Detecting Controversial Articles on Citizen Journalism
DOI:
https://doi.org/10.21609/jiki.v11i1.478Keywords:
controversy detection, text classification, supervised learningAbstract
Someone's understanding and stance on a particular controversial topic can be influenced by daily news or articles he consume everyday. Unfortunately, readers usually do not realize that they are reading controversial articles. In this paper, we address the problem of automatically detecting controversial article from citizen journalism media. To solve the problem, we employ a supervised machine learning approach with several hand-crafted features that exploits linguistic information, meta-data of an article, structural information in the commentary section, and sentiment expressed inside the body of an article. The experimental results shows that our proposed method manages to perform the addressed task effectively. The best performance so far is achieved when we use all proposed feature with Logistic Regression as our model (82.89\% in terms of accuracy). Moreover, we found that information from commentary section (structural features) contributes most to the classification task.Downloads
Published
2018-02-28
How to Cite
Wicaksono, A. F., Herdiyana, S. R., & Adriani, M. (2018). Detecting Controversial Articles on Citizen Journalism. Jurnal Ilmu Komputer Dan Informasi, 11(1), 34–41. https://doi.org/10.21609/jiki.v11i1.478
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).