Pleural Effusion Classification Based on Chest X-Ray Images using Convolutional Neural Network
DOI:
https://doi.org/10.21609/jiki.v14i1.898Keywords:
Computer Vision, Image Classification, Convolutional Neural Network, Pleural EffusionAbstract
Pleural effusion is a respiratory infection characterized by a buildup of fluid between the two layers of pleura, which causes specific symptoms such as chest pain and shortness of breath. In Indonesia, pleural effusion cases alone account for 2.7% of other respiratory infections, with an estimated number of sufferers in general at more than 3000 people per 1 million population annually. Pleural effusion is a severe case and can cause death if not treated immediately. Based on a study, as many as 15% of 104 patients diagnosed with pleural effusion died within 30 days. In this paper, we present a model that can detect pleural effusion based on chest x-ray images automatically using a Machine Learning algorithm. The machine learning algorithm used is Convolutional Neural Network (CNN), with the dataset used from ChestX-ray14. The number of data used was 2500 in the form of x-ray images, based on two different classes, x-ray with pleural effusion and x-ray with normal condition. The evaluation result shows that the CNN model can classify data with an accuracy of 95% of the test set data; thus, we hope it can be an alternative to assist medical diagnosis in pleural effusion detection.Downloads
Published
2021-02-28
How to Cite
Fauzan, A. R., Wahyuddin, M. I., & Ningsih, S. (2021). Pleural Effusion Classification Based on Chest X-Ray Images using Convolutional Neural Network. Jurnal Ilmu Komputer Dan Informasi, 14(1), 9–16. https://doi.org/10.21609/jiki.v14i1.898
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).