ABCD FEATURE EXTRACTION OF IMAGE DERMATOSCOPIC BASED ON MORPHOLOGY ANALYSIS FOR MELANOMA SKIN CANCER DIAGNOSIS

Bilqis Amaliah, Chastine Fatichah, M. Rahmat Widyanto

Abstract


This research present asymmetry, border irregularity, color variation, and diameter (ABCD) feature extraction of image dermatoscopic for melanoma skin cancer diagnosis. ABCD feature is the important information based on morphology analysis of image dermatoscopic lesion. ABCD feature is used to calculate Total Dermatoscopic Value (TDV) for melanoma skin cancer diagnosis. Asymmetry feature consist information of asymmetry and lengthening index of the lesion. Border irregularity feature consist information of compactness index, fractal dimension, edge abruptness, and pigmentation transition from the lesion. Color homogeneity feature consist information of color homogeneity and the correlation between photometry and geometry of the lesion. Diameter extraction is diameter of the lesion. There are three diagnosis that is used on this research i.e. melanoma, suspicious, and benign skin lesion. The experiment uses 30 samples of image dermatoscopic lesion that is suspicious melanoma skin cancer. Based on the experiment, the accuracy of the system is 85% that there are four false diagnoses of 30 samples.

Penelitian ini menyajikan ekstraksi fitur citra dermatoskopik untuk diagnosis kanker kulit melanoma berdasarkan asymmetry, border irregularity, color variation, dan diameter (ABCD). Fitur ABCD adalah informasi yang penting berdasarkan analisis morfologi lesi citra dermatoskopik. Fitur tersebut digunakan dalam perhitungan Total Dermatoscopic Value (TDV) untuk diagnosis kanker kulit melanoma. Fitur asymmetry terdiri dari informasi asimetri dan indeks perpanjangan luka. Fitur border irregularity terdiri dari informasi indeks compactness, dimensi fraktal, edge abruptness, dan transisi pigmentasi dari lesi. Warna fitur homogenitas terdiri dari informasi homogenitas warna dan korelasi antara fotometri dan geometri lesi. Ekstraksi diameter adalah diameter lesi. Ada tiga diagnosa yang digunakan pada penelitian ini yaitu melanoma, diduga melanoma, dan benign skin lesion. Percobaan ini menggunakan 30 sampel dari lesi citra dermatoskopik kanker kulit melanoma yang mencurigakan. Berdasarkan percobaan, akurasi dari sistem ini adalah 85% dan terdapat empat diagnosa palsu dari 30 sampel.

Keywords


asimetri; asymmetry; border irregularity; color variation; feature extraction; melanoma; ekstraksi fitur; melanoma; variasi warna

Full Text:

PDF


DOI: http://dx.doi.org/10.21609/jiki.v3i2.145

Refbacks

  • There are currently no refbacks.


Copyright © Jurnal Ilmu Komputer dan Informasi. Faculty of Computer Science Universitas Indonesia.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View JIKI Statistic