OPTIMASI FUZZY LEARNING VECTOR QUANTIZATION UNTUK SISTEM PENGENALAN AROMA CAMPURAN

Wisnu Jatmiko, Rochmatullah ., H. R. Sanabila

Abstract


Kehandalan dari sebuah sistem pengenalan aroma tidak hanya tergantung pada kemampuan perangkat sensor melainkan juga tergantung pada sistem pengenalan pola yang menggunakan jaringan syaraf tiruan. Struktur jaringan syaraf yang sederhana memiliki performa yang buruk untuk memisahkan berbagai campuran aroma. Kombinasi antara teori fuzzy dan jaringan syaraf tiruan digunakan karena teori fuzzy dapat menangani masalah data yang samar-samar sedangkan jaringan syaraf tiruan mempunyai kemampuan untuk pembelajaran yang bagus. Algoritma LVQ digunakan sebagai proses pembelajaran dalam sistem karena algoritma ini mempunyai kecepatan pembelajaran dan keakuratan yang cukup tinggi. Namun penggunaan LVQ dengan teori fuzzy masih menemui kendala utama yaitu pemilihan inisialisasi vektor referensi. Dalam paper ini kami mengusulkan metode baru dalam tahap inisialisasi vektor referensi, yaitu memilih vektor referensi awal yang terbaik dengan menggunakan fungsi fitness. Selanjutnya kami juga telah mengembangkan aplikasi berbasis GUI untuk menampilkan hasil dari klasifikasi aroma. Hasil eksperimen menunjukkan bahwa penggunaan fungsi fitness dalam pemilihan vektor referensi mampu meningkatkan tingkat pengenalan aroma dalam sistem.

Keywords


teori fuzzy; algoritma; LVQ; jaringan saraf tiruan

Full Text:

PDF


DOI: http://dx.doi.org/10.21609/jiki.v2i1.127

Refbacks

  • There are currently no refbacks.


Copyright © Jurnal Ilmu Komputer dan Informasi. Faculty of Computer Science Universitas Indonesia.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View JIKI Statistic