Predicting Analysis of User’s Interest from Web Log Data in e-Commerce using Classification Algorithms
DOI:
https://doi.org/10.21609/jiki.v15i1.1024Keywords:
web usage mining, web log data, classification, user interest, clickstream dataAbstract
The accelerated development of e-commerce has been a concern for business people. Business people should be able to gain customer interest in a variety of ways so that their companies can compete with others. Analyzing click-flow data will help organizations or firms assess customer loyalty, provide advertising privileges, and develop marketing strategies through user interests. By understanding consumer preferences, clickstream data analysis may be used to determine who is participating, assist companies in evaluating customer contentment, boost productivity, and design marketing strategies. This research was performed by defining experimental user interests using Dynamic Mining and Page Interest Estimation methods. The findings of this analysis, using three algorithms at the pattern discovery page, demonstrated that the Decision Tree method excelled in both methods. It indicated that the operational performance of the Decision Tree performed well in the assessment of user interests with two different approaches. The findings of this experiment can be used as a proposal for researching the field of web usage mining, collaborating with other approaches to achieve higher accuracy values.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).