Deep Image Deblurring for Non-Uniform Blur: a Comparative Study of Restormer and BANet
Abstract
Image blur is one of the common degradations on an image. The blur that occurs on the captured images is sometimes non-uniform, with different levels of blur in different areas of the image. In recent years, most deblurring methods have been deep learning-based. These methods model deblurring as an imageto-image translation problem, treating images globally. This may result in poor performance when handling non-uniform blur in images. Therefore, in this paper, the author compared two state-of-the-art supervised deep learning methods for deblurring and restoration, e.g. BANet and Restormer, with a special focus on the non-uniform blur. The GOPRO training dataset, which is also used in various studies as a benchmark, was used to train the models. The trained models were then tested on the GOPRO testing test, the HIDE testing set for cross-dataset testing, and GOPRO-NU, which consists of specifically selected non-uniform blurred images from the GOPRO testing set, for the non-uniform deblur testing. On the GOPRO testing set, Restormer achieved an SSIM of 0.891 and PSNR of 27.66 while BANet obtained an SSIM of 0.926 and PSNR of 34.90. Meanwhile, for the HIDE dataset, Restormer achieved an SSIM of 0.907 and PSNR of 27.93 while BANet obtained an SSIM of 0.908 and PSNR of 34.52. Finally, on the non-uniform blur GOPRO dataset, Restormer achieved an SSIM of 0.911 and PSNR of 29.48 while BANet obtained an SSIM of 0.935 and PSNR of 35.47. Overall, BANet shows the best result in handling non-uniform blur with a significant improvement over Restormer.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).