Bimodal Keystroke Dynamics-Based Authentication for Mobile Application Using Anagram

Prasti Eko Yunanto, Ari Moesriami Barmawi

Abstract


Currently, most of the smartphones recognize uses based on static biometrics, such as face and fingerprint. However, those traits were vulnerable against spoofing attack. For overcoming this problem, dynamic biometrics like the keystroke and gaze are introduced since it is more resistant against spoofing attack. This research focuses on keystroke dynamics for strengthening the user recognition system against spoofing attacks. For recognizing a user, the user keystrokes feature used in the login process is compared with keystroke features stored in the keystroke features database. For evaluating the accuracy of the proposed system, words generated based on the Indonesian anagram are used. Furthermore, for conducting the experiment, 34 participants were asked to type a set of words using the smartphone keyboard. Then, each user’s keystroke is recorded. The keystroke dynamic feature consists of latency and digraph which are extracted from the record. According to the experiment result, the error of the proposed method is decreased by 23.075% of EER with FAR and FRR are decreased by 16.381% and 10.41% respectively, compared with Kim’s method. It means that the proposed method is successful increase the biometrics performance by reducing the error rates

Keywords


biometrics; keystroke dynamic; identification; authentication

Full Text:

PDF


DOI: https://doi.org/10.21609/jiki.v15i2.1015

Refbacks

  • There are currently no refbacks.


Copyright © Jurnal Ilmu Komputer dan Informasi. Faculty of Computer Science Universitas Indonesia.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.