Gender Prediction of Indonesian Twitter Users Using Tweet and Profile Features

Authors

DOI:

https://doi.org/10.21609/jiki.v15i2.1079

Keywords:

gender, Twitter, user, classification, feature extraction, demography

Abstract

The increasing use of social media generates huge amounts of data which in turn triggers research into social media analytics. Social media contents can be analyzed to explore public opinion on an issue or provide the insights reflecting proxy indicators towards real-world events. Understanding the demographics of social media users can increase the potential for applications of sentiment analysis, topic modeling, and other analytical tasks. To map demographics, we need to know the latent attributes of users, such as age, gender, occupation and location of residence. Since this attribute is not directly available, we need to do some inference from the social media data. This study aims to predict the gender attribute given a Twitter user account. We conducted experiments with several supervised classifiers with feature extraction, including the use of word embedding representations. The results of this study indicate that the combination of features extracted from Tweet contents and user profile structured data can predict the gender of Twitter users in Indonesia with accuracy above 80%.

Author Biographies

Rahmad Mahendra, Universitas Indonesia

Faculty of Computer Science

Hadi Syah Putra, Universitas Indonesia

Faculty of Computer Science

Douglas Raevan Faisal, Universitas Indonesia

Faculty of Computer Science

Fadzil Rizki, Universitas Indonesia

Faculty of Computer Science

Downloads

Published

2022-07-02

How to Cite

Mahendra, R., Putra, H. S., Faisal, D. R., & Rizki, F. (2022). Gender Prediction of Indonesian Twitter Users Using Tweet and Profile Features. Jurnal Ilmu Komputer Dan Informasi, 15(2), 131–141. https://doi.org/10.21609/jiki.v15i2.1079