ALGORITMA PARALLEL SUPERVISED PNN STRUCTURE DETERMINATION DAN IMPLEMENTASI BERBASIS MESSAGE PASSING INTERFACE
DOI:
https://doi.org/10.21609/jiki.v2i1.121Keywords:
probabilistik neural network, neural network, klasifikasi polaAbstract
Probabilistic Neural Network (PNN) adalah salah satu tipe jaringan neural yang umum digunakan untuk memecahkan permasalahan klasifikasi pola. Di samping struktur jaringan dan metode pelatihan yang sederhana, PNN memiliki kelemahan utama yaitu dalam menentukan struktur jaringan yang terdiri dari penentuan nilai parameter smoothing dan jumlah neuron yang digunakan pada lapisan pola. Dengan adanya kelemahan ini, beberapa peneliti mengajukan algoritma Supervised PNN Structure Determination (SPNN) dengan tujuan untuk mempermudah penentuan struktur PNN. Akan tetapi dalam implementasi iteratif yang telah dilaporkan, SPNN masih memerlukan waktu komputasi yang cukup lama untuk menentukan struktur PNN yang baik. Makalah ini menjelaskan usaha perbaikan kinerja waktu proses implementasi SPNN dengan memperhatikan bagian-bagian proses yang independent serta memodifikasi algoritmanya untuk dapat diterapkan pemrosesan secara paralel. Hasil eksperimen menunjukkan percepatan yang cukup berarti.Downloads
Published
2009-02-01
How to Cite
Suhartanto, H., & ., H. (2009). ALGORITMA PARALLEL SUPERVISED PNN STRUCTURE DETERMINATION DAN IMPLEMENTASI BERBASIS MESSAGE PASSING INTERFACE. Jurnal Ilmu Komputer Dan Informasi, 2(1), 10–16. https://doi.org/10.21609/jiki.v2i1.121
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).