is the partition function and given by su-
mming all possible pairs of visible and hidden
units as shown by equation(3).

𝑍𝑍 = ∑ exp (−𝐸𝐸(𝑣𝑣,ℎ))𝑣𝑣,ℎ (3)

A joint configuration of visible and hidden
units has an energy that given by equation(4).

𝐸𝐸(𝑣𝑣,ℎ) = −∑ a𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖=1 − ∑ b𝑗𝑗ℎ𝑗𝑗 −𝑗𝑗=1

∑ v𝑖𝑖ℎ𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 (4)

Arie Rachmad Syulistyo, et al., Particle Swarm Optimization 55

Figure 5. CNN Architecture in the Proposed Method

Convolutions
5x5

INPUT
28x28

C1:
6 f.maps

S2:
6. f.maps

Subsampling
2x2

Convolutions
5x5

Subsampling
2x2

C3:
12 f. maps S4:

12 f. maps

Output

where vi is binary state of visible unit i, hj is bina-
ry state of hidden unit j, ai is bias in visible unit, bj
is bias in hidden unit, and wij is the weight bet-
ween visible and hidden units. The update rule for
RBM weights are:

∆𝑊𝑊𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑑𝑑�𝑣𝑣𝑖𝑖ℎ𝑗𝑗� − 𝐸𝐸𝑚𝑚(𝑣𝑣𝑖𝑖ℎ𝑗𝑗) (5)

where Ed(vihj) is the expectation in the training da-
ta and Em(vihj) is the same expectation that defin-
ed by the model. RBMs are trained using Contras-
tive Divergence (CD) algorithm to approximate
the expected value.

Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) algorithm is
one of evolutionary algorithm which was firstly
proposed in 1995 [13]. PSO has widely been em-
ployed in miscellaneous field, to cite an instance
swarm robot for odour source localization purpose
[14, 15].

PSO algorithm consist several consecutive
steps. First of all, initialization which randomly
select the particles as searching agents (x) as well
as the velocities (v). Secondly the particles then
inserted into cost function to find local bests (pbest)
and global best (gbest). Local best is defined as the
location on which the cost is the smallest for each
particle. Meanwhile, global best is the location on
which the cost is smallest among the local bests.
Thirdly, the particles are updated by empowering
equation(6) and equation(7).

𝑣𝑣𝑛𝑛+1 = 𝑣𝑣𝑛𝑛 + 𝑐𝑐1𝑟𝑟1(𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑛𝑛) +
𝑐𝑐2𝑟𝑟2(𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑛𝑛) (6)

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 𝑣𝑣𝑛𝑛+1 (7)

Where c1 and c2 are the constants, r1 and r2 are
random numbers, and n is iteration. The algorithm
of PSO can be written as follows:

Algorithm 1: Particle Swarm Optimization
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

% Initialization
Number_Interation_PSO;
Number_PSO_Swarm;
Determine gbest from PSO_Swarm;
Determine pbest from PSO_Swarm;
calculate fitness_old;

for 1 to Number_Interation_PSO do
 for 1 to Number_of_Particle do

%Update Velocity
v(n)t = v(n)t+1 + c1*r1.*(pbest-
x(n) +c2*r2.*(gbest-x(n))

%Update position
x(n+1) = x(n) + v(n)t

%Evaluate the objective function
fitness_new = f(x(n+1))
if (fitness_new< fitness _old)
 fitness _old = fitness _new;
 x = x(n+1);
 else
 fitness_new = fitness _old;
 x(n+1) = x;
end if

 end for;
 Index = min (fitness_new);
 pbest = x(index);
end for;

Proposed Method

Figure 5 shows the CNNs architecture used in the
proposed method, where it is consist of an input
image that will be processed using 6 convolution
kernel with size 5x5 pixels, 6 sub-sampling kernel
with size 2x2 pixels, 12 convolution kernel with
size 5x5 pixels, 12 subsampling kernel with size
2x2 pixels and the last layer is the vector output of
CNN. The proposed method process can be seen
on Figure 6. In Figure 6 Y denotes the condition is
met, whereas N represent the condition is not met.

PSO in this study would optimize the output
vector. The output vector would be augmented by
δx to acquire better value. The value of δx itself is
the value which would be optimized by PSO. To

56 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
1, February 2016

Figure 6. Flowchart of the proposed method

calculate the fitness function, the root mean squ-
are error between output vectors after augmented
with δx and the true output would be employed.

Generally, the process of the proposed meth-
od consists of several steps as shown below: 1)
the first step is initializing the learning rate of the
CNNs with the value is 1 based on the experi-
ment. Batch size of CNNs is 50, the number of
CNNs epoch in the range of 1 to 4, PSO iteration
is 10. The convergence status of PSO is used to
check the convergences of PSO, if the error value
has not changed for three iterations, then the PSO
is considered as convergent; 2) after setting up the
experiment, the next step is run CNNs training
process, where the detail of the process can be se-
en in section 2.1.

The result of CNNs is vector output that will
be optimizing using PSO algorithm. PSO optimi-
zation in this study serves to make the value of
loss function on CNN becomes minimal; 3) the
output vector will be update if the solution of swa-
rm has less error compare with old vector output;
4) the PSO will run as long as the iteration num-
ber of PSO and the convergence solution have not
fulfilled; 5) after the CNN Training, the model wi-
ll be tested with testing data that consist of 10000
data; 6) the result of CNN test is accuracy of
CNN, it represent how precise of the CNN model
can predict the actual value of testing dataset.

3. Results and Analysis

Dataset

In this study we use the handwritten digits data ta-
ken from MNIST database. This dataset has 28 x
28 pixel dimension and consist of 70000 data, in
which 60000 data used for training and the rest
data used for testing.

Experiment Result

In this chapter we will show the experiment result
on deep learning method, such as Convolutional
Neural Network, Deep Belief Network, and Con-
volutional Neural Network Optimize with Simu-
lated Annealing (SA) [16] and also compare the
performance with proposed method. The experi-
ment use handwritten Digit dataset from MNIST.
And the running time of all the deep learning me-
thod will compare each other to know how long
the deep learning method can predict the test data-
set.

Experiment on Handwritten Dataset

The overall experimental results on error and acc-
uracy can be seen in Figure 7 and Table 1 respec-

tively. The results of experiments showed the pro-
posed method has a better accuracy than another
deep learning method. Although the difference ac-
curacy value is not high but it important be-cause
the CNN does not need a lot of training epoch to
get good accuracy. CNNPSO has better accuracy
than CNNSA, it could be the advantages of PSO
fast searching ability with minimum iteration of
CNN. The error also exhibit the similar behavior.
These due to the fact that PSO is a powerful algo-
rithm for optimizing. Thus if com-pared to simu-
lated annealing in particular, it has better perfor-
mance.

As shown in Table 1, with only 4 epochs the
accuracy of CNNPSO has reached 95.08%. This
value was only slightly different from simulated
annealing optimized CNN (95.19%). Meanwhile,
CNN and DBN occupy the two last place with
94.81% and 91.14% respectively.

In execution time, DBN has fastest execution
time, which architecture 50 hidden node and 25
hidden layer, because on training process using
contrastive divergence that very fast [17].

CNNPSO consume longer time than CNN.
This due to the addition iteration in the PSO algo-

Arie Rachmad Syulistyo, et al., Particle Swarm Optimization 57

Figure 7. Error comparison of several algorithm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4

Er
ro

r

Epoch

CNN DBN
CNN-SA10 CNN-PSO

Figure 8. Time Comparison Based On Epoch Value

0

100

200

300

400

500

600

700

800

900

1 2 3 4

Ti
m

e
(s

)

Epoch

CNN CNN-SA10
DBN CNN-PSO

TABLE 1
ACCURACY PERFORMANCE ON ALL DEEP LEARNING

METHOD

Method
Number of Epoch

1 2 3 4
CNN 88.87 92.25 93.9 94.81
DBN 87.46 89.72 90.64 91.14

CNN-SA10 89.18 92.38 94.2 95.19
CNN-PSO 89.52 92.31 93.91 95.08

rithm as well as the particles calculation. Never-
theless, if compared to CNNSA10, CNNPSO was
still faster.

4. Conclusion

Based on the experiment result that have been
conducted it can be conclude that the proposed
method CNNPSO has good accuracy. The consi-
derable accuracy (95.08%) was attained with only
4 epoch. Moreover the proposed method exhibited
better performance than CNN, DBN. Even though
its accuracy is lower than CNNSA, to obtain the
accuracy nearby, CNNPSO consumed shorter ti-
me. If compared to the conventional CNN, CNN-
PSO consumed only slightly longer time. Howev-
er, it has to be improved. The improvement can be
focused on how to give restricted range on delta x
so the proposed method get optimal vector output
faster.

Acknowledgement

This work was supported by Directorate Research
of Universitas Indonesia funding in 2015. The title
of the research is Laboratory Infra-structure. This
grant number is 1831/UN2.R12/ HKP.05.00/2015.

References

[1] G. E. Hinton and Ruslan R. Salakhutdinov,

"Reducing the dimensionality of data with

neural networks." Science Journals 313.5786
(2006): 504-507.

[2] L. Deng and D. Yu, “Deep Learning: Me-
thods and Applications”, Foundations and
Trends® in Signal Processing, Vol. 7, Nos.
3–4 (2013) 197-387.

[3] R.R. Salakhutdinov and G. E. Hinton, “Deep
Boltzmann Machines”, In Proceeding of In-
ternational Conference of Artificial Intelli-
gence and Statistics, vol. 12, 2009.

[4] J. Martens and I. Sutskever, “Learning Recu-
rrent Neural Networks with Hessian-free Op-
timization.” In Proceedings of International
Conference on Machine Learning (ICML),
2011.

[5] H. Larochelle, Y. Bengio, J. Louradour, and
P. Lamblin, “Exploring Strategies for Trai-
ning Deep Neural Networks.” J. Machine
Learning Research, vol. 10, pp. 1-40, 2009.

[6] G.E. Hinton, S. Osindero, and Y.W. Teh, “A
Fast Learning Algorithm for Deep Belief Ne-
ts”, Neural Computation, vol. 18, no. 7, pp.
1527-1554, 2006.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haff-
ner. “Gradient-based Learning Applied to
Document Recognition”. In Proceedings of
the IEEE, 86:2278–2324, 1998.

[8] Y. Bengio, P. Lamblin, D. Popovici, and H.
Larochelle, “Greedy layer-wise training of
deep networks,” in Advances in Neural In-
formation Processing Systems 19 (NIPS’06),
(B. Scholkopf, J. Platt, and T. Hoffman,
eds.), pp. 153–160, MIT Press, 2007.

[9] Y. Tang and A.R Mohamed, “Multiresolution
Deep Belief Networks”, In Proceeding of
Proceedings of the 15th International Confe-
rence on Artificial Intelligence and Statistics
(AISTATS) 2012, La Palma, Canary Islands.
Volume XX of JMLR: W&CP XX, 2012.

58 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
1, February 2016

[10] Y. Xu, T. Xiao, and J. Zhang, Scale-Invariant
Convolutional Neural Networks, in arXiv:
1411.6369v1 [cs.CV], 2014.

[11] Ciresan, Dan; Meier, Ueli; Schmidhuber,
Jürgen, Multi-column deep neural networks
for image classification, IEEE Conference
on Computer Vision and Pattern Recogniti-
on, 2012.

[12] Hubel, D. and Wiesel, T. (1968). Receptive
fields and functional architecture of monkey
striate cortex. Journal of Physiology (Lon-
don), 195, 215–243.

[13] J. Kennedy and R. Eberhart, “Particle swarm
optimization”, In Proceedings of the IEEE
International Conference Neural Network
(ICNN), Nov. 1995, vol. 4 pp. 1942-1948.

[14] W. Jatmiko, K. Sekiyama, and T. Fukuda, A
mobile robots pso-based for odor source lo-
calization in dynamic advection-diffusion

environment, in Intelligent Robots and Sys-
tems, 2006 IEEE/RSJ International Confe-
rence on. IEEE, 2006, pp. 4527–4532.

[15] W. Jatmiko, A. Nugraha, R. Effendi, W. Pam-
buko, R. Mardian, K. Sekiyama, and T. Fuku-
da, Localizing multiple odor sources in a dy-
namic environment based on modified niche
particle swarm optimization with flow of wi-
nd, WSEAS Transactions on Systems, vol. 8,
no. 11, pp. 1187–1196, 2009.

[16] L. M. R. Rere, M. I. Fanany, A. M. Arymur-
thy, Simulated Annealing Algorithm for De-
ep Learning, Procedia Computer Science,
no. 72, pp. 137–144, 2015.

[17] Hinton, Geoffrey E. and Osindero, Simon
and Teh, Yee-Whye, A Fast Learning Algo-
rithm for Deep Belief Nets, Journal Neural
Computing,no.7, pp 1527-1554, 2006.

	3 Department Micro-Nano System Engineering, Graduate School of Engineering, Nagoya University, 1 Furocho, Chickusa Ward, 464-8603 Japan
	E-mail: arie.rachmad@ui.ac.id
	Abstract
	Abstrak

