
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
15/2 (2022), 119-129. DOI: http://dx.doi.org/10.21609/jiki.v15i2.1070

UML Transformation to Java-based Software Product Lines

Falah Prasetyo Waluyo, Maya R.A. Setyautami, Ade Azurat

Faculty of Computer Science, Universitas Indonesia, Kampus UI, Depok, 16424, Indonesia

Email: falah.prasetyo01@ui.ac.id, mayaretno@cs.ui.ac.id, ade@cs.ui.ac.id

Abstract

Software product line engineering (SPLE) is an emerging approach that enables variability management
in software development. SPLE offers tremendous benefits, but lack of tool support becomes a barrier in
the adoption of SPLE. Variability modules for Java (VMJ) is an implementation approach that is defined
based on the variability modules (VM) concept to support SPLE. VMJ combines Java modules system and
design patterns that are commonly used by software developers. VMJ is accompanied by a UML profile,
called UML-VM profile, which extends UML notation to model variability in the UML diagram. UML-VM
diagram is used to model the problem domain, and VMJ is used in the domain implementation. In this
research, we design a model transformation from Unified Modeling Language (UML) diagram into VMJ.
The transformation rules are defined based on the UML-VM profile and implemented in the Eclipse Acceleo
model to text transformation. As a result, a UML diagram can be transformed automatically into Java-based
software product lines. The transformation tool is evaluated using a case study by comparing the generated
code and the actual implementation.

Keywords: model transformation, software product line engineering, uml profile, variability modules for java

1. Introduction

Software product line engineering (SPLE) is a
paradigm to develop a family of software by utiliz-
ing commonality and variability [1, 2]. SPLE was
inspired by product line engineering (PLE) in other
industries, such as the automotive industry. Due to
the increasing demand for various software, PLE
began to be used in software development. SPLE
takes advantage of variability management in the
same domain to produce various software products
in a single development. In domain engineering,
commonality and variability are analyzed and im-
plemented, and in application engineering a product
variant can be generated.

As a novel approach, one of the problems in
SPLE is the lack of tool supports for applying the
principles of product line engineering easily [2].
FeatureIDE [3], a standard tool for the SPLE, sup-
ports various implementation approaches, such as
feature-oriented programming (FOP) with AHEAD-
/Jak, FeatureHouse, FeatureC++, delta-oriented pro-
gramming (DOP) with DeltaJ [4], and aspect-
oriented programming (AOP; Table 1 includes a
description of abbreviations and acronyms used)

with AspectJ [5]. However, those implementation
approaches are not easily applied by software de-
velopers because they are not commonly used in
standard software development.

Variability modules for Java (VMJ) is proposed
to support SPLE development based on Java pro-
gramming languages [6]. VMJ is a practical im-
plementation of variability modules (VM) concept
[7].VM is designed to solve interoperability prob-
lems in product line variants. VMJ provides an ar-
chitectural pattern that combines design patterns and
Java modules to develop a product line application.
VMJ is also completed with a UML profile designed
to capture VM notation in UML, called UML-VM
profile. UML profile is a mechanism in UML to
extend the UML notation for a particular domain [8].

In model-driven software engineering (MDSE),
model transformation and code generation are the
main ingredients to support traceability between
model and implementation [9]. We utilized these
concepts in SPLE to improve the traceability be-
tween the problem domain and solution domain.
Unified modeling language (UML) is a standard
modeling language in software development. Since
UML is not designed to model variability in SPLE,

119

http://dx.doi.org/10.21609/jiki.v15i2.1070

120 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

we use a UML diagram completed with UML-VM
profile, called UML-VM diagram. The UML-VM
profile is also defined as a bridge between UML
and VMJ (Java). VMJ is used as an implementation
approach in the solution domain.

In this research, we design a model transfor-
mation mechanism from the UML-VM diagram to
VMJ source code. The input is a UML-VM dia-
gram in Eclipse modeling framework (EMF) format,
and the output is a skeleton of Java source code.
The transformation rules are defined based on the
UML-VM profile. Since VMJ uses the decorator
and factory design pattern, the transformation rules
also follow those patterns in generating source code.
The transformation rules are implemented in Eclipse
using the Acceleo model to text transformation. As
a result, the transformation tool can be exported as
an Eclipse plugin.

Other studies [6] present an architectural pattern
and UML-VM Profile to implement multi software
product lines in Java. This paper presents the rela-
tionship between UML-VM Profile and VMJ code in
more detail by showing transformation rules of how
each UML element mapped to the VMJ code and
providing a transformation tool using those transfor-
mation rules. [10] presents the relationship between
UML-DOP Profile and implementation code in de-
tail, the language used is ABS modeling language.
This paper uses Java with VMJ architectural pattern
as an implementation code and UML-VM Profile to
model variability in UML. UML-VM is an extension
of UML-DOP with more notation to model VMJ in
UML.

Table 1. List of abbreviation and acronyms used in the
paper

Abbreviation Explanation
ABS Abstract Behavioral Specification
AOP Aspect-Oriented Programming
ATL Atlas Transformation Language
DOP Delta-Oriented Programming
EMF Eclipse Modeling Framework
FOP Feature-Oriented Programming
M2T Model-to-Text

MDSE Model-Driven Software Engineering
MPL Multi-Product Line
MTL Model to Text Language
PLE Product Line Engineering

SPLE Software Product Line Engineering
UML Unified Modeling Language

UML-DOP UML profile for delta-oriented programming
VM Variability Modules
VMJ Variability Modules for Java
XMI XML Metadata Interchange

The structure of this paper is as follows: Section
2 explains summary of SPLE and DOP. In Section 3,

VMJ are explained by using an example. UML
transformation to VMJ is described in Section 4 by
explaining the transformation rules and the imple-
mentation in Eclipse. Section 5 shows an evaluation
by applying transformation tool to a case study.
Related work is discussed in Section 6. Conclusion
and future work are explained in Section 7.

2. Software Product Line Engineering

SPLE is an approach in software development
to develop various products in a single develop-
ment. A product line is a set of products that share
commonalities and variabilities [2]. Commonalities,
requirements required by all products, are defined
as a set of reusable parts. Different requirements for
any product are managed as variabilities. A product
can be derived based on the commonalities and
chosen variabilities.

SPLE consists of two main stages, domain en-
gineering and application engineering [2]. Domain
engineering is a process to define the commonality
and variability of product lines. There are four steps
in the domain engineering, i.e., domain requirement
engineering, domain design, domain realization, and
domain testing. In the beginning, the economic as-
pect of the product line is analyzed in product
management. Then, the variability is analyzed in
the requirement engineering, modeled in the design
phase, implemented in the realization, and tested in
the last stage.

Application engineering is a process to build
a product variant by reusing domain engineering
artifacts. It consists of four sub-processes, i.e., appli-
cation requirement engineering, application design,
application realization, and application testing. Each
sub process in the application engineering utilizes
artifacts from related subprocess in the domain en-
gineering. For example, in domain engineering, ar-
tifacts x1, x2, x3, ..., xn are defined. In the ap-
plication engineering, a product variant V1 requires
artifact x2, x3, x5. In the application realization,
those required artifacts are composed to derive a
specific product.

Feature-oriented programming (FOP) is an ap-
proach to implement SPLE based on the composition
of features [11]. In FOP, commonality and variabil-
ity are represented as a set of features in a fea-
ture model. The feature model consists of variation
points, variants, and constraints [2]. The model is
used as a reference to implement a reuse mechanism
across the entire software life cycle [11]. Constraints
describe the dependency or limitation when selecting
a list of features. A product variant is identified by
a list (subset) of features by conducting a feature

Waluyo et.al., UML Transformation to Java-based Software Product Lines 121

selection process. The product is valid if it satisfies
all constraints defined in the feature model.

Delta-oriented programming (DOP) is a
paradigm based on FOP to create a product line
by composing core modules and delta modules
[12]. Core module contains a set of classes that
implement a basic product. Delta modules modify
the core module to implement some variant of a
feature. The modification that can be made include
adding, deleting, or modifying code in the core
module. A product is derived by applying zero
or more corresponding delta modules to the core
module.

3. Variability Modules for Java
Variability modules (VM) is an extension of a

software module system that captures variability at
the level of modules [7]. VM is designed to solve
interoperability problems in product line variants.
Multiple variants from a similar product line some-
times can not coexist together. Furthermore, man-
aging the dependency of multi variants in different
product lines is also challenging. So, VM adopts
the module mechanism to manage variability and
dependency.

An architectural pattern is designed by [6] to
realize the VM concept in Java, called Variability
Modules for Java (VMJ). The VM concept is com-
bined with the Java module system (available from
Java 9) and design patterns. The main advantage of
VMJ is an extension of the Java module system that
supports SPLE and multi-product line (MPL). VMJ
is more intuitive for anyone familiar with the Java
programming language.

In this paper, VMJ is explained using a restoSPL
case study. RestoSPL produces applications to man-
age restaurants’ services. Figure 1 shows a snippet
of restoSPL feature diagram. RestoSPL have three
features, Menu, Booking, and Promo. Menu feature
is responsible for storing and displaying available
foods, Booking feature handles reservations, and the
promo feature is used to store and verify existing
promos. Menu is a mandatory feature in the feature
diagram, and the others are optional.

Figure 1. Feature model for restoSPL

In VMJ, the decorator pattern is used to model
delta behavior in DOP [6]. ”Decorators provide

a flexible alternative to sub-classing for extending
functionality” [13]. The decorator pattern can change
an object’s behavior dynamically. The new behavior
is added after creating the original object. Thus, the
behavior in the existing object (coremodule) can be
maintained. In DOP, the core module contains the
basic implementation that is common for all features.
Following the decorator pattern, in VMJ, a core
module consists of interface, abstract component
class, concrete component class, and abstract dec-
orator class. The delta module consists of concrete
decorator class.

Figure 2 shows an illustration of applying deco-
rator pattern to Promo feature. Package MPromo rep-
resents a core module that contains common fields
and methods. Interface Promo consists of two meth-
ods that will be implemented by the other classes.
Each concrete class that represents a feature’s vari-
ant implements the same interface. In decorator pat-
tern, this interface is implemented by an abstract
component class. Class PromoComponent also con-
sists of fields that are common for all variants. This
abstract component class are extended by concrete
component class PromoImpl and abstract decorator
class PromoDecorator.

Figure 2. UML Diagram with Decorator Pattern

As defined in the decorator pattern, existing
behavior in the concrete class can be wrapped by ad-
ditional behavior in the decorator class. An abstract
decorator class is a subclass of component class
so that the decorator class implements the same
interface. The decorator class is used to add new
behavior to the component class. Following the DOP

122 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

approach, the additional behavior is implemented in
the delta modules. The delta module defines fields
and methods that only exist in specific variants [6].
The delta module in VMJ is represented by the java
module, which consists of concrete decorator class
that adds, modifies, or deletes fields and methods
performed by the delta.

Suppose a variant of promo can give a discount
with a specific amount (See Figure 1). It can be done
by creating a delta module that implements discount
variant. In Figure 2, package DDiscount is a delta
module that modifies module MPromo. This package
contains a concrete decorator class PromoImpl that
extends class PromoDecorator. This decorator class
implements Discount feature, a variant of Promo fea-
ture. This class consists of two new fields discoun-
tAmount and minBuyAmount. Furthermore, this class
also has a new claim mechanism that is implemented
in a new method.

The factory design pattern is used in VMJ to
choose an appropriate variant of features [6]. For ex-
ample, Promo feature has three variants: Cashback,
Discount, and SpecificItem. In the decorator pattern,
the core module can be modified by three different
delta modules. The factory pattern allows creating
groups of related objects without specifying their
concrete class [13]. Therefore, a specific delta can
be applied during the product generation process. In
VMJ, the factory pattern is implemented by factory
class, as shown in Listing. 1.

1 package resto.promo;
2 import resto.promo.core.Promo;
3 ...
4 public class PromoFactory{
5 ...
6 public static Promo createPromo(String

fullyQualifiedName , Object ... base)
7 {
8 Promo record = null;
9 ...

10 Class <?> clz =
Class.forName(fullyQualifiedName);

11 Constructor <?> constructor =
clz.getDeclaredConstructors ()[0];

12 record = (Promo)
constructor.newInstance(base);

13 ...
14 return record;
15 }
16 }

Listing 1. Factory class code PromoFactory.java

The factory class is required to refer to the
correct variant in the object creation. Method cre-
atePromo in Line 6 is a factory method to create an
object of interface type Promo. This method has two
parameters that specify the variants of an object. The
first parameter is filled with fullyQualifiedName of
the class that is created. In line 10, fullyQualified-
Name is used to get the appropriate class and con-
structor. The second parameter is a variable-length

argument that can take zero or more arguments. This
parameter contains fields that are required to create
an object. A variable-length argument is needed
because each variant may have various number of
arguments. Then the object creation is done in line
12 with the variable-length argument base.

The factory fattern is utilized in the product
derivation stage. In VMJ, the product derivation of
SPLE is implemented by creating a java module that
represents a new product. A product consists of se-
lected features. The feature selection in VMJ is spec-
ified in the module declaration (module-info.java)
[6]. For example, KingFood restaurant requires fea-
tures menu with tax, discount promo, and specific
item promo. The module declaration of KingFood
product is shown in Listing. 2. KingFood product
has dependencies on menu features with taxed vari-
ants and promo features with discount variants. The
build script will read the product module declaration
to determine which module is required and check
whether the product does not violate some constrain.
If the product is valid, then the build script will
generate a jar file for each module and store it in
a folder. The product can be run by executing the
product module. Product variations can be done by
changing the contents of module-info.java with other
features.

1 module resto.restaurant.kingfood {
2 requires resto.menu.core;
3 requires resto.menu.taxed;
4 requires resto.promo.core;
5 requires resto.promo.discount;
6 requires resto.promo.specificItem;
7 }

Listing 2. Product module declaration code module-
info.java

4. UML to VMJ Transformation

Unified modeling language (UML), a standard
modeling language in software development, is not
designed to model variability in SPLE. A UML
profile for delta-oriented programming (UML-DOP)
profile is defined in [10] to model variability in
UML. VMJ is also accompanied by a UML profile
called UML-VM which map VM elements into the
UML diagram [6]. UML-VM is an extension of the
UML-DOP profile that can model VMJ in UML
notation.

Figure 3 is an example of UML-VM diagram
of RestoSPL that models Promo feature. As de-
fined in Figure 1, Promo feature has three variations
Cashback, Discount, and SpecificItem. In DOP, each
variation is implemented by delta modules. For ex-
ample, in Figure 3, there is two UML packages with
<<delta>> stereotypes that represent delta modules

Waluyo et.al., UML Transformation to Java-based Software Product Lines 123

in DOP. DDiscount delta modifies PromoImpl class
in the core module. This modification is modeled
as PromoImpl class in DDiscount delta that has
<<modifiedclass>> stereotype.

A feature is modeled as UML component
with <<feature>> stereotype. The relation between
deltas and features are modeled as UML depen-
dency. For example, Discount is implemented by
DDiscount delta. In Figure 3, there is a UML de-
pendency with <<when>> between UML component
Discount and UML package DDiscount. This de-
pendency implies that DDiscount delta is applied to
the core module when Discount feature is selected
in a product. A product is represented as UML com-
ponent with <<product>> stereotype, e.g., KingFood
product in Figure 3.

Figure 3. snippets of UML-VM diagram for restoSPL

In MDSE, a model transformation approach is
used to generate a source code based on models [9].
This research uses the model-to-text (M2T) transfor-
mation approach to generate Java source code from
the UML-VM model. M2T transformation takes
models as input and produces text (source code) as
output. Code generation is an application of M2T
transformation to achieve the transition from the
model level to the code level [9].

The model transformation mechanism in this
research is shown in Figure 4. The input is a UML-
VM diagram, a UML diagram that uses a UML-

VM profile. We use a textual representation of
the UML diagram in XML Metadata Interchange
(XMI) format. The XMI format follows the Eclipse
modeling framework (EMF). The UML diagram is
processed by ’UML to VMJ’ transformation tool to
produce VMJ source code. The tool is implemented
in Eclipse Acceleo based on transformation rules.
The transformation rules are defined based on the
UML-VM profile. The UML-VM profile maps VM
elements to UML notation so that the transformation
rules can be derived from the UML-VM profile.

Figure 4. Transformation mechanism

4.1. Transformation Rules

Transformation rules from UML-VM to VMJ
source code are defined based on UML-VM pro-
file. UML-VM profile supports the UML-VM model
transformation into any language that supports DOP,
in this case, Java with VMJ. For example, a UML
package with stereotype <module>> represents a
core module in VM. Thus, this package is trans-
formed into Java core module in VMJ. Summary of
UML to VMJ transformations rules are defined in
Table 2. The following subsections describes how
to transform UML elements into VMJ (Java) source
code, starting from package elements to component
elements.

4.1.1. UML Package. The UML package represents
a core module or delta modules in VMJ. In VMJ,
the naming convention is used to differentiate
those modules. The module name consists of three
parts: <productline-name>.<feature-name>
.<module-name>. A core module name ends
with core and a delta module use delta’s
name in the module-name. For example,
resto.promo.core represents a core module,
and resto.promo.discount represents a delta
module Discount.

In Figure 3, there are three packages. MPromo
package has <<module>> stereotype. This stereotype
indicates that MPromo is a core module. The other
two packages have <<delta>> stereotype, indicating
that the package is a delta module. In VMJ, the
core module and the delta module are represented

124 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

Table 2. UML to VMJ Transformation Rules

UML
Elements

Stereotype VMJ Elements

Package <<module>> Java (core) module. Java
package inside the mod-
ule

Package <<delta>> Java (delta) module. Java
package inside the mod-
ule

Interface <<interface>> Interface in Java core
module

Class − Several classes in Java
core module, following
decorator pattern, such
as: Abstract Component
Class, Concrete Compo-
nent Class, Abstract Dec-
orator Class

Class <<modifiedClass>> Concrete decorator class
in Java delta module

Attribute <<adds>>,
<<removes>>

A new attribute in
concrete decorator class.
Create new constructor
and throw exception in
related setter getter

Operation <<adds>>,
<<removes>>,
<<modifies>>

A new method in
concrete decorator class.
Throw an exception in
concrete decorator class.
Override method in
concrete decorator class

Component <<feature>> Feature declaration in file
ck.properties, and define
relates to delta modules

Component <<product>> Java product module

by the Java module. The name of the Java module
depends on the package name and its stereotype.
A Java module contains several java packages. The
main package in the Java module has the same name
as the Java module name.

A Java module has module declaration in
module-info.java file. This file specifies exported
java packages and required external modules. In
UMl-VM, those information can be retrieved from
the packages dependencies. For example in figure 3,
the class in the DDiscount package has an associ-
ation with the class in MPromo. Therefore module-
info.java in the DDiscount package requires Java
module resto.promo.core.

Each core module in VMJ has a factory class
to create an appropriate variant using the factory
pattern. A template for a factory class is provided so
that the factory class is generated automatically. The
name of the factory class is similar to the interface
name and followed by the Factory keyword. For
example, in Figure 3, there is an interface Promo.
Therefore, class PromoFactory is created using the
template. The factory class is also responsible to

handle the delta application order [6]. If a feature is
implemented by more than one delta, delta applica-
tion order must be specified. Delta application order
can be retrieved from UML the dependency with the
<<after>> stereotypes. In figure3, DSpecificItem
has a dependency with DDiscount package. When
feature DiscountForSpecificItem is selected, delta
DSpecificItem must be applied to the core module
after delta DDiscount. This condition is specified
as a constraint in factory class when applying the
decorator pattern.

4.1.2. UML Interface. The core module must have
an interface that defines abstract methods. Interface
is used for making each feature variant interopera-
ble. Figure 5 shows an interface Promo in RestoSPL.
As shown in Figure 3, this interface is a part of
the core module. This indicates that the Java mod-
ule ’resto.promo.core’ has a Promo interface.
The transformation from UML interface to VMJ is
straightforward because UML interface has similar
meaning with Java interface. For example, the result
of transforming interface Promo is shown in List-
ing. 3.

Figure 5. Interface in MPromo core module

1 package resto.promo.core;
2 public interface Promo {
3 Boolean claim(String code);
4 String getInfo ();
5 }

Listing 3. Code for Interface Promo

4.1.3. UML Class. In the UML-VM diagram, there
are two kinds of class: a class in the core module and
a class in the delta module. In the core module, a
UML class does not have stereotypes because it has
a similar meaning to a standard UML class. In the
delta module, a UML class can have <<modified
class>>, <<addedClass>>, or <<removedClass>>
stereotypes. Thus, the transformation from UML
class to VMJ is separated into two conditions: a class
in core and delta modules.
1. Core Module
As shown in Figure 3, MPromo package has
PromoImpl class (Figure 6) that implements Promo
interface. Following the decorator pattern, a class
in core module is transformed into three classes

Waluyo et.al., UML Transformation to Java-based Software Product Lines 125

in the VMJ: abstract component class, concrete
component class, and abstract decorator class. As
a result, based on PromoImpl class in the UML-VM
diagram, Listing. 4 and Listing. 5 can be generated.
Listing. 4 shows the abstract component class that
contains fields and abstract method. Listing. 5 shows
the implementation of concrete component class in
the core module that extends an abstract component
class.

Figure 6. Class in MPromo core module

1 package resto.promo.core;
2 public abstract class PromoComponent implements

Promo {
3 protected String name;
4 ...
5 public PromoComponent(String name , String code ,

String tnc , int quota) {
6 this.name = name;
7 ...
8 }
9 public String getName () { return name; }

10 public void setName(String name) { this.name =
name; }

11 ...
12 public abstract String getInfo ();
13 }

Listing 4. abstract component class code
PromoComponent.java

1 package resto.promo.core;
2 public class PromoImpl extends PromoComponent {
3 ...
4 public String getInfo () {
5 // implementation method
6 }
7 }

Listing 5. Concrete component class code PromoImpl.java

2. Delta Module
In DOP, a delta module can modify a core mod-
ule by adding, modifying, or removing classes, in-
terfaces, fields, or methods. In Figure 3, there is
a package with stereotype <<delta>> DDiscount.
Delta DDiscount modifies PromoImpl class in the
core module by adding new attributes and methods,
removing a method, and modifying a method. In the
UML-VM diagram, this delta package consists of
PromoImpl class that has <<modifiedClass>> stereo-
type. As shown in Figure 7, these modified class has
modified methods and fields.

As defined in Table 2, a class with
<<modifiedClass>> stereotype is transformed
into a concrete decorator class in VMJ. The
concrete decorator class can add, modify and delete
fields and methods from the decorated component.
In the UML-VM diagram, this modification
is represented by <<adds>>, <<modifies>>, or
<<removes>> stereotypes in the fields or methods.
Listing. 6 shows a concrete decorator class, a
result of transforming UML-VM diagram into
VMJ. Lines 5-6 show the code of adding fields and
line 19 shows the added method. Following the
decorator pattern, modified constructor in Line 8
wraps PromoComponent object with the new fields.

Figure 7. Class in DDiscount delta module

1 package resto.promo.discount;
2 ...
3 public class PromoImpl extends PromoDecorator {
4 //new fields
5 double discAmount;
6 double minBuyAmount;
7 // modified constructor
8 public PromoImpl(PromoComponent record , double

discAmount , double minBuyAmount) {
9 super(record);

10 this.discountAmount = discountAmount;
11 this.minBuyAmount = minBuyAmount;
12 }
13 ...
14 public Boolean claim(String code){
15 throw new UnsupportedOperationException ();
16 }
17 public Boolean claim(String code , double

totalPrice){
18 // implementation method
19 }
20 }

Listing 6. Concrete decorator class code

4.1.4. UML Component. In the UML-VM dia-
gram, a UML component can have <<feature>> or
<<product>> stereotypes. For example, in Figure 3,
Discount component has <<feature>> stereotype.
This component represents a feature in a product
line, as shown in the feature diagram. In DOP,
a feature is implemented by one more deltas. As

126 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

shown in Figure 3, Discount feature has a depen-
dency to DDiscount delta. Relation between deltas
and features are defined in the configuration knowl-
edge [14]. In VMJ, the configuration knowledge is
defined in file ‘ck.properties‘. This configuration file
maps the name of the Java delta module to a feature.
Therefore, the UML dependency between deltas and
features in the UML-VM diagram is transformed
into configuration files.

A product in the product line is represented
as a Java module in VMJ. Different with core
Java module and delta Java module, a product
Java module is identified with a specific name:
<productline-name> .product.<product-name>.
The UML component with <<product>> stereotype
is transformed into product Java module. For ex-
ample, Kingfood is a product in the restoSPL. In
Figure 3, Kingfood is modeled as component with
<<product>> stereotype. In VMJ, Kingfood is real-
ized as a Java module resto.product.kingfood.
A product consists of selected features. This fea-
ture selection is modeled in the module declara-
tion, as shown in Listing. 2. The product declara-
tion is generated from UML dependency between
the Kingfood component and the corresponding
<<feature>> component.

4.2. Implementation of Automated UML-
VMJ Transformation

In this research, an automated model transforma-
tion tool from the UML-VM diagram to VMJ source
code is developed based on the transformation rules.
We use Acceleo1 model-to-text transformation as
tool support to create the tool. Acceleo is a template-
based technology based on Eclipse to create cus-
tom code generators. To generate a code, Acceleo
requires an input model (in this case, UML-VM
diagram) and a code template in the Acceleo model
to text language (MTL). Transformation rules are
implemented in Acceleo MTL. Acceleo language
can iterate over a set of UML elements and trans-
form those elements into a source code. In addition,
Acceleo can invoke some Java code from Acceleo
MTL.

Listing. 7 shows a snippet of transformation rules
that are implemented in Acceleo MTL. This code
transforms a UML class into a concrete component
class in VMJ. Acceleo MTL has a built-in library,
like functions in Java that return a string. In line
3, aClass.name.toUpperFirst() takes the class
name, capitalizes its first letter to meet the Java
class naming convention. Lines 7-10 iterate over

1https://www.eclipse.org/acceleo/overview.html

operations in the UML class to create methods on
the generated concrete component class. Since UML
class diagram does not contain a method implemen-
tation, a developer must complete the implementa-
tion manually.

1 [template public generateImpl(aClass : Class)]
2 package [aClass.corePackageName ()/];
3 public class [aClass.name.toUpperFirst ()/]

extends [aClass.classComponent ()/] {
4 public

[aClass.name /]([aClass.constructorArgs ()/]) {
5 super([aClass.constructorArgsNoType ()/])
6 }
7 [for (o: Operation | aClass.ownedOperation)

separator(’\n’)]
8 [o.visibility /] [o.minMethodHeader ()/] {
9 // TODO: implement this method

10 }
11 [/for]
12 }
13 [/ template]

Listing 7. Snippet of generate impl.mtl

All transformation rules in Section 4.1 have been
implemented in Acceleo. Acceleo model transforma-
tion can be exported into the Eclipse plugin using
eclipse modeling tools. As a result, an automated
model transformation from UML-VM to VMJ is
produced as an Eclipse plugin. This plugin can be
used to transform any UML-VM diagram into VMJ
source code. In the following section, an experiment
is conducted to show the application of automated
model transformation.

5. Evaluation

Evaluation of model transformation from UML
to VMJ is conducted by applying the transformation
tool to the restoSPL case study. RestoSPL case study
consists of six concrete features, as shown in in
Figure 1. The input of transformation tool is a UML-
VM diagram of RestoSPL, that consists of eight
packages and ten classes. The output is a skeleton
code of Java programs that follow VMJ architec-
tural pattern. The generated code must be completed
manually by adding the implementation to produce a
running product line application. As evaluation, we
have implemented the restoSPL case study manually
without using the transformation tool. We compare
the generated VMJ code with the source codes that
have been implemented manually.

Table 3 shows the result of comparison between
the generated code and the completed source code.
We evaluate the number of files, lines of code,
classes, and modules. The number of files, classes
and modules of the completed VMJ code is same as
generated VMJ code. The transformation tools has
successfully mapped elements from UML to VMJ
source codes. We can conclude that the UML-VM

Waluyo et.al., UML Transformation to Java-based Software Product Lines 127

Table 3. Comparison of generated VMJ code with com-
pleted VMJ code

Compared in Generated Code Completed Code
Num of Files 38 38

Num of Lines of Code 829 906
Num of Classes 23 23
Num of Modules 11 11

diagram can model VMJ completely. The transfor-
mation tools also maintain consistencies between
the UML diagram and implementation because the
number of classes and modules remains the same,
which means the classes and packages elements
from the UML diagram successfully mapped to
VMJ codes. There is no need to create new classes
manually. Therefore, what is modeled on the UML
diagram can describe the structure of VMJ code.
If the VMJ code is done manually from scratch,
the developer might forget to add some elements
from the UML diagram to the VMJ code creating
inconsistencies between the UML diagram and VMJ
code. In Table 3, the number of files in generated
code are similar to completed code, but 20 files in
the generated code are modified to produce a running
application. As a result, the number of lines of code
between generated and completed code are different
because several files must be completed manually.
Therefore, the addition of lines of codes is happened
as expected.

Figure 8. Folder comparison between generated code and
completed code

Figure 8 shows folder comparison between gen-
erated code and completed code of core module
Promo and its delta modules. Blue-colored files in-
dicate that those files have been modified. We can
see Impl files have been modified because those file
contains concrete implementation that must be added

Figure 9. File comparison between generated code and
completed code of PromoImpl.java

manually. In Figure 9, we can see the comparison
between generated code and completed code of Pro-
moImpl.java from core module Promo. Red-colored
lines are deleted lines from the generated code,
whereas green-colored lines are added lines from
the completed code. We can see that the developer
only needs to fill the method implementation. Class
constructor and other things already come from gen-
erated code. The time spent developing the code
could be reduced, and the developer could allocate
their time to other things.

Based on our experiments, the UML to VMJ
transformation tool can process all elements in the
UML diagram and into a VMJ code. The structure
of generated VMJ code contains all UML elements
and follows the design patterns in VMJ. Because it
follows the design patterns in VMJ, the quality of
generated VMJ code can be on par with VMJ code
that has been done manually. The developer must
complete the generated VMJ code because the out-
put of transformation tool is a code skeleton that fol-
low structure behavior from the UML diagram. The
dynamic behavior, such as method’s implementation,
must be added manually. The transformation tool
only works with UML diagram that uses the UML-
VM profile defined in [6]. Random UML diagram is
not guaranteed to work with this transformation tool
as the transformation tool use UML-VM profile as a
foundation in the transformation rules to map UML
diagram into VMJ code. The transformation tool is
exported as an Eclipse plugin so that it can be used

128 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 15,
issue 2, June 2022

by any Eclipse user.

6. Related Work

Model transformation is utilized to close the gap
between models and source codes. The developers
can use model augmentation such as UML profiles
or leave the model specification open and fill the
details at the code level. A research in [15] found
that a UML profile can be used to support model
transformation in Atlas Transformation Language
(ATL). ATL is one of the transformation languages
in Eclipse Modeling Framework (EMF) [16]. In this
research, we utilize a UML profile in another EMF
tool, Acceleo model-to-text transformation.

Practical implementation of using UML profile
in model transformation can be found in [17], [18],
and [19]. UML diagram is transformed to Alloy2

in [17]. A UML profile for Alloy is defined to
represent Alloy concepts in the UML and supports
the model transformation. In [18] and [19], UML
profile is used to support UML transformation to
abstract behavioral specification (ABS)3 and vice
versa. Model transformation in [18] is implemented
in ABS compiler, and in [19], the automated trans-
formation is developed using Python programming
language.

7. Conclusion and Future Work

In this research, a model transformation tool is
developed to support SPLE. The tool can automat-
ically transform a UML diagram into Java-based
software product lines. The UML-VM profile is used
as a foundation in the transformation rules that map
elements from the UML diagram into VMJ source
code. Based on the transformation rules, the tool is
developed in Eclipse Acceleo. The transformation
tool can process elements from the UML diagram
into VMJ code. Therefore, the developer does not
need to write code from scratch, and the generated
code follows the structure of the UML diagram. This
tool is evaluated using a case study by comparing
the result of generated source code and the code
implemented manually.

VMJ also supports a MPL, several interre-
lated product lines with dependencies. However, the
model transformation does not support the MPL.
Further research can be conducted to support the
UML diagram of MPL to support the development
of MPL. In addition, a web framework for VMJ,

2Alloy is a high-level modelling language for specifying Object-
Oriented systems (https://alloytools.org/)
3ABS is an executable modeling language (https://abs-
models.org/)

called WinVMJ, has been developed to support web-
based software product lines. Since the structure of
WinVMJ is a bit different from VMJ, some adjust-
ments in the model transformation tools are required
so that the generated code follows the structure of
WinVMJ.

References

[1] P. Clements and L. M. Northrop, Software
Product Lines: Practices and Patterns, ser. SEI
Series in Software Engineering. Boston, MA:
Addison-Wesley, 2002.

[2] K. Pohl, G. Bockle, and F. van der Linden, Soft-
ware Product Line Engineering: Foundations,
Principles, and Techniques. Berlin: Springer-
Verlag, 2005.

[3] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke,
G. Saake, and T. Leich, “Featureide: An exten-
sible framework for feature-oriented software
development,” Science of Computer Program-
ming, vol. 79, pp. 70 – 85, 2014, experimental
Software and Toolkits (EST 4): A special issue
of the Workshop on Academic Software De-
velopment Tools and Techniques (WASDeTT-3
2010).

[4] J. Koscielny, S. Holthusen, I. Schaefer,
S. Schulze, L. Bettini, and F. Damiani, “DeltaJ
1.5: Delta-oriented programming for Java 1.5,”
in Proceedings of the 2014 International Con-
ference on Principles and Practices of Pro-
gramming on the Java Platform: Virtual Ma-
chines, Languages, and Tools, ser. PPPJ ’14.
New York, NY, USA: ACM, 2014, pp. 63–74.

[5] I. Groher and M. Voelter, Aspect-Oriented
Model-Driven Software Product Line Engi-
neering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 111–152.

[6] M. R. A. Setyautami and R. Hähnle, “An
architectural pattern to realize multi software
product lines in java,” in 15th International
Working Conference on Variability Modelling
of Software-Intensive Systems, ser. VaMoS’21.
New York, NY, USA: Association for Comput-
ing Machinery, 2021.

[7] F. Damiani, R. Hähnle, E. Kamburjan, M. Lien-
hardt, and L. Paolini, “Variability modules for
java-like languages,” in Proceedings of the 25th
ACM International Systems and Software Prod-
uct Line Conference - Volume A. New York,
NY, USA: Association for Computing Machin-
ery, 2021, p. 1–12.

[8] OMG, OMG Unified Modeling Language
(OMG UML) Version 2.5.1, Object Man-

Waluyo et.al., UML Transformation to Java-based Software Product Lines 129

agement Group, 2017. [Online]. Available:
https://www.omg.org/spec/UML/2.5.1/PDF

[9] M. Brambilla, J. Cabot, and M. Wimmer,
Model-Driven Software Engineering in Prac-
tice. Morgan & Claypool, 2012.

[10] M. R. A. Setyautami, R. Hähnle,
R. Muschevici, and A. Azurat, “A UML
profile for delta-oriented programming to
support software product line engineering,” in
Proceedings of the 20th International Systems
and Software Product Line Conference, ser.
SPLC ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 45–49.

[11] S. Apel, D. Batory, C. Kästner, and G. Saake,
Feature-Oriented Software Product Lines.
Berlin: Springer-Verlag, 2013.

[12] I. Schaefer, L. Bettini, V. Bono, F. Damiani,
and N. Tanzarella, “Delta-oriented program-
ming of software product lines,” in Software
Product Lines: Going Beyond, J. Bosch and
J. Lee, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 77–91.

[13] E. Gamma, R. Helm, R. Johnson, and
J. M. Vlissides, Design Patterns: ”Ele-
ments of Reusable Object-Oriented Software”.
Addison-Wesley, 1994.

[14] R. Hähnle, “The abstract behavioral specifi-
cation language: A tutorial introduction,” in
Formal Methods for Components and Objects:
11th International Symposium, FMCO 2012,
Bertinoro, Italy, September 24-28, 2012, Re-
vised Lectures, E. Giachino, R. Hähnle, F. S.
de Boer, and M. M. Bonsangue, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 1–37.

[15] A. Randak, S. M. Perez, and M. Wimmer, “Ex-
tending ATL for native UML profile support:
An experience report,” in Proceedings of the
3rd International Workshop on Model Trans-
formation with ATL, MtATL@TOOLS 2011,
Zürich, Switzerland, July 1st, 2011, ser. CEUR
Workshop Proceedings, I. Kurtev, M. Tisi, and
D. Wagelaar, Eds., vol. 742. CEUR-WS.org,
2011, pp. 49–62.

[16] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev,
“Atl: A model transformation tool,” Science of
Computer Programming, vol. 72, no. 1, pp.
31–39, 2008, special Issue on Second issue of
experimental software and toolkits (EST).

[17] K. Anastasakis, B. Bordbar, G. Georg, and
I. Ray, “On challenges of model transformation
from UML to alloy,” Softw. Syst. Model., vol. 9,
no. 1, pp. 69–86, 2010.

[18] R. Muhammad and M. R. Setyautami, “Auto-
matic model translation to UML from software
product lines model using UML profile,” in
2016 International Conference on Advanced
Computer Science and Information Systems
(ICACSIS). IEEE, Oct 2016, pp. 605–610.

[19] M. R. A. Setyautami, R. R. Rubiantoro,
and A. Azurat, “Model-driven engineering for
delta-oriented software product lines,” in 2019
26th Asia-Pacific Software Engineering Con-
ference (APSEC). IEEE, Dec 2019, pp. 371–
377.

https://www.omg.org/spec/UML/2.5.1/PDF

	Introduction
	Software Product Line Engineering
	Variability Modules for Java
	UML to VMJ Transformation
	Transformation Rules
	UML Package
	UML Interface
	UML Class
	UML Component

	Implementation of Automated UML-VMJ Transformation

	Evaluation
	Related Work
	Conclusion and Future Work

