Comparison of FairMOT-VGG16 and MCMOT Implementation for Multi-Object Tracking and Gender Detection on Mall CCTV

Pray Somaldo, Dina Chahyati


The crowd detection system on CCTV has proven to be useful for retail and shopping sector owners in mall areas. The data can be used as a guide by shopping center owners to find out the number of visitors who enter at a certain time. However, such information was still insufficient. The need for richer data has led to the development of more specific person detection which involves gender. Gender detection can provide specific information on the number of men and women visiting a particular location. However, gender detection alone does not provide an identity label for every detection that occurs, so it needs to be combined with a multi-person tracking system. This study compares two tracking methods with gender detection, namely FairMOT with gender classification and MCMOT. The first method produces MOTA, MOTP, IDS, and FPS of 78.56, 79.57, 19, and 24.4, while the second method produces 69.84, 81.94, 147, and 30.5. In addition, evaluation of gender was also carried out where the first method resulted in a gender accuracy of 65\% while the second method was 62.35\%. 



Full Text:




  • There are currently no refbacks.

Copyright © Jurnal Ilmu Komputer dan Informasi. Faculty of Computer Science Universitas Indonesia.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.