ELECTROCARDIOGRAM ARRHYTHMIA CLASSIFICATION SYSTEM USING SUPPORT VECTOR MACHINE BASED FUZZY LOGIC
DOI:
https://doi.org/10.21609/jiki.v9i1.364Keywords:
arrhythmia classification, ECG, fuzzy logic, heart rate, Support Vector MachineAbstract
Arrhythmia is a cardiovascular disease that can be diagnosed by doctors using an electrocardiogram (ECG). The information contained on the ECG is used by doctors to analyze the electrical activity of the heart and determine the type of arrhythmia suffered by the patient. In this study, ECG arrhythmia classification process was performed using Support Vector Machine based fuzzy logic. In the proposed method, fuzzy membership functions are used to cope with data that are not classifiable in the method of Support Vector Machine (SVM) one-against-one. An early stage of the data processing is the baseline wander removal process on the original ECG signal using Transformation Wavelet Discrete (TWD). Afterwards then the ECG signal is cleaned from the baseline wander segmented into units beat. The next stage is to look for six features of the beat. Every single beat is classified using SVM method based fuzzy logic. Results from this study show that ECG arrhythmia classification using proposed method (SVM based fuzzy logic) gives better results than original SVM method. ECG arrhythmia classification using SVM method based fuzzy logic forms an average value of accuracy level, sensitivity level, and specificity level of 93.5%, 93.5%, and 98.7% respectively. ECG arrhythmia classification using only SVM method forms an average value accuracy level, sensitivity level, and specificity level of 91.83%, 91.83%, and 98.36% respectively.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).