Jurnal Ilmu Komputer dan Informasi (Journal of a Science and Information). 12/1 (2019), 1-11
DOI: _http://dx.doi.org/10.21609 /jiki.v12i1.569

TABLING WITH INTERNED TERMS ON CONTEXTUAL
ABDUCTION

Muhammad Okky Ibrohim and Ari Saptawijaya”
Faculty of Computer Science, Universitas Indonesia, Kampus UI, Depok, 16424, Indonesia

*Corresponding author. Email: saptawijaya@cs.ui.ac.id

Abstract

Abduction (also called abductive reasoning) is a form of logical inference which starts with an observation
and is followed by finding the best explanations. In this paper, we improve the tabling in contextual abduction
technique with an advanced tabling feature of XSB Prolog, namely tabling with interned terms. This feature
enables us to store the abductive solutions as interned ground terms in a global area only once so that the
use of table space to store abductive solutions becomes more efficient. We implemented this improvement to
a prototype, called as TABDUAL*™T. Although the experiment result shows that tabling with interned terms
is relatively slower than tabling without interned terms when used to return first solutions from a subgoal,
tabling with interned terms is relatively faster than tabling without interned terms when used to returns all
solutions from a subgoal. Furthermore, tabling with interned terms is more efficient in table space used when
performing abduction both in artificial and real world case, compared to tabling without interned terms.

Keywords: abduction, logic programming, contextual abduction, tabling, interned terms

Abstrak

Abduction (disebut juga abductive reasoning) adalah suatu bentuk inferensi logika yang digunakan untuk
mencari penjelasan dari suatu observasi yang diberikan. Makalah ini membahas teknik lanjut dari fabling
pada contextual abduction melalui pemanfaatan fitur rabling dengan interned terms pada XSB Prolog. Dalam
hal ini, fitur fabling dengan interned terms digunakan untuk menyimpan abductive solutions sebagai suatu
interned ground terms pada suatu area global, sedemikian sehingga penggunaan table space menjadi lebih
efisien. Teknik lanjut dengan pemanfaatan fitur ini dikemas dalam suatu prototipe TABDUAL™™T. Meskipun
hasil eksperimen menunjukkan bahwa tabling dengan interned terms sedikit lebih lambat dari tabling tanpa
interned terms dalam mencari solusi pertama dari suatu subgoal, tabling dengan interned terms relatif lebih
cepat dari fabling tanpa interned terms ketika digunakan untuk mendapatkan semua solusi dari suatu subgoal.
Lebih lanjut, tabling dengan interned terms lebih efisien dalam hal penggunaan fable space saat digunakan
untuk proses abduction, baik dalam permasalahan artifisial maupun riil jika dibandingkan dengan tabling
tanpa interned terms.

Kata Kunci: abduction, pemrograman logika, contextual abduction, tabling, interned terms

1. Introduction

In logic programming, the study of abduction
started in the late 80s as a new reasoning paradigm
to address some of the limitations of deductive rea-
soning in classical logic. Abduction has already been
well studied to resolve various problems in artificial

intelligence and other areas of computer science.
For example, abduction can resolve scheduling of
maintenance [1]], air-crew assignment [2], and sys-
tem diagnoser problems [3].

Unlike the deductive reasoning, the premises in
abduction do not guarantee the conclusion. Abduc-

http://dx.doi.org/10.21609/jiki.v12i1.569

2 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

volume 12, issue 1, February 2019

tion is a form of logical inference used to find the
best explanations for given observation.

Example 1. Consider the knowledge base as follow:
always present in class if healthy Q8
getting good grades if study hard 2

getting good grades if always present in class
3)
and be lucky

Suppose an observation of getting good grades is
given, abduction will produces two explanation. The
first explanation (FE4) is study hard, which obtained
by statements (Z), while the second explanation
(Es) is healthy and be lucky, which obtained by
statements (I) then (3). Note that in abduction, an
explanation must be a basic explanation (there is
no statement further explaining the explanation). For
example, always present in class are not considered
as basic explanations. This is because always present
in class can further be explained by statement (T).
Furthermore, in abduction, the explanations com-
monly termed as abductive solutions.

In abduction, one often meets the case where
abductive solutions obtained within one abductive
context are also relevant and may be reused in a
different context; this is called contextual abduction.
In this case, the abductive solutions can be stored, so
they may be reused in another context later. Recall
Example 1, after explaining getting good grades,
suppose the same observation with a context of
hypothesizing that do not study hard. To find the
explanations of this latter observation, the abductive
solutions obtained by previous observations (which
are F7 and FE5) can be reused. In this case, the
context of do not study hard will eliminate E/; from
possible explanations because there is contradiction
about study hard. Therefore, for this new obser-
vation, abduction will produce an explanation by
extending E5 with the newly hypothesized context,
which is healthy, be lucky, and do not study hard.
Note that in contextual abduction, the context will
be a part of the explanations.

In [4]], Saptawijaya and Pereira proposed a tech-
nique called rabling in contextual abduction, whose
detailed concept and implementation aspect wrapped
into a system called TABDUAL, and implemented in
XSB Prolog [5]. In general of logic programming
(not only for abductive reasoning), tabling is a tech-
nique of reusing solutions of a goal. Here, tabling
in contextual abduction is a technique of reusing ab-
ductive solutions obtained by previous observations
in another abductive context.

The TABDUAL system was then improved by
Perkasa, et al. [[6], and wrapped into a system

called TABDUAL*. They improved the TABDUAL
system by adding an advanced tabling feature of
XSB Prolog, namely answer subsumption [7|]. Their
experiment result shows that tabling with answer
subsumption is more efficient than normal tabling
(tabling without answer subsumption) in table space
used, both in artificial and real world case. Further-
more, tabling with answer subsumption successfully
returns minimal explanations for every subgoal of
real word case, while normal tabling cannot. Unfor-
tunately, the tabling with answer subsumption cannot
give all explanation from a given observation, since
the answer subsumption is just storing the minimum
solutions from a goal. Therefore, in those experi-
ments, tabling with answer subsumption just gives a
minimum explanation from a given observation.

Depending on problems, different requirements
for explanations may apply. For some problems,
showing only the existence of an explanation to an
observation (or an action to satisfy a goal) is de-
sired. In this case, finding a single solution suffices.
In other cases, all explanations of an observation
(e.g., in finding all possible causes of a disease)
are required. Here, one prefers to enumerate all
solutions. Moreover, while finding minimum expla-
nations becomes a criterion in abduction for ’the best
explanation’, in general, other criteria may apply to
satisfactoriness and plausibility of the explanations
(8]l

In this paper, we improved the TABDUAL"* sys-
tem by adding another advanced tabling feature of
XSB Prolog, namely tabling with interned terms.
Note that we do not extend it as a feature of XSB
Prolog but we employ it instead for abduction, fol-
lowing up our own previous research results [6].
While the idea of tabling is similar to that of caching,
tabling with interned terms emphasizes the repre-
sentation of terms (an important data structure in
Prolog) to improve the efficiency in storing them
for their future retrieval. More precisely, tabling with
interned terms is a tabling technique which supports
a succinct representation of ground terms such that
all interned terms are stored in a global area and
each term is stored only once, with all instances of
a given interned term (or subterm) pointing to that
one stored representation [9]. Since each term can
only be stored in a table once, tabling with interned
term can be more efficient than normal tabling in
table space used. Here, tabling with interned terms
is relevant if used to store the abductive solutions
for tabling in contextual abduction problem, since
abducibles are typically assumed as ground terms.
The improvement of TABDUAL* by adding tabling
with interned terms then implemented in XSB Pro-
log and wrapped as TABDUAL*INT,

M. O. Ibrohim and A. Saptawijaya, Tabling With Interned Terms on Contextual Abduction 3

To evaluate the benefit of tabling with interned
terms, we use TABDUAL*™NT to resolve an artificial
and real world abduction problems. The experiment
result shows that tabling with interned terms is
slightly slower than normal tabling when used to
return first solutions from a subgoal. However, when
used to returns all solutions from a subgoal, tabling
with interned terms is relatively faster than normal
tabling. Furthermore, tabling with interned terms
gives a more efficient in table space used compared
with normal tabling, both in artificial and real world
case.

In this paper, we discuss the logic program and
abductive logic programming as a background for
this research, presented in Section 2. We also discuss
the technique of tabling in contextual abduction in
Section 3. The detail of TABDUAL*™T is presented
in Section 4. Section 5 will discuss the result exper-
iments of TABDUAL*™NT, The paper concludes with
future work, in Section 6.

2. Preliminaries

This section discusses the logic program and
abductive logic programming, as a background for
this paper.

2.1. Logic Program

A logic program is a set of sentences in logical
form, expressing facts or rules about some problem
domain. Suppose an alpabhet .4 from some language
L given, where A denoting a disjoint countable set
of contants, function symbols, predicate symbols,
and also a set of variable symbols. Here, a variable
conventionally is written as a capital letter. A term in
A is defined recursively either as a variable, a con-
stant, or an expression in the form of f(t1,...,%,),
where f is a function symbol in A and ¢; with
n € N are terms. Term that does not contain any
free variables called as ground term. Next, an atom
over A is defined as an expression in the form of
p(t1,...,tn), where p is a predicate symbol in A.
The form of p/n is denoted as a predicate symbol
p with n-arity.

Formally, a (normal) logic program is a count-
able set of rules in the form of H < Lq,...,L,,
where H is head of rule and L, ..., L,, is a body
of a rule. H is an atom; while L; with m € N are
literals, either an atom a (called positive literal) or its
negation not a (called default literal). The comma in
the rule is read as a conjunction. When the head of a
rule is empty, the rule is called as integrity constraint
(will be explained later in Section 2.2). Furthermore,
in the logic program, a rule without a body is called

false, formally written as | < Lq,...

as a fact, simply denoted with H. The example of a
logic program can be seen in Example 2.

Example 2. Recall Example 1, the knowledge base
in Example 1 can be represented in the logic pro-
gram P as follow:

always_present < healthy.

good_grades < study_hard.

good_grade < always_present, lucky.

2.2. Abductive Logic Programming

Abduction in logic programming or Abductive
Logic Programming (ALP) is an extension of logic
programming to perform abductive reasoning [[10].
ALP is used to solve a goal (an observation) by
giving solutions (abductive solutions) in the form of
a set of abductive hypothesis, namely abducible. An
abducible is an atom a (named positive abducible) or
its negation a* (named negative abducible). More-
over, in ALP may contain specific rules to express
restriction which must be fulfilled when performing
abduction, called integrity constraint.

In ALP, the logic program, abducibles, and
integrity constraints are wrapped into a triple
(P, A,IC), called ALP theory or abductive frame-
work, where P is logic program over £ such that no
rule in P whose head is an abducible, A is a set of
abducible predicates with their corresponding arity,
and IC is a set of integrity constraint. An integrity
constraint in ALP is a rule in the form whose head is
, Ly, where
L denotes false. An example of abductive framework
can be seen in Example 3.

Example 3. Recall Example 2, we can
consider an abductive framework (P,
study_hard/0, healthy /0, lucky /0, () such
that:

e P is the logic program in Example 2 that
represents the knowledge base in Example 1;

e A is the set of abducible predicates consist-
ing of study_hard, healthy, and lucky, which
their all arity is 0;

o The integrity constraint IC' is), which repre-
sents this framework has no restriction which
must be fulfilled when performing abduction.

In ALP, an observation is analogous to query for
a goal. Formally, the abduction phase for a query in
ALP given in the following definition [1].

Definition 1. Given an abductive framework
(P, A, IC), an abductive solution for a query @ is a
set of abducibles A C A such that:

« PUAEQ,

« PUAEIC,

4 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

volume 12, issue 1, February 2019

e P UA consistent.

Definition |1|is a generalization of normal logic pro-
gram (both in terms of syntax and semantics), where
= is an entailment relation. An abductive solutions
A represents a set of statements which make @ hold.
Here, an abductive solution A must consistent with
statements (both rules and facts) in logic program P,
that is no abductive solutions such that contradictory
with rules and facts in logic program P.

Next, IC is a set of restrictions which make
an abducible in A do not apply as the abductive
solution. In this definition, P U A |= IC means
that P U A U IC must consistent. For example,
if we extend the abductive framework in Exam-
ple 3 by give an integrity constraint: its impossi-
ble to be healthy but rarely exercise, denoted as
L < healthy, rarely_exercise, and given the fact
that rarely_exercise is true in P; so when we
give a query good_grades, the abduction phase will
give one solution [study_hard] (referring to F; in
Example 1). Here, [healthy, lucky] (referring to Fs
in Example 1)) is not an abductive solution, since
healthy will make P U A |= IC is not consistent.

3. Tabling in Contextual Abduction

Abduction may benefit from the tabling tech-
nique, a feature offered in several Prolog systems,
to store abductive solutions. Therefore, these solu-
tions may be reused in another abductive context
(viz., explanations that become the context in ex-
plaining an observation); thus avoiding unnecessary
recomputation. This concept is known as contextual
abduction.

For example, recall abductive framework in Ex-
ample 3 and given a query good_grades which
produce two abductive solutions [study_hard] and
[healthy, lucky] (respectively referring to F; and
FE5 in Example 1), and then suppose the same
query within an abductive context [study_hard*]
(which represents a context, where the student
do not study hard). If we store the abduc-
tive solutions [study_hard] and [healthy, lucky]
from the previous goal, we can reuse those
abductive solutions for the same query while
also considering the additional abductive con-
text [study_hard*] as well. Since abductive solu-
tions must be consistent with the logic program
and integrity constraint, the abduction phase will
produce the only [healthy,lucky, study_hard*]
for query good_grades within abductive context
[study_hard*]. Here, [study_hard] cannot be an
abductive solution because of inconsistency within
the context [study_hard*].

From this illustration, it can be seen that the
benefit of tabling for storing the abductive solutions
in abduction phase. But, in practice, an abductive
solution from a goal) cannot be stored directly in
a table, since those solutions are related to the abduc-
tive context of). To solve this problem, Saptawijaya
and Pereira [4] introduced a technique called rabling
in contextual abduction.

Tabling in contextual abduction is a technique
of reusing abductive solutions obtained by previous
observations in another abductive context. This tech-
nique is implemented in XSB Prolog [5], wrapped
in a prototype system called TABDUAL. The TAB-
DUAL system consists of several program trans-
formations, viz., transformation for tabling abduc-
tive solutions, transformation for producing dualized
negation, transformation for inserting abducibles,
and transformation of a query. In the subsequent
paragraphs, we provide the motivation and a simple
example for each transformation. For the fundamen-
tal theorem of TABDUAL transformation, including
the soundness and completeness of TABDUAL, the
reader is referred to [4].

Transformation for tabling abductive solutions is
used to transform a predicate that will be stored
in table. In this transformation, every rule in the
program is transformed, producing a rule of a tabled
predicate with one additional argument as the entry
of its tabled abductive solutions. The example of this
transformation can be seen in Example 4.

Example 4. Recall P in Example 2, the rules:
good_grades < study_hard.
good_grades < always_present, lucky.

are transformed into three following rules:
good_gradesq([study_hard)). 4)

good_gradesq,(F) <

5
always_present([lucky], E).)

good_grades(I,0) +

good_gradesq,(E), (6)
produce_context(O, I, E).

where good_grades,;/1 is a tabled predicate. Rule
@) shows that the abductive solution F stored
in table from predicate good_grades,,/1 is ob-
tained from subgoal study_hard and also ob-
tained from subgoal always_present with input
context [lucky] (rule). Furthermore, rule (@)
shows that the abductive solution E from predi-
cate good_gradesqy/1 can be reused (since stored
in a table) with some input abductive context I
such that produced output abductive context O via

M. O. Ibrohim and A. Saptawijaya, Tabling With Interned Terms on Contextual Abduction 5

system predicate produce_context(O, I, E). This
system predicate is also checking the consistency
when producing abductive solution O from the input
abductive context I and the tabled solution £. When
implemented in XSB, a tabled predicate must be
explicitly declared. For example, the directive below
declares good_grades,,/1 as a tabled predicate:

:— table good_gradesqp/1.

Tabling this predicate will make the abductive solu-
tions of goal good_grades (which represents getting
good grades in Example 1), which are [study_hard]
and [healthy, lucky] (respectively reffering to E;
and F> in Example 1) being stored in a table.

To deal with abduction under negative goals,
TABDUAL transforms each rule for producing dual-
ized negation, by implementing dual program trans-
Sformation of ABDUAL [11]]. The main purpose using
dual program transformation (simply called dual
transformation) is to get the solutions from a nega-
tive goal not G without negated all abductive solu-
tions of G. Dual transformation will produce two
different rules (layer). First layer dual rule from
a predicate p in logic program P is a rule not_p,
which is defined to falsify p (which is not p), at once
bringing the input context from every subgoal of p.
The subgoals from first layer dual rule is the second
layer dual rule p** which defined by falsifying the
ith body of predicate p in the logic program P.
The example of this transformation can be seen in
Example 5.

Example 5. Recall P in Example 2, the rules
good_grades < study_hard.
good_grades < always_present, lucky.

are transformed into two layers of dual rules as
follow:
« First layer dual rule:
not_good_grades(Ty, Tz) +
good_grades* (Ty, Ty), (7)

good_grades* (Ty, Ty).
o Second layer dual rule:
good_grades™ (I,0) ®)
study_hard* (I, O).

good_grades**(I,0) ©)
not_always_present(I,O).

good_grades™(I,0) + lucky*(I,0). (10)

where T; with 0 < ¢ < 2 is a fresh variable provided
as an abductive context. TABDUAL implements dual

rules transformation by need. In this case, the second
layer dual rules not formed in transformation phase.
Instead, they are formed in abduction phase when
it is required for execution and then stored in a
trie [12]. This is done to avoid too big a cost from
transforming the rules which are actually not needed
in abduction phase.

Further transformation in TABDUAL is a trans-
formation for inserting abducibles. In this transfor-
mation, every abducible a in an abducible set A
is transformed into a rule which can update the
abductive context with the transformed abducible.
Example 6 will illustrate this transformation.

Example 6. Recall abductive framework in Example
3, the abducible study_hard and lucky is trans-
formed to following rules:

study_hard(I,0) +

11
insert_abducible(study_hard, I,0). (i
study_hard*(I,0) + (12)
insert_abducible(study_hard*, I, O).
lucky(I,0) + (13)
insert_abducible(lucky, I, O).
lucky x (I,0) + (14)

insert_abducible(lucky™, I, O).

where insert_abducible(Ab, I, O) is TABDUAL sys-
tem predicate used to add an abducible Ab into input
abductive context I such that it produced output
abductive context O. Furthermore, this predicate also
preserve consistency of output abductive context O
when the system added some abducible Ab.

As a consequence of the three transformation
program which has been described previously, a
query in abduction phase is also transformed by
the TABDUAL system. Transformation of a query in
TABDUAL is consists of positive goal transformation
and negative goal transformation. Furthermore, the
transformed query must satisfy all integrity con-
straints. This is done by adding a goal not__1 /2 that
state dual rule from integrity constraint. Example 7
will illustrate this transformation.

Example 7. Recall abductive framework in Example
3, suppose good_grades with an empty input abduc-
tive context as query goal, the query is transformed
into:

?— good_grades([|,T),not_L(T,0O)

6 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

volume 12, issue 1, February 2019

4. Tabling with Interned Terms on TAB-
DUAL*

This section discusses tabling with interned term,
an advanced tabling technique feature in XSB Prolog
that allows us to store a term in succinct representa-
tion. This feature is used to improve the TABDUAL™,
implemented in XSB Prolog and wrapped in a pro-
totype called as TABDUAL*INT,

4.1. Tabling with Interned Terms

By default, tabling in XSB Prolog is performed
by using variant tabling [12]. In XSB Prolog, there
is an advanced tabling technique for variant tabling,
namely tabling with interned terms. Since tabling
with interned terms is performed by using variant
tabling, this feature cannot be combined with answer
subsumption tabling.

Interned terms is special representation for
ground terms (the term which has no free variable
in their argument), not only simple ones but may
be structured (or complex) terms (viz., those built
recursively from a function symbol). This repre-
sentation is also sometimes known as hash-consing
representation, since this representation using a hash
for indexing the terms which tabled. Illustration of
an interned ground term can be seen in Figure [I]
In tabling with interned terms, all interned terms
will be stored in a global area and each term is
stored only once, with all instances of given interned
subterms pointing to that one stored representation.
This operation called interning, that allows for a
more succinct representation of sets of ground terms
including their subterms. Interning a ground term
also makes that ground term not need to be copied
into and out of tables, where this makes tabling with
interned terms may save significant space compared
to tabling without interned terms.

Based on Figure |1} it can be seen that an ar-
gument (subterm) g/1 of a term f/2 is stored in
an array, and then their representation is stored in
a hash table. Hash table consist of subterms which
are indexed by term’s arity. Since all terms (with
their subterms) which stored as interned terms are
indexed, this makes tabling with interned terms is
more efficient when doing call and answering, com-
pared to when we stored it as regular terms.

4.2. TABDUALYINT: TABDUAL* with Interned
Terms

In 2017, Perkasa, et al. [[6] proposed TABD-
UAL™, a prototype that implements all four program
transformation that has been described in Section 3

plus answer subsumption. Answer subsumption is an
advanced XSB's tabling technique that allows users
to store minimum solutions from a goal into a table.
By means of a partial order relation R, partial order
answer subsumption is achieved by adding an an-
swer A into table 7" only if A is maximal compared
to other answers in 7' according to a given partial
order relation R. Furthermore, by adding A into
table T, all answers that A subsumes are removed
from 7. Answer subsumption thus avoids too big a
cost of table space due to storing too many solutions.
The architecture of TABDUAL" can be seen in Figure

2

As can be seen in Figure 2l TABDUAL™ consists
of two phases. The first phase is program trans-
formation. In this phase, the input program will
be transformed into its corresponding output based
on TABDUAL program transformation (Section 3).
Before users transform an input program, they can
select the desired transformation mode. Here, TAB-
DUAL" provides three transformation modes, which
are transformation without tabling, transformation
with tabling, and transformation with tabling and
answer subsumption, which respectively coded into
n,t, and s. Users can switch between modes using
predicate switch_mode(M), where M € {n,t,s}.
Afterward, to transform an input program F', users
must use predicate transform(F) such that result-
ing output program which needed for the next phase.

The second phase in TABDUAL" is abduction
itself. To do an abduction phase, users can pose some
query @ using predicate ask(Q) (if users want to
get abductive solutions of goal () without any input
abductive context) or using predicate ask(Q,I) (if
users want to get abductive solutions of goal within
some input abductive context /). When perform-
ing abduction, TABDUAL" interacts with its system
predicates and XSB's tabling mechanism to compute
abductive solutions to the query given.

We then improved the TABDUAL* system by
adding another advanced tabling feature, namely
tabling with interned terms. This improvement is
done to make an efficient tabling in contextual ab-
duction in the term of table space used without los-
ing any explanation from a goal, since tabling with
interned terms allows us to store the all abductive
solutions in a global area only once.

Tabling with interned terms is relevant to store
abductive solutions for tabling in contextual ab-
duction problem since abducibles are typically as-
sumed as ground terms. To take advantage of
tabling with interned terms for tabling in con-
textual abduction problem, a tabled abductive so-
lution predicate must be declared as intern. For
example, if we want to table an abductive solu-

M. O. Ibrohim and A. Saptawijaya, Tabling With Interned Terms on Contextual Abduction

0

-ou)[\)}—l

INTERN SPACE

Access to hash tab
by record arity

_—/

/

Hash Tabs

Linked Records

1
——— [z lb

_

Interned Term: f{a,g(b))

Input
Program

in.ab >

Figure 1. Storage of interned ground term f(a, g(b)) [El]

tion predicate good_gradesq,/1, we must declare

TABDUAL"
in.pl
Transformation > Output
rogram
?- switch_mode(in).
?- switch_mode(s).
?- load(in).
N\ \ 4
@ Table
Syst ;
Pre)c/i?czrtgs < > Abduction < > q_ab(...).
?- ask(q).

Figure 2. TABDUAL" program flow [EI]

good_gradesy,/1 using directive:

If a tabled predicate declared as intern, when a
call happens, all arguments are automatically in-
terned before the call is looked up in the ta-

:— table good_grades.y/1 as intern.

8 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

volume 12, issue 1, February 2019

ble. Furthermore, while in return, every answer
is interned before being added to the table. The
TABDUAL* system that has been added with in-
terned terms is also implemented in XSB Prolog,
wrapped in a prototype system which called TAB-
DUAL*INT. This prototype system is available in
_https://github.com/okkyibrohim /tabdual-plus-int.

Similarly with TABDUAL*, TABDUAL™™T con-
sists of two phases in performing abduction, viz.,
transformation phase and abduction phase. We build
TABDUAL*™T simply by adding transformation with
tabling and interned terms mode in TABDUALY,
such that TABDUAL*™' provides four transfor-
mation modes, which are transformation without
tabling (called ‘no tabling’), transformation with
tabling, but without answer subsumption and in-
terned terms (called ‘normal tabling’), transforma-
tion with tabling and answer subsumption (called
‘tabling with answer subsumption’), and transforma-
tion with tabling and interned terms (called ‘tabling
with interned term’), which respectively coded into
n,t,s,and ¢. Therefore, now users can switch be-
tween modes using predicate switch_mode(M’)
where M’ € {n,t,s,i}. The thing that differenti-
ates those four modes is the directive for declaring
tabled abductive solutions predicates, which deter-
mines how the predicates are to be stored in a
table. In transformation phase, the required direc-
tives are automatically added, based on the selected
mode. Notice that for mode n, no tabling directive
is required. Example 8§ illustrates how the required
directives are added for mode ¢, s, and 1.

Example 8. Consider an abductive solutions pred-
icate good_gradesa,/1 of our running example,
the required directives below will be automatically
added based on selected mode:

e« mode f: the system automatically adds the
directive below to declare that predicate
good_grades,y/1 as a tabled predicate:

:— table good_gradesqp/1.

o mode s: the system declares good_grades,/1
as a tabled predicate with partial order answer
subsumption using predicate subset/2 as its
partial order relation between abductive solu-
tions by adding the directive below [6]:

:— table good_gradesqy(po(subset/2)).

o mode i: the system automatically adds the di-
rective below to declare that intern ground term
formed by the predicate good_gradesg/1:

:— table good_gradesqy/1 as intern.

5. Experiments and Discussions

To evaluate the benefit of tabling with interned
terms, we conduct two experiments using TABD-

UAL*™NT, Every experiment in this paper was done
on a personal computer with Windows 10 64bit OS,
Intel® Core i5 CPU @3.20 GHz, and 8 GB of
memory. The XSB version used in this experiment
is XSB v.3.7 (Clan MacGregor).

In both experiments, the efficiency of TABD-
UAL*INT is evaluated in terms of table space used
and execution time. To evaluate the efficiency of
TABDUAL*™T in the term of table space used, we
used a set of an artificial case given in [6], presented
in Experiment 1. Furthermore, we used a real world
abduction problem on cancer and chemoprevention
given in [13] to evaluate the efficiency of TABD-
UAL*NT in the term of table space used and execu-
tion time when performing abduction that contains
a large knowledge base.

Experiment 1. Given A, as a set of n abducibles
{an,...,an} with n € Z*. A generator G,
is introduced to provide an abductive framework
(P, Ap,0) where P, is a logic program which
contains rule p < seq(Ab) for each Ab € pow(Ab)\
{0}. Here, pow(A,) refers to the power set of A,,
while seq(Ab) is a functions that returns a sequence
of abducibles from the abducible set Ab. For exam-
ple, given A,, the generator G5 produces three rules
in P, as follows:

p < aq.
p < ao.
p < ay,as.

Next, the transformation for tabling abductive solu-
tions (cf. rules (4) and (6) of Example E]) transforms
those three rules into the following rules, where
Pab/1 is a tabled predicate whose terms are interned:
:— table pay/1 as intern.

Pap([a1])-
Pab([az]).
Pab([a1, az]).
p(I, 0) + pap(E), produce_context(O,1, F).

Note that the abductive solutions E' in the tabled
predicate pqp (i.e., lists [a1], [az], and [a;,as]) are
actually (ground) structured terms.

We run this experiment for various generators
G, for 1 < n < 14 using query ask(p), both
in normal tabling mode and tabling with interned
terms mode. This query is called once for every
generator G,,, and collects every abductive solution
O of p(]],0) for each n. Without interning, the
repetitive call of p,,(E) in collecting every abduc-
tive solution of p causes the sublist (every suffix of

https://github.com/okkyibrohim/tabdual-plus-int

M. O. Ibrohim and A. Saptawijaya, Tabling With Interned Terms on Contextual Abduction 9

the list) of every abductive solution to be copied
into the table. With interning, only a pointer to an
interned list (abductive solution) is copied into the
table. By varying n of G,, in this experiment, by
interning the tabled abductive solutions, we expect
to see significant table space reduction as the value
of n grows. The result of this experiment can be
seen in Table E} Furthermore, the plot between the
value of n and the table space reduction can be seen
in Figure [3]

TABLE 1
COMPARISON OF TABLE SPACE USED BE-
TWEEN NORMAL TABLING AND TABLING
WITH INTERNED TERMS IN ARTIFICIAL CASE
Total table space used (byte) Reduction
Normal Tabling with (%)
Tabling Interned Term
1 48312 48272 0.083
2 49060 48960 0.203
3 50164 49994 0.338
4 52012 51808 0.392
5 55220 54568 1.181
6 61308 59696 2.629
7 73092 69560 4.832
8 96268 88896 7.658
9 142556 127696 10.424
10 234348 206976 11.680
11 413988 359368 13.194
12 779740 670768 13.975
13 1511236 1293504 14.408
14 2974172 2538912 14.635

n vs Table space reduction (%)

Table space reduction (%)
o

Figure 3. Plot between the value of n and the table
space reduction

From Table 1} it can be seen that tabling with
interned terms (in this case, for predicate p,;/1) can
reduce the table space used for all various generators
G,. This indicates that tabling with interned terms is
more efficient in table space used compared to nor-
mal tabling. This can be particularly true in another

case where a huge amount of space is required to
store many and large explanations.

Experiment 2. We are interested in using TAB-
DUAL™™T in real world abduction problem. The
problem in this experiment is about cancer and
chemoprevention, introduced in [[13[]. This abduction
problem is employed as modeling approach to study
genes that affect the activation or inactivation of
cancer cells, given the logic program contains a
knowledge base about inactive or inactive cells.

This problem is challenging as the knowledge
base describing the influence between genes and
cancer cells were consists of a large number of facts
and rules. Here, the main query for TABDUAL*N'
consists of eight subgoals, which are:

active(phase0, aif),

active(phase0, endo_g),

inactive(phase0, caspase9),

inactive(phasel, caspaseb),

inactive(phase0, bcl2),

inactive(phase0, caspaseT),

inactive(phase0, akt),

inactive(phase0, riap).
where active(Phase, Gene) and
inactive(Phase, Gene) respectively denote
that the gene Gene is known to be active and
inactive for an experiment Phase. The solutions
for all query related to whether a drug is induced
or inhibited in an experiment if given the activation
or inactivation of the specified genes.

All query given in this experiment will
be invoked gradually. This is done to know
the potential of tabling abductive solutions.
We start from only invoking the first
subgoal which is ask(active(phase0,aif))
and then first two subgoals which is
ask((active(phase0, aif), active(phase0, endo_g)),
and finally all subgoals are invoked. The result of
this experiment can be seen in Table

TABLE 2
COMPARISON OF TABLE SPACE USED BETWEEN NORMAL
TABLING AND TABLING WITH INTERNED TERMS IN REAL CASE

Number of Execution time (seconds) Space usage (byte)

subgoals Normal Tabling with Normal Tabling with
Tabling Interned Terms Tabling Interned Terms
1 3.72 4.64 28404932 11075412
2 3.66 4.58 55576452 21786592
3 0.84 1.03 55787492 21823824
4-8 time out time out time out time out

Based on Table 2| we can see that tabling with
interned terms can significantly reduce the table
space used when performing contextual abduction
in this real world abduction problem. Tabling with
interned terms can reduce the table space used up to
61%. Unfortunately, both normal tabling and tabling

10 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information),

volume 12, issue 1, February 2019

with interned terms cannot compute the solutions
of abduction goals after first three goals because
of time out (in this experiment we set 20 minutes
for the limit of execution time). This is because
the fourth subgoal (inactive(phase0, caspaseb)) is
known to be the hardest to solve [6]]: solving this
fourth subgoal may be independent of the first three
subgoals (solutions are newly computed and not
tabled yet). Notice that the execution time in this
experiment refers to getting the first explanation
from a subgoal. This experiment result also shows
that the execution time when using tabling with
interned terms is relatively slower than using normal
tabling (about 20%). This is because tabling with
interned terms must intern a term before storing it
in a table, such that the tabling with interned terms
requires more time compared to when using normal
tabling. Moreover, if we are just interested to get the
first explanation from a subgoal, both tabling modes
will do more tabling than reuse it. Therefore, the
special representation for ground terms in tabling
with interned terms is not beneficial in this case.

However, if we compare normal tabling and
tabling with interned terms in checking (only
checking, not returning) all abductive solutions
of a subgoal using TABDUAL*™ system predicate
checksol(G) where G is the first subgoal in this
experiment, i.e., checksol(active (phase0,aif));
tabling with interned terms is faster than normal
tabling (22.58 seconds when using tabling with in-
terned terms and 26.77 seconds when using normal
tabling). As it checks for all abductive solutions,
the repetitive calls to the tabled predicate benefit
from reusing solutions in the table. Being tabled as
interned terms, the solutions are indexed and these
solutions interact with the indexed lookup of calls
(and answers) in the table. This is not the case for
normal tabling (without interning): the terms that
form the solutions have to be completely traversed.
Therefore, tabling with interned terms can return
all tabled abductive solutions of a goal faster than
normal tabling. Unfortunately, both normal tabling
and tabling with interned terms can only check all
explanations for the first subgoal, but cannot check
all solutions for more than one subgoal because of
memory overload (shortage of space).

6. Conclusions and Future Works

Tabling in contextual abduction is a technique
that allows us to store an abductive context obtained
in one context such that they can be reused in differ-
ent relevant context. This technique is improved by
Perkasa et al. [[6] by adding the answer subsumption
tabling feature and wrapped it in a system called

TABDUAL", implemented in XSB Prolog. In this pa-
per, we improved the TABDUAL" by adding another
advanced tabling feature in XSB, which is interned
terms, in order to make an efficient tabling in contex-
tual abduction without losing any explanation from
a goal. This improvement is also implemented in
XSB Prolog and wrapped in a system called TAB-
DUAL*™T, TABDUAL*™T consists two phases viz.,
program transformation and abduction, and provides
four different modes which are no tabling, normal
tabling (tabling without answer subsumption and
interned term), tabling with answer subsumption,
and tabling with interned terms.

All experiments in this paper show that tabling
with interned terms is more efficient than normal
tabling in table space used. Both Experiment 1
and Experiment 2 shows that tabling with interned
terms can reduce the table space used compared
to normal tabling. Experiment 2 shows that tabling
with interned terms is relatively faster than normal
tabling when used to check all explanations of a
subgoal. Unfortunately, when it is used to solve a
real world abduction problem (Experiment 2) which
have too many explanations from some subgoals,
both normal tabling and tabling with interned terms
failed to solve all query goals given because of out
of memory.

For future works, there are several ways
that may solve this problem. The implementation
of systems predicates of TABDUAL*™T such as
produce_context/3 and insert_abducible/3 can be
improved. When produce_context/3 maintains the
consistency between the input abductive context I
and the abductive solutions entry F, the system
checks each element of abductive solutions F one
by one against the context I. If the elements of
abductive solutions F is split into two lists (posi-
tive and negative abductive solutions list) and they
are sorted (base on their predicate name), the con-
sistency checking process will be more efficient.
This can also be applied to the system predicate
insert_abducible/3, by splitting the abducible list
in the input abductive context I into positive and
negative abducible lists.

In TABDUAL*™™T, the dual transformation is per-
formed by need. The application of the dual transfor-
mation by need in TABDUAL*™" indirectly increases
cost in the abduction phase when for solving a
negative goal, both in execution time and table space
used (since the dual transformation by need requires
TABDUAL*™T storing dual rules in a trie). It is
interesting to perform the dual transformation with
schema once for all during the transformation phase
so that the abduction phase becomes faster. On the
other hand, this schema may increase the execution

M. O. Ibrohim and A. Saptawijaya, Tabling With Interned Terms on Contextual Abduction 11

time significantly in the transformation phase for a
large knowledge base (consisting huge number of
rules).

Furthermore, to avoid the space shortage prob-
lem, more research needs to be done in selecting any
predicate whose abductive solutions to be stored in
the table automatically, in such a way that the table
space used can be reduced. This can be achieved by
carefully considering the abduction problem, where
this requires the expertise of the knowledge engi-
neer. Such a careful consideration from a domain
expert is also important in addressing the cases of
contextual abduction that may benefit from tabling
with interned terms in the long run.

Acknowledgements

The authors acknowledge Antonis C. Kakas in
providing the real world case of chemoprevention for
this paper. Muhammad Okky Ibrohim acknowledges
to Syukri M. A. Perkasa for his help in dealing with
implementation issues.

References

[11 M. Denecker and A. C. Kakas, “Abduction in logic pro-
gramming,” in Computational Logic: Logic Programming
and Beyond, Essays in Honour of Robert A. Kowalski, Part
I. London, UK, UK: Springer-Verlag, 2002, pp. 402-436.

[2] A. C. Kakas and A. Michael, “An abductive-based sched-
uler for air-crew assignment,” Journal of Applied Artificial
Intelligence, vol. 15, pp. 333-360, 2001.

[3] J. F. Castro and L. M. Pereira, “Abductive validation of
a power-grid expert system diagnose,” in Innovations in
Applied Artificial Intelligence IEA/AIE, vol. 3029, 2004, pp.
838-847.

[4]

[5]

[7]

[9]

[10]

[11]

[12]

[13]

A. Saptawijaya and L. M. Pereira, “TABDUAL: a tabled
abduction system for logic programs,” IfCoLog Journal of
Logics and their Applications, vol. 2(1), pp. 69-123, 2015.

T. Swift and D. S. Warren, “XSB: Extending prolog with
tabled logic programming,” Theory and Practice of Logic
Programming, vol. 12(1-2), pp. 157-187, 2012.

S. M. A. Perkasa, A. Saptawijaya, and L. M. Pereira,
“Tabling in contextual abduction with answer subsumption,”
in Proceedings 9th International Conference on Advanced
Computer Science and Information Systems (ICACSIS),
2017, pp. 459-464.

T. Swift and D. S. Warren, “Tabling with answer sub-
sumption: Implementation, applications and performance,”
in European Workshop on Logics in Artificial Intelligence
JELIA, vol. 6341, 2010, pp. 300-312.

I. Douven, “Abduction,” in The Stanford Encyclopedia of
Philosophy, summer 2017 ed., E. N. Zalta, Ed. Metaphysics
Research Lab, Stanford University, 2017.

D. S. Warren, “Interning ground terms in XSB,” in Col-
loquium on Implementation of Constraint and Logic Pro-
gramming Systems (CICLOPS 2013), 2013.

A. C. Kakas, R. A. Kowalski, and F. Toni, “Abductive
logic programming,” Journal of Logic and Computation,
vol. 2(6), pp. 719-770, 1993.

J. J. Alferes, L. M. Pereira, and T. Swift, “Abduction
in well-founded semantics and generalized stable models
via tabled dual programs,” Theory and Practice of Logic
Programming, vol. 4(4), pp. 383—428, 2004.

T. Swift, D. S. Warren, K. Sagonas, J. Freire, P. Rao,
B. Cui, E. Johnson, L. Castro, R. F. Marques, D. Saha,
S. Dawson, and M. Kifer, The XSB System Version 3.8x
Volume 1: Programmers Manual, 2017. [Online]. Available:
_http:/ /xsb.sourceforge.net/manuall /manual I.pdf

S. Lazarou, A. Kakas, C. Neophytou, and A. Constanti-
nou, “Logical modeling of cancer and chemoprevention,” in
Workshop on Learning and Discovery in Symbolic Systems
Biology (LDSSB 2012), 2012, pp. 36-54.

http://xsb.sourceforge.net/manual1/manual1.pdf

	Introduction
	Preliminaries
	Logic Program
	Abductive Logic Programming

	Tabling in Contextual Abduction
	Tabling with Interned Terms on Tabdual+
	Tabling with Interned Terms
	Tabdual+Int: Tabdual+ with Interned Terms

	Experiments and Discussions
	Conclusions and Future Works
	References

