Visual Recognition Of Graphical User Interface Components Using Deep Learning Technique
DOI:
https://doi.org/10.21609/jiki.v13i1.845Keywords:
User Interface, Usability Testing, GUI, Computer Vision, Deep LearningAbstract
Graphical User Interface (GUI) building in software development is a process which ideally need to go through several steps. Those steps in the process start from idea or rough sketch of the GUI, then refined into visual design, implemented in coding or prototype, and finally evaluated for its function and usability to discover design problem and to get feedback from users. Those steps repeated until the GUI considered satisfactory or acceptable by the user. Computer vision technique has been researched and developed to make the process faster and easier; for example generating code for implementation, or automatic GUI testing using component images. But among those techniques, there are still few for usability testing purpose. This preliminary research attempted to make the foundation for usability testing using computer vision technique by built minimalist dataset which has images of various GUI components and used the dataset in deep learning experiment for GUI components visual recognition. The experiment results showed deep learning technique suitable for the intended task, with accuracy of 95% for recognition of two different types of components, and accuracy of 72% for six different types of component.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).