Reducing Adversarial Vulnerability through Adaptive Training Batch Size
DOI:
https://doi.org/10.21609/jiki.v14i1.907Keywords:
adversarial examples, batch normalization, fixup initialization, batch size variationAbstract
Neural networks possess an ability to generalize well to data distribution, to an extent that they are capable of fitting to a randomly labeled data. But they are also known to be extremely sensitive to adversarial examples. Batch Normalization (BatchNorm), very commonly part of deep learning architecture, has been found to increase adversarial vulnerability. Fixup Initialization (Fixup Init) has been shown as an alternative to BatchNorm, which can considerably strengthen the networks against adversarial examples. This robustness can be improved further by employing smaller batch size in training. The latter, however, comes with a tradeoff in the form of a significant increase of training time (up to ten times longer when reducing batch size from the default 128 to 8 for ResNet-56). In this paper, we propose a workaround to this problem by starting the training with a small batch size and gradually increase it to larger ones during training. We empirically show that our proposal can still improve adversarial robustness (up to 5.73\%) of ResNet-56 with Fixup Init and default batch size of 128. At the same time, our proposal keeps the training time considerably shorter (only 4 times longer, instead of 10 times).Downloads
Published
2021-02-28
How to Cite
Sasongko, K., Krisnadhi, A. A., & Fanany, M. I. (2021). Reducing Adversarial Vulnerability through Adaptive Training Batch Size. Jurnal Ilmu Komputer Dan Informasi, 14(1), 27–37. https://doi.org/10.21609/jiki.v14i1.907
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).