LOCAL LINE BINARY PATTERN FOR FEATURE EXTRACTION ON PALM VEIN RECOGNITION
Keywords:
Fuzzy k-NN, LLBP, Local Line Binary Pattern, palm vein
Abstract
In recent years, palm vein recognition has been studied to overcome problems in conventional systems in biometrics technology (finger print, face, and iris). Those problems in biometrics includes convenience and performance. However, due to the clarity of the palm vein image, the veins could not be segmented properly. To overcome this problem, we propose a palm vein recognition system using Local Line Binary Pattern (LLBP) method that can extract robust features from the palm vein images that has unclear veins. LLBP is an advanced method of Local Binary Pattern (LBP), a texture descriptor based on the gray level comparison of a neighborhood of pixels. There are four major steps in this paper, Region of Interest (ROI) detection, image preprocessing, features extraction using LLBP method, and matching using Fuzzy k-NN classifier. The proposed method was applied on the CASIA Multi-Spectral Image Database. Experimental results showed that the proposed method using LLBP has a good performance with recognition accuracy of 97.3%. In the future, experiments will be conducted to observe which parameter that could affect processing time and recognition accuracy of LLBP is needed
Published
2015-08-27
How to Cite
Sari, J. Y., Fatichah, C., & Suciati, N. (2015). LOCAL LINE BINARY PATTERN FOR FEATURE EXTRACTION ON PALM VEIN RECOGNITION. Jurnal Ilmu Komputer Dan Informasi, 8(2), 111 - 118. https://doi.org/10.21609/jiki.v8i2.309
Section
Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).