ALGORITMA PARALEL ODD EVEN TRANSPOSITION PADA MODEL JARINGAN NON-LINIER
DOI:
https://doi.org/10.21609/jiki.v3i2.144Keywords:
bubble sort, extended lucas cube, fibonacci cube, jaringan cluster non-linier hypercube, odd even transpositionAbstract
Odd-even-transposition adalah suatu algoritma paralel yang merupakan pengembangan dari algoritma sekuensial “bubble sortâ€. Algoritma odd-even-transposition ini didesain khusus untuk model jaringan array linier (homogen). Untuk n elemen data, kompleksitas waktu dari algoritma bubble sort adalah O(n2), sedangkan pada odd-even-transposition yang bekerja di atas n prosesor adalah ï‘(n). Ada peningkatan kecepatan waktu pada kinerja algoritma paralel ini sebesar n kali dibanding algoritma sekuensialnya. Hypercube dimensi k adalah model jaringan non-linier (non-homogen) terdiri dari n = 2k prosesor, di mana setiap prosesor berderajat k. Model jaringan Fibonacci cube dan extended Lucas cube masing-masing merupakan model subjaringan hypercube dengan jumlah prosesor < 2k prosesor dan maksimum derajat prosesornya adalah k. Pada paper ini, diperlihatkan bagaimana algoritma odd-even-transposition dapat dijalankan juga pada model jaringan komputer cluster non-linier hypercube, Fibonacci cube, dan extended Lucas cube dengan kompleksitas waktu O(n). Odd-even-transposition is a parallel algorithm which is the development of sequential algorithm “bubble sortâ€. Odd-even transposition algorithm is specially designed for linear array network model (homogeneous). For n data elements, the time complexity of bubble sort algorithm is O(n2), while the odd-even-transposition that works with n processor is ï‘(n). There in an increase in the speed of time on the performance of this parallel algorithms for n times than its sequential algorithm. K-dimensional hypercube is a non-linear network model (non-homogeneous) consists of n = 2k processors, where each processor has k degree . Network model of Fibonacci cube and extended Lucas cube are the hypercube sub-network model with the number of processors <2k processors and maximum processor degree is k. In this paper, it is shown how the odd-even-transposition algorithm can also be run on non-linear hypercube cluster, Fibonacci cube, and extended Lucas cube computer network model with time complexity O(n).Downloads
Published
2012-05-29
How to Cite
., E., Salim, R. A., & ., H. (2012). ALGORITMA PARALEL ODD EVEN TRANSPOSITION PADA MODEL JARINGAN NON-LINIER. Jurnal Ilmu Komputer Dan Informasi, 3(2), 73–81. https://doi.org/10.21609/jiki.v3i2.144
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).