SEPARATION OF OVERLAPPING OBJECT SEGMENTATION USING LEVEL SET WITH AUTOMATIC INITALIZATION ON DENTAL PANORAMIC RADIOGRAPH

Safri Adam, Agus Zainal Arifin

Abstract


To extract features on dental objects, it is necessary to segment the teeth. Segmentation is separating between the teeth (objects) with another part than teeth (background). The process of segmenting individual teeth has done a lot of the recently research and obtained good results. However, when faced with overlapping teeth, this is quite challenging. Overlapping tooth segmentation using the latest algorithm produces an object that should be segmented into two objects, instantly becoming one object. This is due to the overlapping between two teeth. To separate overlapping teeth, it is necessary to extract the overlapping object first. Level set method is widely used to segment overlap objects, but it has a limitation that needs to define the initial level set method manually by the user. In this study, an automatic initialization strategy is proposed for the level set method to segment overlapping teeth using hierarchical cluster analysis on dental panoramic radiographs images. The proposed strategy was able to initialize overlapping objects properly with accuracy of 73%.  Evaluation to measure quality of segmentation result are using misscassification error (ME) and relative foreground area error (RAE). ME and RAE were calculated based on the average results of individual tooth segmentation and obtain 16.41% and 52.14%, respectively. This proposed strategy are expected to be able to help separate the overlapping teeth for human age estimation through dental images in forensic odontology.


Keywords


Overlapping, Dental Panoramic Radiograph, Automatic Initialization, Level Set

Full Text:

PDF


DOI: http://dx.doi.org/10.21609/jiki.v13i1.806

Refbacks

  • There are currently no refbacks.


Copyright © Jurnal Ilmu Komputer dan Informasi. Faculty of Computer Science Universitas Indonesia.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View JIKI Statistic