EKSTRAKSI FITUR FRAKTAL DAN MORFOLOGI SINYAL ELEKTROKARDIOGRAM DAN PEMANFAATANNYA DALAM KLASIFIKASI DEEP SLEEP
DOI:
https://doi.org/10.21609/jiki.v4i2.169Keywords:
deep sleep, elektrokardiogram, fraktal, pemrosesan sinyal, sleep stagesAbstract
Detak jantung manusia dapat memberikan informasi yang berguna tentang aktivitas yang terjadi di dalam tubuh. Salah satu informasi yang dapat diperoleh dari rekaman detak jantung atau elektrokardiogram adalah tingkat keterlelapan tidur seseorang (sleep stages). Dari sinyal elektrokardiogram seseorang, tingkat keterlelapan tidurnya dapat dikenali dengan terlebih dahulu mengekstrak fitur yang merepresentasikan sinyal elektrokardiogram tersebut secara keseluruhan. Ekstraksi dilakukan agar dimensi data dapat tereduksi sehingga proses klasifikasi dapat lebih mudah dilakukan. Penelitian ini melakukan ekstraksi fitur fraktal dan morfologi dari sinyal elektrokardiogram yang diperoleh dari PhysioNet. Sebelum melakukan ekstraksi fitur morfologi dari sinyal elektrokardiogram, terlebih dahulu dilakukan “Wavelet Denoising†untuk menghilangkan noise yang terdapat pada sinyal. Human heart rate can provide useful information about the activities that occur in the body. One of information which may be obtained from recording the heart rate or electrocardiogram is commonly called a person's level of deep sleep (sleep stages). From a person's electrocardiogram signal, the level of deep sleep recognizable by extracting features that represent the electrocardiogram signal as a whole. Extraction is done so that the dimension of the data can be reduced so that the classification process can be more easily done. This study aims to extract fractal features and morphology of the electrocardiogram signal obtained from PhysioNet. Prior to the extraction of morphological features of the electrocardiogram signal, first performed “Wavelet Denoising†to remove the noise contained in the signal.Downloads
Published
2012-05-30
How to Cite
Arymurthy, A. M., Citrahadi, E., & Antaresti, T. (2012). EKSTRAKSI FITUR FRAKTAL DAN MORFOLOGI SINYAL ELEKTROKARDIOGRAM DAN PEMANFAATANNYA DALAM KLASIFIKASI DEEP SLEEP. Jurnal Ilmu Komputer Dan Informasi, 4(2), 98–106. https://doi.org/10.21609/jiki.v4i2.169
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).