Preprocessing Impact on SAR Oil Spill Image Segmentation Using YOLOv8
DOI:
https://doi.org/10.21609/jiki.v18i1.1380Abstract
Synthetic Aperature Radar (SAR) is a sensory equipment used in marine remote sensing that emits radio waves to capture a representation of the target scene. SAR images have poor quality, one of which is due to speckle noise. This research uses SAR images containing oil spills as objects that are detected using machine learning with the YOLOv8 model. The dataset was obtained from MKLab by preprocessing to improve the quality of SAR images before processing. Preprocessing involves annotating the dataset, augmenting it with flip augmentation, and filtering it using threshold and median filters in addition to a sharpen kernel that finds the optimal midway value. The default value of the YOLOv8 hyperparameter is used with addition of delta as well as subtraction of the same delta.
The implementation of preprocessing and combination of hyperparameters is examined to optimize the YOLOv8 model in detecting oil spills in SAR images. Based on 10 experimental scenarios, initial results with the original MKLab image provide an mAP50 of 49.7%. Implementing Flip augmentation alone on the data set increases the mAP50 value by 18.8%. Followed by the sharpen 1.2 kernel filter increasing the mAP50 value to 68.89%, while the median and thresholding filters tend to reduce the mAP50 value. The combination of experiments with the best results was preprocessing with flip augmentation and sharpen 1.2 kernel filter with hyperparameters: epoch 200, warmup 4.0, momentum 0.9, warmup bias lr 0.01, weight decay 0.005, and learning rate 0.000714, resulting in an mAP50 value of 68.89%. In addition, it was found that the sharpening kernel with a real number midpoint of 1.2 and combination with flipping augmentation had the greatest impact on increasing the MAP50 value in SAR oil spill image segmentation by YOLOv8.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).