ABCD FEATURE EXTRACTION OF IMAGE DERMATOSCOPIC BASED ON MORPHOLOGY ANALYSIS FOR MELANOMA SKIN CANCER DIAGNOSIS
DOI:
https://doi.org/10.21609/jiki.v3i2.145Keywords:
asimetri, asymmetry, border irregularity, color variation, feature extraction, melanoma, ekstraksi fitur, variasi warnaAbstract
This research present asymmetry, border irregularity, color variation, and diameter (ABCD) feature extraction of image dermatoscopic for melanoma skin cancer diagnosis. ABCD feature is the important information based on morphology analysis of image dermatoscopic lesion. ABCD feature is used to calculate Total Dermatoscopic Value (TDV) for melanoma skin cancer diagnosis. Asymmetry feature consist information of asymmetry and lengthening index of the lesion. Border irregularity feature consist information of compactness index, fractal dimension, edge abruptness, and pigmentation transition from the lesion. Color homogeneity feature consist information of color homogeneity and the correlation between photometry and geometry of the lesion. Diameter extraction is diameter of the lesion. There are three diagnosis that is used on this research i.e. melanoma, suspicious, and benign skin lesion. The experiment uses 30 samples of image dermatoscopic lesion that is suspicious melanoma skin cancer. Based on the experiment, the accuracy of the system is 85% that there are four false diagnoses of 30 samples. Penelitian ini menyajikan ekstraksi fitur citra dermatoskopik untuk diagnosis kanker kulit melanoma berdasarkan asymmetry, border irregularity, color variation, dan diameter (ABCD). Fitur ABCD adalah informasi yang penting berdasarkan analisis morfologi lesi citra dermatoskopik. Fitur tersebut digunakan dalam perhitungan Total Dermatoscopic Value (TDV) untuk diagnosis kanker kulit melanoma. Fitur asymmetry terdiri dari informasi asimetri dan indeks perpanjangan luka. Fitur border irregularity terdiri dari informasi indeks compactness, dimensi fraktal, edge abruptness, dan transisi pigmentasi dari lesi. Warna fitur homogenitas terdiri dari informasi homogenitas warna dan korelasi antara fotometri dan geometri lesi. Ekstraksi diameter adalah diameter lesi. Ada tiga diagnosa yang digunakan pada penelitian ini yaitu melanoma, diduga melanoma, dan benign skin lesion. Percobaan ini menggunakan 30 sampel dari lesi citra dermatoskopik kanker kulit melanoma yang mencurigakan. Berdasarkan percobaan, akurasi dari sistem ini adalah 85% dan terdapat empat diagnosa palsu dari 30 sampel.Downloads
Published
2012-05-29
How to Cite
Amaliah, B., Fatichah, C., & Widyanto, M. R. (2012). ABCD FEATURE EXTRACTION OF IMAGE DERMATOSCOPIC BASED ON MORPHOLOGY ANALYSIS FOR MELANOMA SKIN CANCER DIAGNOSIS. Jurnal Ilmu Komputer Dan Informasi, 3(2), 82–90. https://doi.org/10.21609/jiki.v3i2.145
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).