PEMISAHAN BANYAK SUMBER SUARA MESIN MENGGUNAKAN INDEPENDENT COMPONENT ANALYSIS (ICA) UNTUK DETEKSI KERUSAKAN
DOI:
https://doi.org/10.21609/jiki.v3i1.139Keywords:
deteksi kerusakan, ICA, sinyal suara, damage detection, sound signalAbstract
Pemeliharaan kondisi mesin di industri membutuhkan kecepatan dan kemudahan, salah satu metodenya adalah dengan analisis getaran. Getaran mesin menyebabkan pola suara yang diemisikan mesin, di mana suara mesin satu bercampur dengan mesin lainnya. Blind Source Separation (BSS) merupakan teknik memisahkan sinyal campuran berdasarkan sifat kebebasan statistik antar sumber. Melalui simulasi dengan beberapa motor dan susunan mikrofon sebagai sensor, didapatkan data suara campuran dari beberapa motor yang terekam melalui tiap mikrofon. Intensitas sinyal yang diterima mikrofon berbeda satu sama lain, tergantung pada jarak dan sudut datangnya. Tujuan penelitian ini adalah untuk memisahkan sinyal campuran dari tiap mikrofon sehingga didapatkan sinyal estimasi sumber untuk mendeteksi kerusakan motor. Berdasarkan hasil penelitian, diperoleh pemisahan sinyal terbaik dalam Time-Domain ICA. Sinyal estimasi tersebut dianalisis untuk menentukan kondisi kerusakan mesin berdasarkan pola frekuensi sesaatnya. Maintenance of engine conditionin the industry requires speed and convenience, one of the method is by vibration analysis. Machine’s vibration causes the machine emitted sound pattern, in which an engine sound mixed with other machine’s. Blind Source Separation (BSS) is a technique to separate mixed signals based on the statistical independence properties between the sources. Through simulation with several motors and the composition of the microphones as the sensor, noise mixture data obtained from some motors recorded by each microphone. The signal intensity received by microphone are different from each other, depending on the distance and angle of arrival. The purpose of this study is to separate the mixed signals from each microphone to obtain estimation of the signal source to detect the motor damage . Based on the research, obtained the best signal separation in the Time-Domain ICA. Signal estimation is analyzed to determine the condition of an engine failure patterns based on instantaneous frequency.Downloads
Published
2012-05-29
How to Cite
Atmaja, B., Aisyah, A. S., & Arifianto, D. (2012). PEMISAHAN BANYAK SUMBER SUARA MESIN MENGGUNAKAN INDEPENDENT COMPONENT ANALYSIS (ICA) UNTUK DETEKSI KERUSAKAN. Jurnal Ilmu Komputer Dan Informasi, 3(1), 30–37. https://doi.org/10.21609/jiki.v3i1.139
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).